初二数学试题-一元一次不等式检测题3 最新

合集下载

初中数学浙教版八年级上册第3章《一元一次不等式》测试卷含答案解析和双向细目表-八上3

初中数学浙教版八年级上册第3章《一元一次不等式》测试卷含答案解析和双向细目表-八上3

浙教版数学八年级上册第3章《一元一次不等式》测试考生须知:●本试卷满分120分,考试时间100分钟。

●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。

●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。

●保持清洁,不要折叠,不要弄破。

一.选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 下列是不等式的是( ) A.2x+yB.3x>11C.2x+3=7D.x 2y 22.若x <0,xy ≥0,则y 的取值范围是( ) A.y >0B.y <0C.y ≥0D.y ≤03.关于x 的不等式12-4x >0的非负整数解共有( )个。

A.2B.3C.4D.54.“x 的3倍与x 的相反数的差不小于1”,用不等式表示为( ) A.3x-x ≥1 B.3x-(-x )≥1 C.3x-x >1D.3x-(-x )>15.不等式125323-+≤+x x 的解集表示在数轴上是( ) A.B. C. D.6.如果关于x 的不等式(a+2020)x-a >2020的解集为x <1,那么a 的取值范围是( ) A .a >-2020B.a <-2020C.a >2020D.a <20207.已知关于x 、y 的方程组⎩⎨⎧=--=+ay x ay x 343,其中-3≤a ≤1,给出下列说法:①当a=1时,方程组的解也是x+y=2-a 方程的解;②当a=-2时,x 、y 的值互为相反数;③若x ≤1,则1≤y ≤4;④⎩⎨⎧-==14y x 是方程组的解.其中说法正确的是( ) A.①②③④B.①②③C.②④D.②③8.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜。

甲说:“至少12元。

”乙说“至多10元。

”丙说“至多8元.”小明说:“你们三个人都说错了。

初二数学一元一次不等式试题

初二数学一元一次不等式试题

初二数学一元一次不等式试题1.请从数与形两方面说明y=x+1、x+1>0、x+1=0之间的联系.【答案】(1)从数的关系上看,函数y=x+1的值大于0,即不等式x+1>0,函数y=x+1的值等于0,即方程x+1>0;(2)从图象上看,函数y=x+1的图象与x轴交点的横坐标就是方程x+1>0的解,y=x+1的图象在x轴上方的部分(即y>0)相对应的x的取值范围,就是不等式x+1>0的解.【解析】根据一次函数、一元一次不等式及一元一次方程的解与图象上的关系两方面进行分析.试题解析:对于一次不等式x+1>0,一次函数y=x+1,一次方程x+1=0来说:(1)从数的关系上看,函数y=x+1的值大于0,即不等式x+1>0,函数y=x+1的值等于0,即方程x+1>0;(2)从图象上看,函数y=x+1的图象与x轴交点的横坐标就是方程x+1>0的解,y=x+1的图象在x轴上方的部分(即y>0)相对应的x的取值范围,就是不等式x+1>0的解.【考点】一次函数图象上点的坐标特征.2.求不等式组的整数解。

【答案】-1,0.【解析】先分别解不等式,然后根据“口诀”确定不等式组的解,然后找出整数解即可.试题解析:解不等式5+2x≥3,得:x≥-1.解不等式,得:x<1所以不等式组的解为:-1≤x<1所以整数解为:-1,0.【考点】一元一次不等式组的解法;不等式整数解.3.不等式组的解集在数轴上可表示为()A.B.C.D.【答案】D.【解析】解不等式组得:-3<x≤2,解集在数轴上表示为:故选D.【考点】1.解一元一次不等式组.2.在数轴上表示不等式组的解集.4.已知x>y,下列不等式一定成立的是()A.ax>ay B.3x<3y C.-2x<-2y D.a2x>a2y【答案】C.【解析】A、当a>0时,ax>ay,此选项没有标明a的取值范围,故此选项错误;B、两边同时乘以3可得3x>3y,故此选项错误;C、两边同时乘以-2可得-2x<-2y,故此选项正确;D、当a≠0时,a2x>a2y,故此选项错误;故选C.【考点】不等式的性质.5.已知关于x,y的方程组的解满足x>y,求p的取值范围.【答案】p>-6.【解析】把p看作一个常数,利用加减消元法求出x、y,然后列出不等式求解即可.试题解析:,①×3得,9x+6y=3p+3③,②×2得,8x+6y=2p-2④,③-④得,x=p+5,把x=p+5代入①得,3(p+5)+2y=p+1,解得y=-p-7,∵x>y,∴p+5>-p-7,解得p>-6.【考点】1.解二元一次方程组;2.解一元一次不等式.6.已知有理数a、b、c在数轴上的位置如图所示,则下列式子正确的是()A.cb>ab B.ac>ab C.cb<ab D.c+b>a+b【答案】A.【解析】先根据数轴的特点得出a>0>b>c,再根据不等式的性质进行判断:A、∵a>0>b>c,∴cb>0>ab. 选项正确.B、∵c<b,a>0,∴ac<ab. 选项错误.C、∵c<a,b<0,∴cb>ab. 选项错误.D、∵c<a,∴c+b<a+b. 选项错误.故选A.【考点】1.不等式的性质;2.有理数大小比较.7.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是[ ].A.B.C.D.【答案】B.【解析】设这个数为x,由题意得,2x+5≤3x-4,解得:x≥9.故选B.考点: 一元一次不等式的应用.8.当,时, 0(填“<”或“>”).【答案】>.【解析】∵,∴,∵,∴.故答案为:>.【考点】实数大小比较.9.用不等式表示:与3的和不大于1,则这个不等式是: .【答案】.【解析】由题意得:.故答案为:.【考点】由实际问题抽象出一元一次不等式.10.若满足不等式的整数k只有一个,则正整数N的最大值 .【答案】112;【解析】已知,则8n+8k<15,解得k<,且,则7n+7k>6m,解得k>所以<k<通分得。

八年级一元一次不等式测试及答案

八年级一元一次不等式测试及答案

八年级一元一次不等式单元测试题 姓名 班级 得分一、选择题(每题4分,共40分) 1.下列式子中,是不等式的有( ).①2x =7;②3x +4y ;③-3<2;④2a -3≥0;⑤x >1;⑥a -b >1. A .5个 B .4个 C .3个 D .1个 2.若a <b ,则下列各式正确的是( ).A .3a >3bB .-3a >-3bC .a -3>b -3D.a 3>b33.“x 与y 的和的13不大于7”用不等式表示为( ).A.13(x +y )<7B.13(x +y )>7C.13x +y ≤7D.13(x +y )≤7 4.下列说法错误的是( ).A .不等式x -3>2的解集是x >5B .不等式x <3的整数解有无数个C .x =0是不等式2x <3的一个解D .不等式x +3<3的整数解是05.(山东滨州中考)不等式组⎩⎪⎨⎪⎧2x -1≥x +1,x +8≤4x -1的解集是( ).A .x ≥3B .x ≥2C .2≤x ≤3D .空集6.(湖南娄底中考)不等式组⎩⎪⎨⎪⎧x -1≤0,2x +4>0的解集在数轴上表示为( ).7.不等式-3<x ≤2的所有整数解的代数和是( ). A .0 B .6 C .-3D .3 8.已知关于x 的方程ax -3=0的解是x =2,则不等式-⎝ ⎛⎭⎪⎫a +32x ≤1-2x 的解集是( ). A .x ≥-1 B .x ≤-1 C .x ≥32 D .x ≤329.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥0,4-x >1的整数解共有5个,则a 的取值范围是( ).A .-3<a <-2B .-3<a ≤-2C .-3≤a ≤-2D .-3≤a <-210.不等式组⎩⎪⎨⎪⎧2x >-3,x -1≤8-2x 的最小整数解是( ).A .-1B .0C .2D .3 二、填空题(每题4分,共32分)11.用适当的符号表示:x 的13与y 的14的差不大于-1为__________.12.不等式3x +2≥5的解集是__________.13.不等式组⎩⎪⎨⎪⎧2x >10-3x ,5+x ≥3x 的解集为________.14.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,1-x >0的整数解共有3个,则a 的取值范围是__________.15.若代数式3x -15的值不小于代数式1-5x6的值,则x 的取值范围是__________.16.不等式x x2572-<-的正整数解有______个.17.若不等式组⎩⎪⎨⎪⎧x >a +2,x <3a -2无解,则a 的取值范围是__________.18.有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排__________人种茄子.三、解答题(19,20,21,22每题10分,23,24每题12分,25题14分,共78分) 19.解不等式组,并把解集在数轴上表示出来.⎩⎪⎨⎪⎧ x -32+3≥x +1,1-3(x -1)<8-x .①②20.已知()()1645253+-<++x x x , 化简.3113x x --+21.如果关于x 的方程a3-2x =4-a 的解大于方程a (x -1)=x (a -2)的解,求a 的取值范围.22.已知方程组⎩⎪⎨⎪⎧2x +y =2-5a ,x -2y =3a 的解x ,y 的和是负数,求满足条件的最小整数a .23.已知一件文化衫价格为18元,一个书包的价格比一件文化衫价格的2倍还少6元. (1)求一个书包的价格是多少元? (2)某公司出资1 800元,拿出不少于350元但不超过400元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫24.把一批铅笔分给几个小朋友,每人分5支还余2支;每人分6支,那么最后一个小朋友分得的铅笔少于2支,求小朋友的人数和这批铅笔的支数.25.(1)若工厂计划获利14万元,A,B 两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于14万元,工厂有哪几种生产方案? (3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.第九章 不等式与不等式组单元检测一参考答案1.B 点拨:用不等号连接的式子都是不等式. 2.B 点拨:A ,C ,D 三项均错误. 3.D 点拨:不大于是小于或等于.4.D 点拨:不等式x +3<3的解集是x <0,故0不是它的整数解.5.A 点拨:由不等式2x -1≥x +1得x ≥2;由不等式x +8≤4x -1得x ≥3,故不等式组的解集是x ≥3.6.B 点拨:先求出两个不等式的解集,然后把解集表示在数轴上即可进行选择. 7.A 点拨:所有整数解为-2,-1,0,1,2. 8.A 点拨:ax -3=0的解是x =2, 故有2a -3=0,所以a =32,代入不等式中即可求出不等式的解集.9.B 点拨:由不等式x -a ≥0得x ≥a ;由不等式4-x >1得x <3,故不等式组的解集为a ≤x <3,整数解有5个,则分别为2,1,0,-1,-2,则a 处在-3与-2之间,由题意得a 的取值范围是-3<a ≤-2.10.A 点拨:解不等式2x >-3得x >-32,解不等式x -1≤8-2x 得x ≤3,故不等式组的解集为-32<x ≤3,最小整数解为-1.11.13x -14y ≤-1 12.x ≥113.2<x ≤5214.-3≤a <-2 点拨:注意检验a =-2和a =-3两种情况.15.x ≥114316.12<m <4 点拨:该点在第三象限,则有⎩⎪⎨⎪⎧1-2m <0,m -4<0. 17.a ≤2 点拨:“大大小小没法解”,所以应有a +2≥3a -2.18.4 点拨:设安排x 人种茄子,依题意可列不等式:3x ×0.5+2(10-x )×0.8≥15.6. 19.解:不等式①去分母,得x -3+6≥2x +2, 移项,合并得x ≤1. 不等式②去括号, 得1-3x +3<8-x , 移项,合并得x >-2.∴不等式组的解集为-2<x ≤1. 数轴表示为20.解:解方程a3-2x =4-a ,得x =2a3-2.解方程a (x -1)=x (a -2),得x =a 2.依题意有2a 3-2>a2.解得a >12.21.解:解方程组,得⎩⎨⎧x =3a +4-22a 5,y =2-11a5.依题意,得3a +4-22a 5+2-11a5<0.解得a >13.所以满足条件的最小整数a 为1.22.解:(1)一个书包的价格为18×2-6=30(元).(2)设剩余经费还能为x 名山区小学生每人购买一个书包和一件文化衫,由题意,得 350≤1 800-(18+30)x ≤400.解得2916≤x ≤30524.所以x =30.所以剩余经费还能为30名山区小学的学生每人购买一个书包和一件文化衫. 23.解:(1)设租36座的车x 辆.据题意得⎩⎪⎨⎪⎧36x <42(x -1),36x >42(x -2)+30,解得⎩⎪⎨⎪⎧x >7,x <9.由题意x 应取8,则春游人数为36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3 200元, 方案②:租42座车7辆的费用:7×440=3 080元, 方案③:因为42×6+36×1=288,租42座车6辆和36座车1辆的总费用:6×440+1×400=3 040元. 所以方案③:租42座车6辆和36座车1辆最省钱.。

