电磁场与电磁波09期末复习3
电磁场与电磁波期末复习知识点归纳课件

01
02
03
无线通信
电磁波用于无线通信,如 手机、无线网络和卫星通 信。
雷达技术
电磁波用于探测、跟踪和 识别目标,广泛应用于军 事和民用领域。
电磁兼容性
电磁波可能干扰其他电子 设备的正常工作,需要采 取措施确保兼容性。
THANKS
感谢观看
03
高强度的电磁波照射会使生物体局部温度升高,可能造成损伤。
对材料的影响
电磁感应
电磁波在导电材料中产生感应电流,可能导致材料发热或产生磁场。
电磁波吸收与散射
某些材料能吸收或散射电磁波,用于制造屏蔽材料或隐身技术。
电磁波诱导材料结构变化
长时间受电磁波作用,某些材料可能发生结构变化或分解。
对信息传输的影响
电磁场与电磁波期末复习知识 点归纳课件
ቤተ መጻሕፍቲ ባይዱ
目录
• 电磁场与电磁波的基本概念 • 静电场与恒定磁场 • 时变电磁场与电磁波 • 电磁波的传播与应用 • 电磁辐射与天线 • 电磁场与电磁波的效应
01
电磁场与电磁波的基本概 念
电磁场的定义与特性
总结词
描述电磁场的基本特性,包括电场、磁场、电位移矢量、磁感应强度等。
电磁波的折射
当电磁波从一种介质传播到另一种介质时,会发生折射现象,折射角与入射角的关系由斯涅尔定律确 定。
电磁波的散射与吸收
电磁波的散射
散射是指电磁波在传播过程中遇到障碍物时,会向各个方向散射,散射强度与障碍物的 尺寸、形状和介电常数等因素有关。
电磁波的吸收
不同介质对不同频率的电磁波吸收能力不同,吸收系数与介质的电导率、磁导率和频率 等因素有关。
微波应用
微波广泛应用于雷达、通信、加热等领域, 如微波炉利用微波的能量来加热食物。
《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁场与微波技术复习2009

D
q r2
q
r1
q 1 q 1 0
4 0 r1 4 0 r2
等效问题:
选择d值使 POB与 AOP相似
p
oHale Waihona Puke r20 0 d BqR(r, )
r1
r2
r1 Aq
D
(r) 1 ( q q) 40 r1 r2
a d r2 D a r1
d a2 D
q a q D
r1 D2 r2 2r D cos
30
切向条件
n (H1 H2) J S
H1t H2t J S 分界面没有自由面电流 H1t H2t
B1t B2t
1 2
n (E1 E2) 0 E1t E2t
D1t D2t
1 2
31
没有自由电荷与电流的特殊情况
矢量形式的边界条件为
n (H1 H2) 0 n (E1 E2) 0 n (B1 B2 ) 0 n (D1 D2 ) 0
9
( A ' ekxx B ' ekxx )(C ' eky y Deky y )
(1) kx k, ky jk :
1 ( Achkx Bshkx)(C cos ky D sin ky) 2 ( A'ekx B 'ekx )(C cos ky D sin ky)
(2) kx jk, ky k :
n1
rn (Cn cos n Dn sin n)
n 1
13
镜像法
唯一性定理:当电位满足泊松方程或拉普拉斯方程,在边界 上满足三类边界条件之一时,电位的解是唯一的。
两问题的等效条件:研究域内源的分布不变; 边界上电位的边界条件不变。
电磁波与电磁场期末复习题(试题+答案)

电磁波与电磁场期末复习题(试题+答案)电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n r由理想导体2指向介质1,则磁场满足的边界条件:01=?B n ρρ,s J H n =?1ρρ。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式n ??=?εσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 24r Qπε;无限长线电荷(电荷线密度为λ)E =r2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ=的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
电磁场与电磁波期末复习知识点

电磁场期末复习知识点第一章1、熟悉三种坐标系。
基本题型:1)圆柱坐标系中单位矢量 , 。
2)对于矢量A ,若 ,则=+∙y x a y x a x )(2 ,=⨯x z a y a x 2 。
3) 习题1.2 1.32、直角坐标系中散度、旋度、方向导数、梯度的计算公式及求解。
基本题型:习题1.9 1.15 1.16 1.23 1.25第二章1、真空中和介质中的场方程。
2、介质极化的过程3、高斯定理的应用(求解对称性问题)基本题型:1)球面对称问题:计算空间任一点的电场强度、电通密度、极化强度、极化电荷等(例如:空心介质球、导体球)2)圆柱对称问题:同轴线单位长度的电容、电感、漏电的计算。
4、电场的边界条件I 要能判断出不同分界面的满足的边界条件是什么,准确写出来。
5、电动势和接地电阻的基本概念,减小接地电阻的方法。
5、课件上的例题、课堂练习。
第三章1、镜像法的概念、依据,四种情况下镜像电荷的大小和位置(要描述清楚);电荷运动时,其镜像电荷如何运动。
2、分离变量法:给定区域满足的方程、满足的边界条件(用数学表达式表示出来)第四章1、真空中、磁介质中磁场的基本方程(安排环路定理的应用,圆柱对称,参看教材和课件例题)2、磁化过程的描述=⋅ϕρρa z a =⨯ϕρa a z z y y x x A a A a A a ++=3、边界条件第五章1、麦克斯韦方程组及其物理含义(一定要记清楚)(含瞬时值和向量相量形式)2、时变电磁场的边界条件(两种特殊情况的边界面边界条件)3、坡印廷矢量的计算(含瞬时值和向量形式,平均坡印廷矢量)4、时谐电磁场瞬时值和向量形式的转换。
基本题型:1、“变化的电场可以产生磁场,变化的磁场可以产生电场”具体指麦克斯韦方程组的哪一个?2、例题5- 2 ;例题5-3 例题5-4 例题5-53、课后习题:5.6 5.7 5.8 5.9第六章1、无耗媒质中均匀平面波的特征。
2、相速、波长、传播常数、波阻抗等计算公式及相互关系(真空中的值)3、导电媒质中均匀平面波特征。
(完整word版)电磁场与电磁波期末复习题库

物理与电信工程学院《电磁场与电磁波》 期末复习题库一,单项选择题1.电磁波的极化特色由__ B ___决定。
A. 磁场强度B.电场强度C. 电场强度和磁场强度D. 矢量磁位2.下述对于介质中静电场的基本方程不正确的选项是__ D ___E dlE dS qDE 0SA.B.C.?CD.?r3. 一半径为 a 的圆环(环面法向矢量 ne z)经过电流 I ,则圆环中心处的磁感觉强度 B 为__ D ___0 Ie rB. 0 IeC. 0 Ie zD.0 Ie zA.2a 2a 2a 2 a 4. 以下对于电力线的描绘正确的选项是__ D ___A. 是表示电子在电场中运动的轨迹B. 只好表示 E 的方向,不可以表示 E 的大小C. 曲线上各点 E 的量值是恒定的D.既能表示 E 的方向,又能表示 E 的大小5.B 0 说明 __ A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D.以上都不是6.以下对于交变电磁场描绘正确的选项是__ C ___A. 电场和磁场振幅同样,方向不同样样B.电场和磁场振幅不同样样,方向同样 C. 电场和磁场各处正交D.电场和磁场振幅同样,方向也同样7.对于时变电磁场的表达中,不正确的选项是:( D )A. 电场是有旋场B. 电场和磁场互相激发C. 电荷可以激发电场D.磁场是有源场8. 以下对于在导电媒质中流传的电磁波的表达中,正确的选项是__B ___A. 不再是平面波B. 电场和磁场不同样样相C.振幅不变D.以TE波形式流传9.两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B.两个线圈的相对地点C.线圈上的电流D.空间介质10.用镜像法求解静电场边值问题时,判断镜像电荷的采纳能否正确的依据__C___A.镜像电荷能否对称B. 电位所知足的方程能否改变C.界限条件能否保持不变D.同时选择B和C11.地区V所有所适用非导电媒质填补,当此地区中的电磁场能量减少时,必定是_ A___A.能量流出了地区B. 能量在地区中被耗资C.电磁场做了功D.同时选择A和C12.磁感觉强度为rr(32)r r, 试确立常数 a 的值。
电磁场与电磁波复习资料
电磁场与电磁波复习资料电磁场与电磁波期末复习资料第⼀章⼀、在直线坐标系中,过空间任意⼀点P (X 0,Y 0,Z 0)的三个互相正交的坐标单位⽮量e x ,e y ,e z 分别是x ,y ,和z 增加的⽅向,且遵循右⼿螺旋法则:e x ×e y =e z 、e y ×e z =e x ,e z ×e x =e y⼆、A 与B 的点积为:A ·B = (e x A x +e Y A y +e z A z )·(e x B x +e y B y +e z B z ) = A X B X + A Y B Y +A Z B Z三、A 与B 的叉积为:A XB = (e x Ax+e y A y +e z A z ) X (e x B x +e y B y +e z B z )=e x (A y B Z -A Z B Y ) + e y (A Z B X - A X B Z ) + e z (A X B Y - A Y B X )= x e y z xy xYZ e e A A Az B B B ?? ? ?四、场的⼀个重要属性是他占有⼀个空间,他把物理状态作为空间和时间的函数来描述,⽽且,在此空间区域中,除了有限个点或某些表⾯外,该函数是处处连续的。