第3章 一元一次不等式综合测试试题(含解析)

第3章 一元一次不等式综合测试试题(含解析)

第三章:一元一次不等式综合测试答案一.选择题:1.答案:C解析:解不等式3x ≤2(x -1)得:2-≤x ,故选择C2.答案:B解析:解不等式x -3≤3x +1得:2-≥x ,故选择B3.答案:C解析:解不等式3(x -1)≤5-x 得:2≤x , ∵非负整数解为:0,1,2共3个, 故选择C4.答案:B 解析:解不等式组⎩⎨⎧≤->+0421x ax 得:21≤<-x a∵不等式组⎩⎨⎧≤->+0421x ax 有解,∴3,21<∴<-a a ,故选择B5.答案:B解析:原不等式可化为323255104xx x -≤---, 去分母,得6(4x -10)-15(5-x )≤10(3-2x )去括号,得24x -60-75+15x ≤30-20x. 合并同类项,得59x ≤165. 系数化为1,得x ≤59165所以原不等式的非负整数解是0,1,2. 故选择B6.答案:C解析:设从第六天起平均每天至少要读x 页, 由题意得:4005≥x ,解得:80≥x ,故选择C解析:把方程组⎩⎨⎧=++=+3313y x k y x 转化为:444+=+k y x∴44+=+k y x ,∴1440<+<k 解得:04<<-k ,故选择A答案:B解析:∵x <0,y >0,x +y <0,y x >,∴x y y x >->>-,故选择B答案:B解析:解不等式①,得x >-52. 解不等式②,得x <2a .∵不等式组恰有三个整数解, 2<2a ≤3. 231≤<a ,故选择B10.答案:B解析:设最多可打x 折,由题意得:%5100010001500≥-x解得:7.0≥x ,故最多可打7折,故选择B二.填空题:11.答案:4解析:解不等式2(x+k)-2>k 得:22kx ->, ∵不等式2(x+k)-2>k 的解集是x >-1, 122-=-k,解得:4=k12.答案:26解析:设较大的偶数是x ,则较小的偶数是x -2. 根据题意,得x +x -2≥49. 解得x ≥25.5.所以x 的最小值是26,即较大的偶数最小是26.解析:解不等式组⎩⎨⎧>->+1312x a x 得:11-<<a x∵不等式组⎩⎨⎧>->+1312x a x 的解为1<x <3,∴4,31=∴=-a a14.答案:1<x +y <5解析:由x -y =3,得x =y +3. ∵x >2,∴y +3>2,解得y >-1. 又∵y <1,∴-1<y <1. 把x =y +3代入x +y , 得x +y =y +3+y =2y +3, 而1<2y +3<5, ∴1<x +y <5.15.答案:3解析:由题意,得a 1+a 2≤a 3,a 2+a 3≤a 4,a 3+a 4≤a 5, ∴当a 1=1时,a 2=2,a 3=3,a 4=5或6,a 5=9, ∴a 3=3.16.答案:152解析:设幼儿园共有小朋友x 人,共有玩具y 件,由题意得:⎩⎨⎧<--<=+4)1(50593x y yx解得:3230<<x ,∴31=x ,即小朋友为31人, 共有玩具15259313=+⨯=y三.解答题:17.解析:(1)去括号得:5x -10+8<6x -6+7. 移项得:5x -6x <10-8-6+7. 合并得:-x <3.系数化为1得:x>-3.(2)解不等式①,得x>-1. 解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4.18.解析:(1)解不等式3x +a 2<1得:32ax -<,解不等式031>-x 得:31<x ∴3132=-a ,∴1=a . (2)∵不等式123<+ax 的解都是不等式031>-x 的解,∴3132≤-a ,解得1≥a19.解析:关于x 的方程2x -3m =2m -4x +4的解为645+=m x 根据题意得:3187645mm --≥+ 去分母,得4(5m +4)≥21-8(1-m ).去括号,得20m +16≥21-8+8m. 移项、合并同类项,得12m ≥-3. 系数化为1,得m ≥-41 所以当m ≥-41时,方程的解不小于3187m --, 所以m 的最小值为-4120.解析:(1)由题意得:()152523+≤+k k解得k ≥413(2)解不等式①,得x ≤3. 解不等式②,得x<a. ∵a 是不等于3的常数,∴当a>3时,不等式组的解集为x ≤3; 当a<3时,不等式组的解集为x<a.21.解析:(1)解⎩⎨⎧+=---=+a y x a y x 317得:⎩⎨⎧--=-=423a y a x∵x 为非正数,y 为负数, ∴⎩⎨⎧<≤00y x 即⎩⎨⎧<--≤-04203a a 解得⎩⎨⎧->≤23a a∴a 的取值范围是-2<a ≤3.(2)∵-2<a ≤3,∴a -3≤0,a +2>0, ∴|a -3|+|a +2|=3-a +a +2=5. (3)不等式2ax +x <2a +1可化简为 (2a +1)x <2a +1.∵不等式的解为x >1, ∴2a +1<0,∴a <-21. 又∵-2<a ≤3,∴-2<a <-21. ∵a 为整数,∴a =-1.22.解析:(1)设购买平板电脑a 台,则购买学习机(100-a)台,由题意,得 3 000a +800(100-a)≤168 000.解得a ≤40. 答:平板电脑最多购买40台.(2)设购买的平板电脑a 台,则购买学习机(100-a)台,根据题意,得 100-a ≤1.7a.解得a ≥37271. ∵a 为正整数,∴a =38,39,40,则学习机依次买:62台,61台,60台. 因此该校有三种购买方案:答:购买平板电脑38台,学习机62台最省钱.23.解析:(1)∵()()815723--<-+x x .解得6>x . ∴不等式的最小整数解是7. 将x =7代入3x -ax =2,得719=a ∴aa 197-=19-7=12.(2)①∵523=++c b a , 132=-+c b a , 解得:37-=c a , c b 117-=, ∵0≥a ,0≥b ,∴037≥-c ,0117≥-c , ∴11773≤≤c , ②()()23711737373-=--+-=-+=c c c c c b a S∵11773≤≤c ,∴1121379≤≤c , ∴1112375-≤-≤-c∴S 的最大值为111-,最小值为75-。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)

一、选择题1.不等式3 23xx+-≤的非负整数解有()A.3个B.4个C.5个D.无数个2.不等式组10840xx-⎧⎨-≤⎩>的解集在数轴上表示为().A.B.C.D.3.关于函数3y x=-,下列说法正确的是()A.在y轴上的截距是3 B.它不经过第四象限C.当x≥3时,y≤0D.图象向下平移4个单位长度得到7y x=-的图象4.若a b>,则下列各式中一定成立的是()A.22a b-<-B.11a b+>+C.22a b<D.33a b->-5.点P坐标为(m+1,m-2),则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.不等式组()()303129xx x-≥⎧⎨->+⎩的解集为()A.3x<-B.3x>-C.3x≥D.3x≤7.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或518.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a<-2 B.a≤-2 C.a>-2 D.a≥-29.运行程序如图所示,规定从“输入一个值x”到“结果是否95>”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A .23x >B .2347x <≤C .1123x ≤<D .47x ≤ 10.若a b <,则下列结论不正确的是( )A .44a b +<+B .33a b -<-C .22a b ->- D.1122a b > 11.已知a ,b 均为实数,且a ﹣1>b ﹣1,下列不等式中一定成立的是( ) A .a <b B .3a <3b C .﹣a >﹣b D .a ﹣2>b ﹣2 12.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .3x <B .3x >C .x a b >-D .x a b <-二、填空题13.若关于x 、y 的二元一次方程组23242x y a x y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________. 14.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________. 15.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.16.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________. 17.某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.18.已知关于x 的不等式2x ﹣a >﹣3的解集是x >1,则a 的值为_____.19.一次函数y =kx +b (k≠0)的图象如图所示,则一元一次不等式﹣kx +2k +b >0的解集为_____.20.若关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩.只有4个整数解,则a 的取值范围是_______. 三、解答题21.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标;(3)当311y -<<时,求x 的取值范围.22.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方形形状的无盖纸盒.(1)现有正方形纸板150张,长方形纸板300张,若这些纸板恰好用完,则可制作横式、竖式两种纸盒各多少个?(2)若有正方形纸板32张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完,已知7075a <<.求a 的值.23.某数学兴趣小组开展了一次活动,过程如下:设()090BAC θθ∠=︒<<︒,小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,12A A 为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:______;(填“能”或“不能”)(2)若112231AA A A A A ===,则θ=______度;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第1根小棒,且121A A AA =.数学思考:(3)若已经向右摆放了3根小棒,则1θ=______,2θ=______,3θ=______(用含θ的式子表示);(4)若只能摆放4根小棒,求θ的范围.24.(1)解不等式组3(2)42513x x x x --≥-⎧⎪-⎨<-⎪⎩,并写出该不等式组的整数解; (2)计算:21390454025.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 26.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x-2)≤x+3,去括号,得3 x-6≤x+3,移项、合并同类项,得2x≤9,系数化为1,得x≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C.【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.2.A解析:A【分析】解不等式组,看解集表示是否正确即可.【详解】解:10 840 xx-⎧⎨-≤⎩>①②解不等式①得,1x>,解不等式②得,2x≥,不等式组的解集为:2x≥.故选:A.【点睛】本题考查了一元一次不等式组的解法及在数轴上表示解集,解题关键是熟练的运用解不等式组的方法进行计算.3.D解析:D【分析】令x=0,得到的y值就是在y轴上的截距;根据k,b判定图像的分布;根基自变量的范围计算函数的范围;根据平移规律确定即可.【详解】令x=0,得y= -3,∴函数在y轴上的截距为-3,∴选项A错误;∵3y x =-,∴函数分布在第一,第三,第四象限,∴选项B 错误;∵x≥3,∴x-3≥0,∴y≥0,∴选项C 错误;∵3y x =-,∴图象向下平移4个单位长度得到7y x =-的图象,∴选项D 正确;故选D .【点睛】本题考查了一次函数的性质,图像分布,平移规律,截距的定义,熟练掌握性质,规律是解题的关键.4.B解析:B【分析】根据不等式的性质进行判断即可.【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误;B 、在不等式两边同时加1,不等号方向不变,故正确;C 、在不等式两边同时乘2,不等号方向不变,故错误;D 、在不等式两边同时除以-3,不等号方向改变,故错误;故选:B .【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断.5.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解 .【详解】解:A 、当m>2时,m+1与m-2都大于0,P 在第一象限,所以A 不符合题意; B 、若P 在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B 符合题意;C 、当m<-1时,m+1与m-2都小于0,P 在第三象限,所以C 不符合题意;D 、当-1<m<2时,m+1>0,m-2<0,P 在第四象限,所以D 不符合题意;故选B .本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.6.A解析:A【分析】先解每一个不等式,再求不等式组的解集.【详解】解:()()303129x x x -≥⎧⎪⎨->+⎪⎩①②, 解不等式①得,x ≤3,解不等式②得,x <-3,∴不等式组的解集为x <-3,故选A【点睛】本题考查了解一元一次不等式组,先解每一个不等式,再求它们解集的公共部分即可求出不等式组的解集.7.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x+-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键. 8.D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122x a x x ->⎧⎨->-⎩①② 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.9.B解析:B【分析】根据运行程序,第一次运算结果小于等于95,第二次运算结果大于95列出不等式组,然后求解即可.【详解】解:由题意得,()2195221195x x +≤⎧⎪⎨++⎪⎩①>② 解不等式①得,47x ≤,解不等式②得,23x >,∴2347x ≤<,故选:B .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.10.D解析:D【分析】根据不等式的基本性质对各选项分析判断后利用排除法.【详解】A 、∵a <b ,∴44a b +<+,故本选项正确;B 、∵a <b ,∴a-3<b-3,故本选项正确;C 、∵a <b ,∴-2a >-2b ,故本选项正确;D、∵a<b,∴1122a b<,故本选项错误.故选D.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一定要注意不等号的方向的处理,也是容易出错的地方.11.D解析:D【分析】根据不等式的性质进行判断.【详解】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选D.【点睛】本题考查了不等式的性质,掌握在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.12.B解析:B【分析】利用函数图象,写出直线y1在直线y2下方所对应的自变量的范围即可.【详解】结合图象,当x>3时,y1<y2,即kx+b<x+a,所以不等式kx-x<a-b的解集为x>3.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题13.【分析】直接把两个方程相加得到然后结合即可求出a的取值范围【详解】解:直接把两个方程相加得:∴∵∴∴故答案为:【点睛】本题考查了解二元一次方程组以及解一元一次不等式解题的关键是掌握运算法则正确得到 解析:4a.【分析】直接把两个方程相加,得到337x y a +=+,然后结合1x y +<,即可求出a 的取值范围.【详解】 解:23242x y a x y a +=-⎧⎨+=+⎩, 直接把两个方程相加,得:337x y a +=+, ∴73a x y ++=, ∵1x y +<, ∴713a +<, ∴4a .故答案为:4a.【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式,解题的关键是掌握运算法则,正确得到73a x y ++=. 14.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.15.【分析】先将m 看做常数解方程组求出再代入可得关于m 的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题 解析:72m <【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.16.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132k x -= ∵方程的解是非负数∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 17.101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时由题意得:;②假设输入的正整数x 为奇数时由题意得:5x-23>100分别解出不等式的解集再确定x 的值【详解】解:①假设输入解析:101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时,由题意得:1891002x ;②假设输入的正整数x 为奇数时,由题意得:5x-23>100,分别解出不等式的解集,再确定x 的值.【详解】解:①假设输入正整数x 为偶数时,由题意得:1891002x , 解得:x >22,∵x 为偶数,∴x=24,当x=24时,对应的y=124891012; ②假设输入的正整数x 为奇数时,由题意得:5x-23>100,解得:x >24.6,∵x 为奇数,∴x=25,当x=25时,对应的y=5×25-23=102;∵24<25,∴首次大于100时对应的x=24,y=101,故答案为:101.【点睛】此题主要考查了一元一次不等式的应用,关键是看懂题意与图示,根据题目中的条件列出不等式,注意要分两种情况进行计算.18.【分析】先解关于x 的不等式然后根据解集确定a 的值即可【详解】解:由2x ﹣a >﹣3得x >∵不等式2x ﹣a >﹣3的解集是x >1∴=1解得:a =5故答案为5【点睛】本题考查了根据一元一次不等式的解集确定参解析:5a =【分析】先解关于x 的不等式,然后根据解集确定a 的值即可.【详解】解:由2x ﹣a >﹣3,得x >32a -, ∵不等式2x ﹣a >﹣3的解集是x >1, ∴32a -=1, 解得:a =5.故答案为5.【点睛】 本题考查了根据一元一次不等式的解集确定参数,掌握一元一次不等式的解法是解答本题的关键.19.x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣20)y 随x 的增大而增大从而可以得到k 和b 的关系k >0然后即可得到不等式﹣kx +2k +b >0的解集【详解】解:由图解析:x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大,从而可以得到k 和b 的关系,k >0,然后即可得到不等式﹣kx +2k +b >0的解集.【详解】解:由图象可得,一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大, ∴﹣2k +b =0,k >0,∴b =2k ,∴不等式﹣kx +2k +b >0可以化为:﹣kx +2k +2k >0,解得:x <4,故答案为:x <4.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答解答.20.【分析】先解不等式组可得解集为再由不等式组只有4个整数解列不等式组再解不等式组可得答案【详解】解:由①得:由②得:>关于的不等式组有解不等式组的解集为不等式组只有4个整数解故答案为:【点睛】本题考查 解析:1453a -<≤-【分析】先解不等式组,可得解集为2321,a x -<<再由不等式组只有4个整数解,列不等式组162317,a ≤-<再解不等式组可得答案.【详解】解:6152233x x x a -<⎧⎨+<+⎩①② 由①得:21x <,由②得:32,x a -<- x >23,a -关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩有解,∴ 不等式组的解集为2321,a x -<<不等式组只有4个整数解,∴ 162317,a ≤-<∴ 14315,a ≤-<∴ 145,3a -<≤- 故答案为:145.3a -<≤-【点睛】本题考查的是一元一次不等式组的解法及由不等式组的整数解确定字母的取值范围,掌握以上知识是解题的关键.三、解答题21.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .22.(1);(2)a=73【分析】(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.根据制作竖式纸盒用的正方形纸板+制作横式纸盒用的正方形纸板=150张;制作竖式纸盒用的长方形纸板+制作横式纸盒用的长方形纸板=300张.列方程组即可得到结论;(2)设x 个竖式需要正方形纸板x 张,长方形纸板横4x 张;y 个横式需要正方形纸板2y 张,长方形纸板横3y 张,可列出方程组,再根据a 的取值范围求出y 的取值范围即可.【详解】解:(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得215043300x y x y +=⎧⎨+=⎩, 解得:3060x y =⎧⎨=⎩, 答:可制作横式纸盒60个、竖式纸盒30个;(2)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得23243x y x y a +=⎧⎨+=⎩, 解得y=1285a -, ∵70<a <75, ∴53<128-a <58,∵y 是整数,∴128-a=55,∴a=73.【点睛】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23.(1)能;(2)22.5︒;(3)2θ;3θ;4θ;(4)1822.5θ︒≤︒<【分析】(1)因为角的两条边为两条射线,没有长度限制,所以小棒可以无限摆下去; (2)根据直角三角形的性质、三角形外角的性质和等腰三角形的性质,即可推出; (3)根据三角形外角的性质、等腰三角形的性质即可推出12132A A A θθ=∠=,即可推出,同理即可推出2θ,3θ;(4)根据(3)的结论,和三角形外角的性质,即可推出不等式,解不等式即可.【详解】(1)∵角的两边为两条射线,没有长度限制,∴小棒可以无限摆下去;(2)∵112231AA A A A A ===,1223A A A A ⊥,∴12AA A 为等腰三角形,145a ∠=︒, ∴1122.52a θ=∠=︒; (3)∵1212334A A AA A A A A ===,,∴12132312A A A A A A θθ=∠=∠=,∴223123A A A θθθθθ=∠+=+=,∴324334A A A θθθθθ=∠+=+=;(4)∵根据三角形内角和定理和等腰三角形的性质,∴590490θθ≥︒⎧⎨︒⎩,< 解得,1822.5θ︒≤︒<.【点睛】本题考查了射线的性质、等腰三角形的性质、解一元一次不等式组,解题的关键在于找到等量关系,求相关角的度数.24.(1)-2<x≤1;整数解为-1,0,1;(2)【分析】(1)分别求出各不等式的解集,再求出其公共解集,据此即可写出不等式组的整数解. (2)先化简二次根式,再合并即可.【详解】解:(1)()3x 24x?2x 5x 1?3⎧--≥-⎪⎨-<-⎪⎩①② 由①去括号得,-3x+6≥4-x ,移项、合并同类项得,-2x≥-2,化系数为1得,x≤1.由②去分母得,2x-5<3x-3,移项、合并同类项得,-x <2,化系数为1得,x >-2.故原不等式组的解集为:-2<x≤1.∴不等式组的整数解为-1,0,1.(2)213904540+- =101091055+- =910.【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了二次根式的加减运算,掌握二次根式的化简是关键.25.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.26.2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.。