若物理状态与时间⽆关,则为静态场;反之,则为动态场或时变场。
五、直⾓坐标系中梯度的表达式为:x y z u u zgrad u e e e x y y=++ 六、哈密顿算符“?”,在直⾓坐标系中: xy z e e e x y z=++??? 七、哈密顿算符?表⽰标量场的梯度u : ()xy z grad u e e e u u x y z=++=? 例 1.3.1已知R = ,R = |R|。
证明:(1)RR R ?=;(2)31()R R R=- ;(3)()'()f R f R ?=-?。
其中:xy z e e e x y z =++???表⽰对x 、y 、z 的运算,''''x y z e e e x y z=++,表⽰对x ’、y ’、z 的运算。
最新电磁场与电磁波期末复习要点
第一章矢量分析①A AA e =u r uu ru r②cos A BA Bθ⋅=⋅u r u ru r u r③A u r 在B u r 上的分量B AB A BA COS BA θ⋅==u r u ru r u r④e x y z x y z xyzA B e e AA A BBB⨯=u r u rr r r⑤A B A B⨯=-⨯u r u r u r u r ,()A B C A B A C⨯+=⨯+⨯u r u r u r u r u r u r u r ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯u r u r u r u r u r u r u r u r u r (标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅u r u r u r u r u r u r u r u r u r⑥ 标量函数的梯度xyzu u u uxyze e e ∂∂∂∇=++∂∂∂u u r u u r u u r⑦求矢量的散度=y x zA x y zA A A ∂∂∂∇⋅++∂∂∂u r 散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰u r u r u rÑ,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。
⑧给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰u r r,x y CCE dl E dx E dy ⋅=+⎰⎰u r r积分与路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅=u r 0A ∇⨯=u r,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅u r ≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯u r≠,则该矢量可以由一个矢量函数的旋度表示。
《电磁场与电磁波》2009期末考试试卷三及答案详解
长沙理工大学考试试卷………………………………………………………………………………………………………课程名称(含档次) 《电磁场与电磁波A 》课程代号 002587专业 电信、光电 层次(本部、城南) 本部 考试方式(开、闭卷) 闭卷一、选择题(6小题,共18分)(3分)[1]一半径为a 的圆柱形铁棒在均匀外磁场中磁化后,棒内的磁化强度为0z M e ,则铁棒表面的磁化电流密度为A 、0m z J M e =B 、0m J M e ϕ=C 、0m J M e ϕ=-(3分)[2]恒定电流场中,不同导电媒质交界面上自由电荷面密度0σ=的条件是A 、1122γεγε=B 、1122γεγε>C 、1122γεγε< (3分)[3]已知电磁波的电场强度为(,)cos()sin()x y E z t e t z e t z ωβωβ=---,则该电磁波为A 、左旋圆极化波B 、右旋圆极化波C 、线椭圆极化波(3分)[4]比较位移电流与传导电流,下列陈述中,不正确的是:A. 位移电流与传导电流一样,也是电荷的定向运动B. 位移电流与传导电流一样,也能产生涡旋磁场C. 位移电流与传导电不同,它不产生焦耳热损耗(3分)[5]xOz 平面为两种媒质的分界面,已知分界面处z y x e e e H 26101++=, z y e e H 242+=,则分界面上有电流线密度为:A 、10S z J e =B 、104S x z J e e =+C 、10S z J e =(3分)[6]若介质1为完纯介质,其介电常数102εε=,磁导率10μμ=,电导率10γ=;介质2为空气。