第3章 一元一次不等式 浙教版数学八年级上册单元测试卷(含答案)

第3章 一元一次不等式 浙教版数学八年级上册单元测试卷(含答案)

一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则―5a <―5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x ―2>y ―2C .―2x >―2yD .x ―y >03.将不等式组x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x3≥2x ―15;④x ―1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组2x +3>12x ―a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥―1时,关于x 的代数式ax ―2恰好能取到两个非负整数值,则a 的取值范围是( )A .―4<a ≤―3B .―4≤a <―3C .―4<a <0D .a ≤―39.若整数m使得关于x的方程mx―1=21―x+3的解为非负整数,且关于y的不等式组4y―1<3(y+3)y―m⩾0至少有3个整数解,则所有符合条件的整数m的和为( )A.7 B.5 C.0 D.-210.对于任意实数p、q,定义一种运算:p@q=p-q+pq,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x的不等式组2@x<4x@2≥m有3个整数解,则m的取值范围为是( )A.-8≤m<-5B.-8<m≤-5C.-8≤m≤-5D.-8<m<-5二、填空题11.关于x的不等式3⩾k―x的解集在数轴上表示如图,则k的值为 .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M=3x、N=2―8x,且M、N不重合,M―N<0,则x的取值范围是 .14.关于x的不等式组x>m―1x<m+2的整数解只有0和1,则m= .15.关于x的不等式组a―x>3,2x+8>4a无解,则a的取值范围是 .16.若数a既使得关于x、y的二元一次方程组x+y=63x―2y=a+3有正整数解,又使得关于x x+a―3的解集为x≥15,那么所有满足条件的a的值之和为 .三、计算题17.(1)解一元一次不等式组:x+3(x―2)⩽6 x―1<2x+13.(2)解不等式组:3(x+1)≥x―1x+152>3x,并写出它的所有正整数解.四、解答题18.先化简:a2―1a2―2a+1÷a+1a―1―aa―1;再在不等式组3―(a+1)>02a+2⩾0的整数解中选取一个合适的解作为a的取值,代入求值.19.解不等式组2―3x≤4―x,①1―2x―12>x4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得―3x+x≤4―2第1步合并同类项,得―2x≤2第2步两边都除以―2,得x≤―1第3步任务一:该同学的解答过程中第▲步出现了错误,这一步的依据是▲,不等式①的正确解是▲.任务二:解不等式②,并写出该不等式组的解集.20.由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x―1=3的解为x=4,而不等式组x―1>2x+2<7的解集为3<x<5,不难发现x=4在3<x<5的范围内,所以方程x―1=3是不等式组x―1>2x+2<7的“关联方程”.(1)在方程①3(x+1)―x=9;②4x―8=0;③x―12+1=x中,关于x的不等式组2x―2>x―13(x―2)―x≤4的“关联方程”是;(填序号)(2)若关于x的方程2x+k=61≤2x2≤x―12的“关联方程”,求k的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x>1被不等式x>0“容纳”;(1)下列不等式(组)中,能被不等式x<―3“容纳”的是________;A.3x―2<0B.―2x+2<0C.―19<2x<―6D.3x<―84―x<3(2)若关于x的不等式3x―m>5x―4m被x≤3“容纳”,求m的取值范围;(3)若关于x的不等式a―2<x<―2a―3被x>2a+3“容纳”,若M=5a+4b+2c 且a+b+c=3,3a+b―c=5,求M的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】―1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,,解不等式x﹣1 <2x+133(x-1)<2x+1,3x-3<2x+1,x<4,的解为:x<4,∴不等式x﹣1 <2x+13∴不等式组的解集为x≤3.(2)【答案】解:3(x+1)≥x―1①x+152>3x②,由①得,x≥―2,由②得,x<3,∴不等式组的解集为―2≤x<3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a<2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a<2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x≥―1任务二:解不等式②,得x<65,∴不等式组的解为―1≤x<65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x元.由题意得90000x=80000 x―500解得x=4500经检验x=4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a台,则乙种型号进(20―a)台.由题意得75000≤3500a+4000(20―a)≤76000解得8≤a≤10￿a为整数,￿a为8,9,10￿有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥8 22.【答案】(1)C (2)m≤2(3)19。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试题(包含答案解析)3

一、选择题1.已知正比例函数()0y kx k =≠的图象如图所示,则在下列选项中k 的值可能是( )A .5B .4C .3D .22.估算192+的结果在() A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间 3.在平面直角坐标系中,若点()3,1B m m -+在第二象限,则m 的取值范围为( ) A .13m -<< B .3m > C .1m <- D .1m >-4.若不等式组11233x x x m+⎧<+⎪⎨⎪>⎩有解,则m 的取值范围为( )A .1mB .1m <C .1mD .3m < 5.如果m n >,则下列各式不成立的是( )A .22m n +>+B .22m n ->-C .22m n >D .22m n -<- 6.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 7.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( )A .100厘米B .101厘米C .102厘米D .103厘米8.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .29.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( )A .4个B .5个C .6个D .无数个10.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .3x <B .3x >C .x a b >-D .x a b <- 11.若关于x 的不等式组0721x m x -⎧⎨-≤⎩<的整数解有且仅有3个,则实数m 的取值范围是( ) A .56m ≤<. B .56m <<C .56m ≤≤D .56m <≤ 12.已知点()1,23P a a +-在第四象限,则a 的取值范围是( )A .1a <-B .312a -<< C .312a -<< D .32a > 二、填空题13.如果三角形两条边分别为3和5,则周长L 的取值范围是________14.不等式组3121213x x +>-⎧⎪⎨-≥⎪⎩的最大整数解为______. 15.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 16.过点()5,2-的一条直线与x 轴、y 轴分别相交于点A ,B ,且与直线312y x =-+平行,则在线段AB 上,横、纵坐标都是整数的点坐标是______. 17.如图,直线y =x+2与直线y =ax+c 相交于点P(m ,3).则关于x 的不等式x+2≥ax+c 的不等式的解为_____.18.如图,函数2y x =和y ax b =+的图象相交于点(),3A m ,则关于x 的不等式2x ax b >+的解集为________.19.已知关于x的不等式2x﹣a>﹣3的解集是x>1,则a的值为_____.20.不等式-3x-1≥-10的正整数解为______________三、解答题21.解不等式组:232 2112323x xxx>-⎧⎪-⎨≥-⎪⎩,并将解集在数轴上表示出来.22.某社区计划对面积为3600m2的区域进行绿化,经投标,由甲,乙两个工程队来完成,已知甲队5天能完成绿化的面积等于乙队10天完成绿化的面积,甲队3天能完成绿化的面积比乙队5天能完成绿化面积多60m2.(1)求甲、乙两工程队每天能完成绿化的面积;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,要使这次绿化的总费用不超过32万元,则至少应安排乙工程队绿化多少天?23.今年,“地摊经济”成为了社会关注的热门话题.小明从市场得知如下信息:甲商品乙商品进价(元/件)355售价(元/件)458x件,甲、乙商品全部销售完后获得利润为y元.(1)求出y与x之间的函数关系式;(2)小明用不超过2000元资金一次性购进甲,乙两种商品,求x的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于632.5元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大.24.已知线段12AB=,点C,E,F在线段AB上,E是线段AC的中点.(1)如图1,当F是线段BC的中点时,求线段EF的长;(2)如图2.当F是线段AB的中点时,EF a=,①求线段AC的长(结果可用含a的代数式表示);②若a为正整数,请写出所有满足条件的a的值.25.为了美化校园,某学校决定利用现有的332盆甲种花卉和310盆乙种花卉,搭配A,B 两种园艺造型共50个,摆放在校园道路两侧.已知一个A种园艺造型需甲种花卉7盆,乙种花卉5盆;一个B 种园艺造型需甲种花卉6盆,乙种花卉8盆.(1)问搭配A ,B 两种园艺造型共有几种方案?(2)若一个A 种园艺造型的成本是200元,一个B 种园艺造型的成本是300元,哪种方案成本最低?请写出此方案.26.(1)解不等式:2112x ->,并把它的解表示在数轴上. (2)解不等式组:31,232 4.x x -⎧≤⎪⎨⎪+≥⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据图象,找到当x=2与x=3时,对应的函数值与图像关系,列出不等式求出k 的取值范围,再结合选项解答.【详解】解:根据图象,得2k <6,3k >5,解得k <3,k >53, 所以53<k <3. 只有2符合.故选:D .【点睛】利用数形结合法,根据图象列出不等式求k 的取值范围是解题的关键.2.C解析:C【分析】先确定45<<,再根据不等式的性质得到627<即可得到答案.【详解】∵16<19<25,∴45<<,∴627<<.故选:C .【点睛】此题考查算术平方根的取值范围,不等式的性质,正确掌握算术平方根的取值范围的计算方法是解题的关键.3.A解析:A【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,可得m-3<0,m+1>0,求不等式组的解即可.【详解】解:∵点()3,1B m m -+在第二象限,∴可得到3010m m -<⎧⎨+>⎩, 解得m 的取值范围为13m -<<.故答案为:13m -<<.【点睛】此题主要考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B解析:B【分析】不等式组整理后,利用有解的条件确定出m 的范围即可.【详解】不等式组整理得:33x x m <⎧⎨>⎩, 由不等式组有解,得到3m <3,解得:m <1.故选:B .【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.5.B解析:B【分析】根据不等式的性质解答.【详解】A 、在不等式m >n 的两边同时加上2,不等式仍成立,即m+2>n+2,故本选项不符合题意.B 、在不等式m >n 的两边同时乘以-1然后再加上2,不等式号方向改变,即2-m <2-n ,故本选项符合题意.C 、在不等式m >n 的两边同时除以2,不等式仍成立,即22m n ,故本选项不符合题意. D 、在不等式m >n 的两边同时乘以-2,不等式号方向改变,即-2m <-2n ,故本选项不符合题意.故选:B .【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a >b ,∴a +1>b +1,∴选项A 不符合题意;∵a >b ,∴a ﹣1>b ﹣1,∴选项B 不符合题意;∵a >b ,∴﹣2a <﹣2b ,∴选项C 不符合题意;∵a >b ,∴﹣2a <﹣2b ,∴选项D 符合题意.故选:D .【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.7.D解析:D【分析】设这次爆破的导火索需要xcm 才能确保安全,安全距离是70米(人员要撤到70米以外),根据人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,列不等式求解即可.【详解】设这次爆破的导火索为x 厘米才能确保安全.根据安全距离是70米(人员要撤到70米及以外的地方),可列不等式:77010.3x ⨯≥ 解得:103x ≥故选:D【点睛】本题考查一元一次不等式的应用,关键是理解导火索燃尽时人撤离的距离要大于等于70米. 8.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.9.B解析:B【分析】本题首先求解该不等式组公共解集,继而在解集内确定整数解.【详解】由已知得:23x -≤<,该范围内包含5个整数解:2-,1-,0,1,2.故选:B .【点睛】本题考查求不等式的整数解,解题关键在于确定公共解集,其次确定答案时要确保不重不漏.10.B解析:B【分析】利用函数图象,写出直线y 1在直线y 2下方所对应的自变量的范围即可.【详解】结合图象,当x >3时,y 1<y 2,即kx+b <x+a ,所以不等式kx-x <a-b 的解集为x >3.故选:B .【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.11.D解析:D【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式0x m -<,得:x m <,解不等式721x -≤,得:3x ≥,则不等式组的解集为3x m ≤<,∵不等式组的整数解有且仅有3个,∴不等式组的整数解为3、4、5,则56m <≤.故答案为:D .【点睛】本题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.12.B解析:B【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列不等式组求解即可.【详解】∵点P (1a +,23a -)在第四象限,∴10230a a +>⎧⎨-<⎩,∴a 的取值范围是312a -<<. 故选:B .【点睛】 本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键.二、填空题13.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围再根据不等式的性质求出答案【详解】设第三边长为x ∵有两条边分别为3和5∴5-3<x<5+3解得2<x<8∴2+3+5<x+3+5<8+3解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x ,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为: 10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.14.3【分析】分别求出不等式的解集得到不等式组的解集得到整数解【详解】解不等式得解不等式得∴不等式组的解集是故不等式组的整数解为0123故答案为:3【点睛】此题考查解不等式组求不等式组的整数解正确解不等解析:3【分析】分别求出不等式的解集,得到不等式组的解集,得到整数解.【详解】解不等式312x +>-得1x >-, 解不等式1213-≥x 得3x ≤, ∴不等式组的解集是13x -<≤,故不等式组的整数解为0,1,2,3,故答案为:3.【点睛】此题考查解不等式组,求不等式组的整数解,正确解不等式是解题的关键.15.【分析】根据不等式组的公共解集即可确定a 的取值范围【详解】由不等式组的解为可得故答案为:【点睛】本题主要考查了不等式组的解法关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大 解析:2a ≤【分析】根据不等式组的公共解集即可确定a 的取值范围.【详解】由不等式组2x a x >⎧⎨>⎩的解为2x >, 可得2a ≤.故答案为:2a ≤.【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.16.(14)(31)【分析】依据与直线平行设出直线AB 的解析式;代入点(5-2)即可求得b 然后求出与x 轴的交点横坐标列举符合条件的x 的取值依次代入即可【详解】解:∵过点(5-2)的一条直线与直线平行设直解析:(1,4),(3,1).【分析】 依据与直线312y x =-+平行设出直线AB 的解析式32y x b =-+;代入点(5,-2)即可求得b ,然后求出与x 轴的交点横坐标,列举符合条件的x 的取值,依次代入即可.【详解】 解:∵过点(5,-2)的一条直线与直线312y x =-+平行,设直线AB 为32y x b =-+; 把(5,-2)代入32y x b =-+;得-2=152b -+ 解得:b=112∴直线AB 的解析式为31122y x =-+ 令y=0,得:311022x =-+ 解得:x=113∴0<x<113的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、52、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为:(1,4),(3,1).【点睛】本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键.17.x≥1【分析】将点P的坐标代入直线y=x+2解出m的值即得出点P的坐标数形结合将不等式x+2≥ax+c的解集转化为直线y=x+2与直线y=ax+c的交点以及直线y=x+2图像在直线y=ax+c图像上解析:x≥1【分析】将点P的坐标代入直线y=x+2,解出m的值,即得出点P的坐标,数形结合,将不等式x+2≥ax+c的解集转化为直线y=x+2与直线y=ax+c的交点以及直线y=x+2图像在直线y=ax+c图像上方部分x的范围即可.【详解】把P(m,3)代入y=x+2得:m+2=3,解得:m=1,∴P(1,3),∵x≥1时,x+2≥ax+c,∴关于x的不等式x+2≥ax+c的不等式的解为x≥1.故答案为:x≥1.【点睛】本题主要考查一次函数与不等式的关系,将不等式的解集转化为一次函数的图像问题是解题关键.18.【分析】先将点A的坐标代入正比例函数中求得m的值再结合图象得出不等式的解集即可【详解】∵函数y=2x经过点A(m3)∴2m=3解得:m=由图象得当时的图象位于图象上方∴关于x的不等式2x>ax+b的解析:32 x【分析】先将点A的坐标代入正比例函数中求得m的值,再结合图象得出不等式的解集即可.【详解】∵函数y=2x经过点A(m,3),∴2m=3,解得:m=32,由图象得,当32x>时,2y x=的图象位于y ax b=+图象上方,∴关于x的不等式2x>ax+b的解集为32x>.故答案为:32 x>.【点睛】本题考查了一次函数与一次不等式的关系,属于简单题,熟悉一次函数的图象和性质是解题关键.19.【分析】先解关于x的不等式然后根据解集确定a的值即可【详解】解:由2x﹣a>﹣3得x>∵不等式2x﹣a>﹣3的解集是x>1∴=1解得:a=5故答案为5【点睛】本题考查了根据一元一次不等式的解集确定参解析:5a=【分析】先解关于x的不等式,然后根据解集确定a的值即可.【详解】解:由2x﹣a>﹣3,得x>32a-,∵不等式2x﹣a>﹣3的解集是x>1,∴32a-=1,解得:a=5.故答案为5.【点睛】本题考查了根据一元一次不等式的解集确定参数,掌握一元一次不等式的解法是解答本题的关键.20.123【分析】先求出不等式的解集再求出不等式的正整数解即可【详解】解:-3x-1≥-10-3x≥-10+1-3x≥-9x≤3∴不等式-3x-1≥-10的正整数解为123故答案为123【点睛】本题考查解析:1,2,3【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:-3x-1≥-10,-3x≥-10+1,-3x≥-9,x≤3,∴不等式-3x-1≥-10的正整数解为1,2,3.故答案为1,2,3【点睛】本题考查了解一元一次不等式和不等式的整数解.求出不等式的解集是解题的关键.三、解答题21.-2≤x<2,数轴表示见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:232 2112323x xxx>-⎧⎪⎨-≥-⎪⎩①②,由①得x<2,由②得x≥-2,所以原不等式组的解集为-2≤x<2,数轴表示:【点睛】本题考查了解一元一次方程组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.22.(1)甲工程队每天能完成绿化的面积为120m2,乙工程队每天能完成绿化的面积为60m2;(2)至少应安排乙工程队绿化40天.【分析】(1)设乙工程队每天能完成绿化的面积为xm2,则甲工程队每天能完成绿化的面积为2xm2,根据甲队3天能完成绿化的面积比乙队5天能完成绿化面积多50m2,即可得出关于x的一元一次方程,解之即可得出结论;(2)设安排乙工程队绿化m天,则安排甲工程队绿化360060120m-天,根据总费用=每日绿化的费用×绿化时间结合这次绿化的总费用不超过32万元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设乙工程队每天能完成绿化的面积为xm2,则甲工程队每天能完成绿化的面积为2xm2,依题意,得:3×2x﹣5x=60,解得:x=60,∴2x=120.答:甲工程队每天能完成绿化的面积为120m2,乙工程队每天能完成绿化的面积为60m2.(2)设安排乙工程队绿化m天,则安排甲工程队绿化360060120m-天,依题意,得:1.2×360060120m-+0.5m≤32,解得:m≥40.答:至少应安排乙工程队绿化40天.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(1)y=7x+300;(2)0≤x≤50;(3)甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;当甲商品进50件,乙商品进50件时,利润有最大值.【分析】(1)分别求出甲、乙商品的利润,根据y=甲商品利润+乙商品利润即可得解析式;(2)由用不超过2000元资金一次性购进甲,乙两种商品,列出不等式组,即可求解;(3)由获得的利润不少于632.5元,列出不等式可求x的范围,根据一次函数的性质即可得答案.【详解】(1)∵购进甲、乙商品共100件进行销售,小明购进甲商品x件,∴甲商品利润为(45-35)x=10x,乙商品利润为(100-x)(8-5)=300-3x,∵甲、乙商品全部销售完后获得利润为y元,∴y=10x+(300-3x)=7x+300.(2)∵用不超过2000元资金一次性购进甲,乙两种商品,∴35x+5(100﹣x)≤2000,∴x≤50,又∵x≥0,∴0≤x≤50;(3)∵甲,乙商品全部销售完后获得的利润不少于632.5元,∴7x+300≥632.5,∴x≥47.5,由(2)可得0≤x≤50,∴47.5≤x≤50,∵x为整数,∴x=48,49,50,∴进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;∵y =7x+300,7>0,∴y 随x 的增大而增大,∴当x =50时,y 有最大利润.∴当甲商品进50件,乙商品进50件,利润有最大值.【点睛】本题考查一元一次不等式的应用及一次函数的应用,理解题意,正确列出不等式并熟练掌握一次函数的性质是解题关键.24.(1)6;(2)①122a -;② a 可取1,2,3,4,5【分析】(1)根据线段中点的性质,得12AE EC AC ==、12BF CF BC ==,再根据线段和差的性质计算,即可得到答案;(2)①根据线段中点的性质,得6AF BF ==;根据线段和差性质,得6AE a =-,再根据线段中点的性质计算,即可得到答案;②结合AC AB <,根据(2)①的结论,通过列不等式并求解,即可得到答案.【详解】(1)∵E 是线段AC 的中点 ∴12AE EC AC ==F 是线段BC 的中点 ∴12BF CF BC == ()11622EF EC CF AC BC AB =+=+==; (2)①F 是线段AB 的中点∴6AF BF == ∵EF a =,AC AB < ∴1122AE AC AB =<,即12AE AC AF =< ∴6AE AF EF a =-=-∴122AC a =- ②∵122AC a =-,且AC AB <∴012212a <-<∴06a <<∵a 为正整数∴a 可取1,2,3,4,5.【点睛】本题考查了线段、一元一次不等式的知识;解题的关键是熟练掌握线段中点、线段和差、一元一次不等式的性质,从而完成求解.25.(1)共有3种方案;(2)当A 种园艺造型32个,B 种园艺造型18个,成本最低【分析】(1)根据题意列出一元一次不等式组,直接解不等式组,然后取整数解即可得出答案;(2)根据题意列出总成本关于x 的一次函数,利用一次函数的性质求解可得.【详解】(1)解:设A 种园艺造型x 个,B 种园艺造型(50)x -个()()76503325850310x x x x ⎧+-≤⎪⎨+-≤⎪⎩∴3032x ≤≤x 为正整数:x 取30,31,32,∴可设计3种搭配方案:第一种:A 种园艺造型30个,B 种园艺造型20个;第二种:A 种园艺造型31个,B 种园艺造型19个;第三种:A 种园艺造型32个,B 种园艺造型18个.(2)解:设总成本为y 元()20030050y x x =+-10015000y x =-+∴0k <,y 随x 的增大而减小∴当32x =时,y 取最小值∴当A 种园艺造型32个,B 种园艺造型18个,成本最低【点睛】本题主要考查了一元一次不等式组和一次函数的实际应用,解题关键是弄清题意,合适的等量关系,列出不等式组,属于中档题.26.(1)32x >,图见见解析;(2)1≥x 【分析】(1)去分母,移项、合并同类项,系数化1,得出不等式的解集,在数轴上用空心圆表示;(2)分别求出两个不等式的解集,取其公共部分从而得出不等式组的解集.【详解】 解:(1)2112x ->, 去分母得:212x ->移项得:221x >+合并同类项得:23x >系数化1得:32x >,这个不等式解集在数轴上的表示如图所示:(2)312324x x -⎧≤⎪⎨⎪+≥⎩①②,解不等式①得:1≥x解不等式②得:23x ≥∴不等式组的解集为:1≥x【点睛】 本题考查了不等式和不等式组的解法,以及数轴上表示不等式的解集,解题关键是熟练掌握解不等式的步骤,以及解不等式组时最后的结果是去其公共部分.。