平面电磁波由介质1向分界平面上斜入射,入射波电场强度与入射面平行,若入射角/4θπ=,则介质2 ( 空气) 中折射波的折射角'θ为A 、/4πB 、/2πC 、/3π二、填空题(5小题,共20分)(4分)[1]静电比拟是指( ), 静电场和恒定电流场进行静电比拟时,其对应物理量间的比似关系是( )。
电磁场与波-期末复习知识点总结
电磁场与波知识要点第一章和第二章公式:1.电荷密度:V S l dq dV dq dS dq dl ρρρ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩体电荷密度:面电荷密度:线电荷密度:2.电流密度:3.电流连续性方程:(S V dq d J dS dV dtdt d J dt ρρ⎧⋅=-=-⎪⎪⎨⎪∇⋅=-⎪⎩⎰⎰ 可由高斯定理得)(P37)(单位时间从闭合曲面内流出的电荷等于V 内减少的电荷)(对恒定电流,其电荷密度在空间上的分布是不随时间变化的,则0J ∇⋅=,故恒定电流场是无散场)4.库仑力:5.点电荷电场:(P40)6.电场的电势:'11(4nii iq r C C r r ϕπε==+-∑()根据定义的零电势点来确定)7.比奥—萨伐尔定理:()'03'(4Idl r r B Idl r rμπ⨯-=-⎰电流元)(P46)8.磁场的磁矢位:'4VViJ A dV C r r μπ=+-⎰9.高斯定理:01S V q E dS dV ρεε⋅==⎰⎰ 内自.特别地,对于静电荷:(P44)V n V S n S di J e dS di J e v dl ρρ⎧=⋅=⋅⎪⎪⎨⎪=⋅=⋅⎪⎩体电流密度:面电流密度:0(0E E E dl ρ∇⋅=∇⨯=⋅=⎰说明静电荷产生的场是保守场)()'3'14ni i i iq q F r r r r πε==--∑()'3'114n i i i iq E r r r r πε==--∑10.有介质的高斯定理:(P53)利用高斯定理求电场通常只用于对称分布的问题中,关键是选择高斯面:(1).所求电场的点应该在高斯面上;(2).高斯面必须为封闭曲面;(3).在整个或分段高斯面上,或是恒定的。
11.安培环路定理:0B dl I μ⋅=⎰ 内自0B Jμ∇⨯=⋅(P4812.修正后的安培环路定律:DH J t∂∇⨯=+∂传(全电流定律)(p68)13.电位移矢量:14.磁场强度:0r B H MB H μμμ=-=15.极化强度矢量:0limi V p P V∆→=∆∑(电偶极矩:(z z p e qde =+从-到),极化强度矢量表示单位体积中电偶极矩的矢量和,反映了物质在电场下被极化的强弱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.矩形波导的截止波长与波导内填充的媒质( a )。 a. 无关; b. 有关;
c. 关系不确定,还需看传播什么波型
截止频率与波导尺寸和填充材料有关 截止波长与波导尺寸有关
13.矩形波导的横截面尺寸为a×b,设a>b,则此波
导中传播的主模的截止波长为(
解得
U0 A ln(b a)
U0 B ln b ln(b a)
( a r b)
则
U0 E er r ln(b a)
(a) U0 ;在 r b 处, (b) 0 (3)在 r a 处,
参考评分标准:(1)正确应用高斯定理,得出正确结果(8分);(2)(4分);(3)(3分)。
解法二: 由 1 d (r d ) 0 (r ) A ln r B (a r b) r dr dr 在 r b 处, (b) 0 A ln b B 0 在 r a 处, (a) U0 A ln a B U0
一.填空题(共15分,每空1分)
1.时变电磁场基本方程的微分形式是
B E t
D H J t
、
、
B0
、程为
E 0 、 H J 、
;
对于恒定磁场,基本方程则为
。
2.均匀平面波在有损耗媒质(或导电媒质)中传播时, 电场和磁场的振幅将随传播距离的增加而按指数规律 衰减 ,且磁场强度的相位与电场强度的相位 不同 。
1
f
b 10.矩形波导中可以传输( a. TEM、TE和TM波
c )。
c. TE和TM波
b. TEM波
11.横截面尺寸为a×b的矩形波导管,内部填充理想 介质时的截止频率 fc
1 2 (m a)2 (n b)2 ,工作频
率为f的电磁波在该波导中传播的条件是( b )。 a. f fc b. f fc c. f fc
3.两个频率相等、传播方向相同、振幅相等,且极化 方向相互正交的线极化波合成新的线极化波,则这两个
同相或反相
线极化波的相位
。
4.当入射角θi等于(或大于)临界角θc时,均匀平面波
在分界面上将产生 全反射 ;而当入射角θi等于布儒斯特
角θB时,平行极化的入射波在分界面上将产生 全透射 。
5.电偶极子的远场区指的是 kr 1(或 2 r 1 )
7.均匀平面波在良导体(或强导电媒质)中传播时, 衰减常数α与相位常数β的大小满足( a. b.
c )。
c.
8.穿透深度(或趋肤深度)δ与频率f及媒质参数(电
1
导率为σ、磁导率为μ)的关系是( a. f b. f
c )。 在高耗条件下 c. 1 f
a.相同
b.相反
c.相差90°
3.引入矢量磁位 A ,则磁感应强度 B 与 A 的关系为( b ) a. B A b. B A c. B 2 A
4.用镜像法求解静电场边值问题时,判断镜像电荷设 置是否正确的依据是( c )。
a. 镜像电荷的位置是否与原电荷对称; b. 镜像电荷是否与原电荷等值异号; c. 待求区域内的电位函数所满足的方程与边界条件是 否保持不变
5.以下三个矢量函数中,只有矢量函数(
可能表示磁感应强度。 a. B ex y ey x b. B ex x ey y
a
)才
c. B ex x2 ey y 2
6.利用电场强度和磁场强度的复数形式计算平均坡印
廷矢量 S平均 的公式是( a. S平均
a
)。
1 1 1 Re[ E H ] b. S平均 Re[ E H ] c.S平均 Re[ E H ] 2 2 2
1
1
)。
a. E2 ex 2 ez16
b. E2 ex 2 ez
c. E2 ex 8 ez 4
2.某均匀导电媒质(电导率为σ 、介电常数为ε)中
的电场强度为 E ,则该导电媒质中的传导电流 Jc 与位移 电流 J d的相位( )。J 与 D 通向
C D JD j D ,与 D 有90?夹角 t
、或 r 2 的区域;在远场区,电场强度的振幅与
距离r成 反比 关系。
二.选择题(三选一,每小题1分,共15分) 1.空气(介电常数ε1=ε0)与电介质(介电常数ε2=4ε0)
E1 ex 2 ez 4 , 则电介质中的电场强度应为(
E0 E1
0 0
的分界面是z=0的平面。若已知空气中的电场强度 z z
a. a+b b. 2a
b
)。
c. 2b
14.电偶极子的远区辐射场是有方向性的,其方向性
c. cos[( 2)cos ] sin 15.在电偶极子的远区,电磁波是( b )。 a. 非均匀平面波 b. 非均匀球面波 c. 均匀平面波
因子为( a. cos
b
)。 b. sin
三.计算题(5个小题,共70分) 1.(15分)图1表示同轴线的横截面,内导体半径为a,外导体 半径为b,内外导体之间填充介电常数为ε的电介质。同轴线的 内外导体上加直流电压U0,设同轴线的轴向长度远大于横截面尺寸。 试求:(1)电介质内任一点处的电场强度;(2)电介质内任 一点处的电位;(3)验证所求的电位满足边界条件。 解法一:(1)设同轴线单位长度的电荷为 l ,则 l l D er E er 2 r 2 r U0 b l b 2 U 0 a 由 U 0 E dr ln l a 2 a ln(b a ) b 故 E er U 0 ( a r b) r ln(b a) 图1 b U0 b ( a r b) ln (2) (r ) r E dr ln(b a) r