八年级数学上册《一元一次不等式》单元测试卷(附带答案)

八年级数学上册《一元一次不等式》单元测试卷(附带答案)一、选择题(共13小题)1. 若 −3a >1,两边都除以 −3,得 ( )A. a <−13B. a >−13C. a <−3D. a >−33. 小明今年 18 岁,小强今年 11 岁,以下说法中正确的是 ( )A. 比小强大的人一定比小明大B. 比小明小的人一定比小强小C. 比小明大的人可能比小强小D. 比小强小的人一定不比小明大4. 不等式 2(x −2)≤x −2 的非负整数解的个数为 ( )A. 1B. 2C. 3D. 45. 下列不等式中,是一元一次不等式的是 ( )A. 3x −5y <1B. x 2−4x >0C.3x−14−1≥0D. 3−1−x x≤06. 下列各式中不是一元一次不等式组的是 ( )7. 我市某一天的最高气温是 30∘C ,最低气温是 20∘C ,则当天我市气温t (°C ) ( )A. 20<t <30B. 20≤t ≤30C. 20≤t <30D. 20<t ≤308. 小明准备用 26 元买火腿肠和方便面,已知一根火腿肠 2 元,一桶方便面 3 元,他买了 5 桶方便面后,他最多可以买几根火腿肠?( ) A. 4 根B. 5 根C. 6 根D. 7 根9. 甲种蔬菜保鲜适宜的温度是 2∘C ∼6∘C ,乙种蔬菜保鲜适宜的温度是 3∘C ∼8∘C ,若将这两种蔬菜放在一起同时保鲜,则适宜的温度是 ( ) A. 2∘C ∼3∘CB. 2∘C ∼8∘CC. 3∘C ∼6∘CD. 6∘C ∼8∘C10. 若关于 x 的不等式组 {x −m <05−2x ≤0的整数解共有 4 个,则 m 的取值范围是 ( )A. 6<m ≤7B. 6≤m <7C. 6≤m ≤7D. 6<m <7 11. “x 的 3 倍与 5 的差不大于 9”用不等式表示为 ( )A. 3x −5≤9B. 3x −5≥9C. 3x −5<9D. 3x −5>912. 小芳和爸爸、妈妈三人玩跷跷板,三人的体重一共为 150 kg ,爸爸坐在跷跷板的一端,体重只有妈妈一半的小芳和妈妈一同坐在跷跷板的另一端,这时爸爸的那一端仍然着地,请你猜猜,小芳的体重应小于 ( )A. 22 kgB. 23 kgC. 24 kgD. 25 kg13. 下列各式中,是一元一次不等式的为 ( )A. −x ≥5B. 2x −y <0C. 1x +4<3 D. 12x+45x+x=−2二、填空题(共5小题)14. 用不等式表示“a的平方与b的平方的和不小于a与b的积的4倍”:.15. 不等式性质3:不等式的两边都乘以(或都除以),不等号的方向要改变.16. 列出不等式或不等式组:x的3倍与5的差的一半大于−2且不大于7.17. 商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过五件,按原价付款;若一次性购买五件以上超过部分打八折,现有39元钱,最多可以购买该商品的件数为.18. 当m=时,(m−2)x∣3−m∣+2≤7是关于x的一元一次不等式.三、解答题(共5小题)19. 判断下列不等式是不是一元一次不等式,如果不是,请简要说明理由.(1)−11x<18x+41(2)4xy>56−33y(3)21y+6(49y−24)≤−1(4)8x5−1≥7x20. 求下列不等式的解集,并将解集在数轴上表示出来.(1)5x−1<4(2)7x+24≥45(3)6−3x<−2x+8(4)−67x<3721. 解不等式组{2x−1<√5xx5+x−13≤2并写出它的自然数解.22. 下面的变形对不对?如果对,请指出在不等式两边作了怎样的变化;如果不对,指出错在哪里,并将其改正.(1)由a>b,得a+x>b−x.(2)由13x+2<2x,得13x<2x−2.(3)由5x>2,得5x+x>2+2.23. 某商店购进一批总价为1728元的羊毛衫,零售时,每件卖48元,则该商店卖出多少件羊毛衫后才能开始获利?参考答案1. A2. A3. D4. C5. C6. D7. B8. B9. C10. D11. A12. D13. A14. a2+b2≥4ab15. 同一个负数(3x−5)≤716. −2<1217. 15件18. 419. (1)(4)不是一元一次不等式,(2)有两个未知数,(4)的最高项是五次.(数轴略)20. (1)x<1(数轴略)(2)x≥3(数轴略)(3)x>−2(数轴略)(4)x>−1222. (1)不对,应为a+x>b+x.(2)对.(3)不对,应为5x+2>2+2或5x+x>2+x23. 设该商店卖出x件羊毛衫后才能开始获利,可列不等式为48x>1728x>36答:该商店卖出36件羊毛衫后才能开始获利。

第3章一元一次不等式 单元达标测试题 2022-2023学年浙教版八年级数学上册

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》单元达标测试题(附答案)一、选择题(共30分)1.如果a>b,可知下面哪个不等式一定成立()A.﹣a>﹣b B.<C.a+b>2b D.a2>ab2.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.3.若x<y成立,则下列不等式成立的是()A.x﹣2<y﹣2B.4x>4y C.﹣x+2<﹣y+2D.﹣3x<﹣3y 4.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣35.如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g6.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥a C.5a≥3b D.5a=3b7.不等式(x﹣m)>2﹣m的解集为x>2,则m的值为()A.4B.2C.1.5D.0.58.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,则他用的时间大约是()A.1小时~2小时B.2小时~3小时C.3小时~4小时D.2小时~4小时9.小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种10.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A.13B.14C.15D.16二、填空题(共24分)11.x的与5的差不小于3,用不等式表示为.12.设x>y,则x+2y+2,﹣3x﹣3y,x﹣y0,x+y2y.13.如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x的取值范围是.14.在某校有住校男生若干名,若每间宿舍住4名,则还剩下20名未住下;若每间住宿8名,则一部分宿舍没住满,且无空房.该校共有男生名.15.如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是.16.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为.三、解答题(共66分)17.解不等式(组):(1)2x﹣1>;(2).18.若关于x的不等式(2a﹣b)x+3a﹣4b<0的解集是,试求关于x的不等式(a﹣4b)x+2a﹣3b<0的解集.19.已知方程2x﹣ax=3的解是不等式5(x﹣2)﹣7<6(x﹣1)﹣8的最小整数解,求代数式4a﹣的值.20.已知关于x的不等式≤的解集是x≥,求m的值.21.某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小明考了68分,那么小明答对了多少问题?(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?22.已知关于x、y的方程组的解都为正数.(1)求a的取值范围;(2)已知a+b=4,且b>0,z=2a﹣3b,求z的取值范围.23.在一次高速铁路建设中,某渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方.已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?24.为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要元(直接写出结果).参考答案一、选择题(共30分)1.解:A、∵a>b,∴﹣a<﹣b,故本选项不符合题意;B、∵a>b,∴当a与b同号时有,当a与b异号时,有,故本选项不符合题意;C、∵a>b,∴a+b>2b,故本选项符合题意;D、∵a>b,且a>0时,∴a2>ab,故本选项不符合题意;故选:C.2.解:不等式组整理得:,∴不等式组的解集为x≤﹣3,故选:C.3.解:(A)∵x<y,∴x﹣2<y﹣2,故选项A成立;(B)∵x<y,∴4x<4y,故选项B不成立;(C)∵x<y,∴﹣x>﹣y,∴﹣x+2>﹣y+2,故选项C不成立;(D)∵x<y,∴﹣3x>﹣3y,故选项D不成立;故选:A.4.解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.5.解:设每块巧克力的重x克,每个果冻的重y克,由题意得:,解得:.故选:C.6.解:解关于x的方程,得x=,∵解不是负值,∴≥0,解得5a≥3b;故选:C.7.解:去括号得x﹣m>2﹣m,移项、合并得x>2﹣m,解得x>6﹣2m,因为不等式(x﹣m)>2﹣m的解集为x>2,所以6﹣2m=2,解得m=2.故选:B.8.解:设某人所用的时间为x小时,故≤x,解得:2≤x≤4故选:D.9.解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.10.解:设要答对x道.10x+(﹣5)×(20﹣x)>120,10x﹣100+5x>120,15x>220,解得:x>,根据x必须为整数,故x取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选:C.二、填空题(共28分)11.解:根据题意得:x﹣5≥3.故答案为:x﹣5≥3.12.解:设x>y,则x+2>y+2,﹣3x<﹣3y,x﹣y>0,x+y>2y.13.解:根据题意得:1<1﹣2x<2,解得:﹣<x<0,则x的范围是﹣<x<0,故答案为:﹣<x<014.解:设该校有男生宿舍x间,那么住校的男生有(4x+20)名.∵每间宿舍住8名,一部分未住满且无空房,∴x间宿舍中必有一宿舍住的人数至少为1人,最多为7人.则,解得,∵x为整数,∴x=6,∴4x+20=44,故该校共有住校男生44名,故答案为:44.15.解:根据题意得:2m<m,m<1﹣m,2m<1﹣m,解得:m<0,m<,m<,∴m的取值范围是m<0.故答案为:m<0.16.解:根据题意,得50+0.3x≤1200.三、解答题(共66分)17.解:(1)去分母,得2(2x﹣1)>3x﹣1,去括号,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>﹣1+2,合并,得:x>1;(2)解不等式①得x<8,解不等式②得x>1,所以不等式组的解集为1<x<8.18.解:(2a﹣b)x<4b﹣3a,∵x>,∴2a﹣b<0且.∴a=b,将a=b代入2a﹣b<0得,2×b﹣b<0,即b<0,故b<0.∴关于x的不等式(a﹣4b)x+2a﹣3b<0可化为﹣bx<b.∵b<0,∴﹣b>0,∴.19.解:∵5(x﹣2)﹣7<6(x﹣1)﹣8,∴x>﹣3,∴不等式5(x﹣2)+8<6(x﹣1)+7的最小整数解是﹣2,∵x=﹣2是方程2x﹣ax=3的解,解得a=.∴4a﹣=4×﹣=14﹣4=10.20.解:原不等式可化为:4m+2x≤12mx﹣3,即(12m﹣2)x≥4m+3,又因原不等式的解集为x≥,则12m﹣2>0,m>,比较得:=,即24m+18=12m﹣2,解得:m=﹣(舍去).故m无值.21.解:(1)设小明答对了x道题.依题意得5x﹣3(20﹣x)=68.解得x=16.答:小明答对了16道题.(2)设小亮答对了y道题.依题意得因此不等式组的解集为16≤y≤18.∵y是正整数,∴y=17或18.答:小亮答对了17道题或18道题.22.解:(1)∵∴由于该方程组的解都是正数,∴∴a>1(2)∵a+b=4,∴a=4﹣b,∴解得:0<b<3,∴z=2(4﹣b)﹣3b=8﹣5b∴﹣7<8﹣5b<8,∴﹣7<z<823.解:(1)设一辆大型渣土运输车一次运输x吨,一辆小型渣土运输车一次运输y吨,由题意得:,解得:,答:一辆大型渣土运输车一次运输8吨,一辆小型渣土运输车一次运输5吨;(2)设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为a辆、(20﹣a)辆,由题意可得:,解得:16≤a≤18,故有三种派车方案,第一种方案:大型运输车18辆,小型运输车2辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆.答:有三种派车方案,第一种方案:大型运输车18辆,小型运输车2辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆.24.解:(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,则.解得.答:一副羽毛球拍的价格是30元,一只羽毛球的价格是2元;(2)依题意得:.解不等式组,得3.75<n<4.04.因为n是正整数,所以n=4;(3)当m=30时,甲商店消费额:0.8×(5×30+2×30)=168(元)乙商店消费额:5×30+2×(30﹣20)=170(元)甲、乙混买①:(4×30+26×2)×0.8+30=167.6(元)甲、乙混买②:10×2×0.8+5×30=166(元)因为166<167.6<168<170所以当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元.故答案是:166.。

北师版八年级下数学2.4一元一次不等式习题精选3(含答案)

数学2.4习题精选3(含答案)一.填空题(共16小题)1.小明、小杰和小丽代表班级参加学校组织的团体智力竞赛,如果小明得86分,小杰得79分,那么要使三人团体平均分不低于83分,小丽至少应得_________分.2.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是_________.3.为了迎接2012伦敦奥运会,我区举办奥运知识竞赛,共有20道题.每一题答对十分,答错或不答都扣5分,小欣得分超过70分,则她至少要答对_________道题.4.某景点门票价是:每人5元,一次购票满30张,每张票可少收1元.当人数少于30人时,至少要有_________人去该景点,买30张票反而合算.5.有关学生体质健康评价指定规定:七年级男生握力体重指数m的合格标准是m≥35.若七年级男生小明的体重是50kg,那么小明的握力至少要达到_________kg时才能合格.【握力体重指数=(握力÷体重)×100】6.小王家的鱼塘可出售的大鱼和小鱼共800㎏,大鱼每千克售价10元,小鱼每千克售价6元.若将这800㎏鱼全部出售,收入可超过6800元,则其中出售的大鱼应多于_________㎏.7.某种商品进价是100元,出售时标价为150元,春节期间为了“大酬宾”优惠,特意大折出售,但要保证利润不低于20%,则最低可以打_________折.8.(2009•万年县模拟)一种药品的说明书上写着“每日用量60~120mg,分3~4次服用”,则一次服用这种剂量x mg应该满足_________.9.(2007•中山区一模)阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为_________.10.如图,a,b,c三种物体的质量的大小关系是_________.11.爸爸上个月的电话费用37.5元,其中月租费是12.5元,每打一次市话不超过3分钟收费0.2元.爸爸上月没有打过长途或其他电话,且每次却不超过3分钟,那么爸爸上个月累计通话时间至多为_________分钟.12.随着两岸交往的不断深入,台湾地区的水果源源不断地进入内地市场,一种台湾苹果的进价是每千克7.6元,销售中估计有5%的苹果正常损耗.为避免亏本,商家将售价应该至少定为每千克_________元.13.某种品牌的八宝粥,外包装标明:净含量为330g±10g,表明了这罐八宝粥的净含量x的范围是_________.14.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_________个儿童,分_________个橘子.15.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有_________人.16.有人问一位老师,他教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还有不足6位学生正在操场踢足球.”因此,这个班一共有学生_________人.二.解答题(共10小题)17.(2013•天水)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号 A B成本(万元/台)200 240售价(万元/台)250 300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)18.(2013•台州)在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.(2013•本溪)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?20.(2011•温州)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.21.(2010•菏泽)我市为绿化城区,计划购买甲、乙两种树苗共计500棵,甲种树苗每棵50元,乙种树苗每棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%,95%.(1)如果购买两种树苗共用28000元,那么甲、乙两种树苗各买了多少棵?(2)市绿化部门研究决定,购买树苗的钱数不得超过34000元,应如何选购树苗?(3)要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?22.(2009•天水)为了保护环境,某企业决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如右表:经预算,该企业购买设备的资金不高于105万元.A型B型价格(万元/台)12 10处理污水量(吨/月)240 200年消耗费(万元/台) 1 1(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)23.(2009•贵港)蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?24.(2008•南平)“母亲节”到了,九年级(1)班班委发起慰问烈属王大妈的活动,决定在“母亲节”期间全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.(1)求同学们卖出鲜花的销售额y(元)与销售量x(支)之间的函数关系式;(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w(元)与销售量x(支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金25.(2006•宿迁)甲、乙两家商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同.甲商场规定:凡购买超过1000元电器的,超出的金额按90%实收;乙商场规定:凡购买超过500元电器的,超出的金额按95%实收.顾客怎样选择商场购买电器能获得更大的优惠?26.(2006•泸州)九年级(3)班学生到学校阅览室上课外阅读课,班长问老师要分成几个小组,老师风趣地说:假如我把43本书分给各个组,若每组8本,还有剩余;若每组9本,却又不够,你知道该分几个组吗?(请你帮助班长分组,注意写出解题过程,不能仅有分组的结果哟!)数学2.4习题精选3(含答案)参考答案与试题解析一.填空题(共16小题)1.小明、小杰和小丽代表班级参加学校组织的团体智力竞赛,如果小明得86分,小杰得79分,那么要使三人团体平均分不低于83分,小丽至少应得84分.考点:一元一次不等式的应用.分析:只要运用求平均数公式:=列出关系式即可求出,为简单题.解答:解:设小丽成绩为x分,由题意得:≥83,解得x≥84.故小丽的成绩至少是84分.故答案为:84.点评:本题考查了样本平均数的求法以及不等式的应用.熟记求平均数公式是解决本题的关键.2.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是24cm.考点:一元一次不等式的应用.分析:设导火线应有x厘米长,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.解答:解:设导火线应有x厘米长,根据题意≥,解得:x≥24.故导火线至少应有24厘米.故答案为:24cm.点评:此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.3.为了迎接2012伦敦奥运会,我区举办奥运知识竞赛,共有20道题.每一题答对十分,答错或不答都扣5分,小欣得分超过70分,则她至少要答对12道题.考点:一元一次不等式的应用.分析:设小欣答对x道题,则答错或者不答为(20﹣x)道题,等量关系为:答对得分﹣扣分>70,列不等式求出最小整数解即可.解答:解:设小欣答对x道题,则答错或者不答为(20﹣x)道题,由题意得,10x﹣5(20﹣x)>70,解得:x>11,故答案为:12.点评:此题主要考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.4.某景点门票价是:每人5元,一次购票满30张,每张票可少收1元.当人数少于30人时,至少要有25人去该景点,买30张票反而合算.考点:一元一次不等式的应用.分析:先求出购买30张票,优惠后需要多少钱,然后再利用5x>120时,求出买到的张数的取值范围再加上1即可.解答:解:30×(5﹣1)=30×4=120(元);故5x>120时,解得:x>24,当有24人时,购买24张票和30张票的价格相同,再多1人时买30张票较合算;24+1=25(人);则至少要有25人去世纪公园,买30张票反而合算.故答案为:25.点评:此题主要考查了一元一不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解决本题的关键.5.有关学生体质健康评价指定规定:七年级男生握力体重指数m的合格标准是m≥35.若七年级男生小明的体重是50kg,那么小明的握力至少要达到x≥17.5kg时才能合格.【握力体重指数=(握力÷体重)×100】考点:一元一次不等式的应用.分析:设小明的握力至少要达到xkg时才能合格,根据握力体重指数=(握力÷体重)×100建立方程求出其解就可以了.解答:解:设小明的握力至少要达到xkg时才能合格,由题意,得(x÷50)×100≥35,解得:x≥17.5.故答案为:x≥17.5点评:本题一道关于列一元一次不等式解实际问题的运用题,考查了握力体重指数=(握力÷体重)×100在实际问题中的运用,解答时根据题意建立不等式是关键.6.小王家的鱼塘可出售的大鱼和小鱼共800㎏,大鱼每千克售价10元,小鱼每千克售价6元.若将这800㎏鱼全部出售,收入可超过6800元,则其中出售的大鱼应多于500㎏.考点:一元一次不等式的应用.分析:关系式为:大鱼的收入+小鱼的收入>6800元,把相关数值代入关系式即可得到所列不等式,求解即可.解答:解:售出的大鱼为x千克,大鱼每千克售价10元,所以大鱼的收入为10x;小鱼每千克售价6元,售出小鱼为(800﹣x)千克,小鱼的收入为6(800﹣x);解得:x>500,即出售的大鱼应多于500kg.故答案为:500.点评:此题主要考查了一元一次不等式的应用,解决本题的关键是找到总收入的关系式,易错点是找到对应的数量与单价.7.某种商品进价是100元,出售时标价为150元,春节期间为了“大酬宾”优惠,特意大折出售,但要保证利润不低于20%,则最低可以打8折.考点:一元一次不等式的应用.专题:应用题.分析:设打x折,则实际售价为150×0.1x,再由利润不低于20%,得出不等式,解出即可得出答案.解答:解:设打x折,则实际售价为150×0.1x,由题意得:150×0.1x﹣100≥100×20%,解得:x≥8.即最低可以打8折.故答案为:8.点评:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.8.(2009•万年县模拟)一种药品的说明书上写着“每日用量60~120mg,分3~4次服用”,则一次服用这种剂量x mg应该满足15≤x≤40.考点:一元一次不等式的应用.专题:应用题.分析:一次服用剂量x=,故可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式即可.解答:解:由题意,当每日用量60mg,分4次服用时,一次服用的剂量最小;当每日用量120mg,分3次服用时,一次服用的剂量最大;根据依题意列出不等式组:解得15≤x≤40.故答案为:15≤x≤40.点评:由实际问题中的不等关系列出不等式,通过解不等式可以得到实际问题的答案.9.(2007•中山区一模)阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为60≤x≤80.考点:一元一次不等式的应用.分析:早晨8点离开家,要在8点30分到8点40分之间到学校,即所用的时间是大于等于30分钟并且小于等于40分钟,设速度是x米/分,则时间是分钟,根据以上的不等关系,就可以列出不等式组,求出x的范围.解答:解:由题意可得,30≤≤40解之得60≤x≤80.故答案为:60≤x≤80点评:此题关键是用代数式,表示阳阳从家到校的时间,时间=.10.如图,a,b,c三种物体的质量的大小关系是a>b>c.考点:一元一次不等式的应用.分析:根据第一个图可知2a=3b,可判断a,b的大小关系,从图2可知,2b>3c,可判断b,c的大小关系.解答:解:∵2a=3b,∴a>b,∵2b>3c,∴b>c,∴a>b>c.故答案为:a>b>c.点评:本题考查一元一次不等式的应用,关键是根据图可依次判断a,b的大小关系,b,c的大小关系可求出解.11.爸爸上个月的电话费用37.5元,其中月租费是12.5元,每打一次市话不超过3分钟收费0.2元.爸爸上月没有打过长途或其他电话,且每次却不超过3分钟,那么爸爸上个月累计通话时间至多为375分钟.考点:一元一次不等式的应用.专题:应用题.分析:本题首先由题意得出不等关系即每次通话都不超过3分钟,可列出方程为x÷≤3,解出不等式即可.解答:解:设爸爸上个月累计通话时间为x分钟.依题意可得:x÷≤3,解得:x≤375,∴爸爸上个月累计通话时间至多为375分钟.点评:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等12.随着两岸交往的不断深入,台湾地区的水果源源不断地进入内地市场,一种台湾苹果的进价是每千克7.6元,销售中估计有5%的苹果正常损耗.为避免亏本,商家将售价应该至少定为每千克8元.考点:一元一次不等式的应用.分析:设商家把售价应该定为每千克x元,因为销售中估计有5%的苹果正常损耗,故每千克苹果损耗后的价格为x(1﹣5%)元,根据题意列出不等式即可.解答:解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥7.6,解得,x≥8,所以为避免亏本,商家把售价应该至少定为每千克8元.故答案为:8.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.13.某种品牌的八宝粥,外包装标明:净含量为330g±10g,表明了这罐八宝粥的净含量x的范围是320≤x≤340.考点:一元一次不等式的应用.专题:应用题.分析:将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可.解答:解:因为净含量为330g±10g,则这罐八宝粥的净含量x少不过320g,多不过340g,即320≤x≤340.点评:此题是一道与生活联系紧密的题目,解答起来较容易.14.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有7个儿童,分37个橘子.考点:一元一次不等式的应用.分析:如果每人分4个橘子,则剩下9个橘子,可设有x个儿童,则橘子数有:4x+9;每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,即橘子总数小于6(x﹣1)+3,就可以列出不等式,得出x的取值范围.解答:解:设共有x个儿童,则共有4x+9个橘子,则1≤4x+9﹣6(x﹣1)<3解得6<x≤7所以共有7个儿童,分了4x+9=37个橘子故答案为:7,37.点评:本题考查的是一元一次不等式的运用,要注意不等式两边同时除以一个负数不等式的方向要改变.正确理解“最后一个儿童分得的橘子数将少于3个”这句话包含的不等关系是解决本题的关键.15.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有28或29人.分析:有空客房10间,每个房间住3人时,只有一个房间不空也不满即:9间客房住满了,一个房间不空也不满即1个房间客房住了一个人或两个人,则就可以得到所有旅客的人数.解答:解:9个房间住的人数是9×3=27人.当不空也不满的房间有一个人时:有游客27+1=28人.当不空也不满的房间有2个人时:有游客27+2=29人.因而旅游团共有28或29人.点评:解决问题的关键是读懂题意,理解每个房间住3人时,只有一个房间不空也不满的含义,得到这个房间中的人数是解决本题的关键.16.有人问一位老师,他教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还有不足6位学生正在操场踢足球.”因此,这个班一共有学生28人.考点:一元一次不等式的应用.分析:一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还有不足6位学生正在操场踢足球,即踢足球的学生人数大于0并且小或等于5.设这个班一共有学生x人,根据这个不等关系就可以列出不等式.解答:解:不足6位学生说明剩下人数在1和5之间.设有x人,则0<x﹣x﹣x﹣x≤50<x﹣0.5x﹣0.25x﹣x≤5解得9<x≤46这些整数里,∵x,,都表示学生人数,∴必须为整数,∴学生总数应为28的倍数,∴只有28能被28整除.∴这个班一共有学生28人.点评:解决本题的关键是读懂题意,理解:不足6位学生正在操场踢足球的含义,找到符合题意的不等关系.二.解答题(共10小题)17.(2013•天水)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号 A B成本(万元/台)200 240售价(万元/台)250 300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)专题:应用题;压轴题;方案型.分析:(1)在题目中,每种型号的成本及总成本的上限和下限都已知,所以设生产A型挖掘机x台,则B型挖掘机(100﹣x)台的情况下,可列不等式22400≤200x+240(100﹣x)≤22500,解不等式,取其整数值即可求解;(2)在知道生产方案以及每种利润情况下可列函数解析式W=50x+60(100﹣x)=6000﹣10x,利用函数的自变量取值范围和其单调性即可求得函数的最值;(3)结合(2)得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x,在此,必须把(m﹣10)正负性考虑清楚,即m>10,m=10,m<10三种情况,最终才能得出结论.即怎样安排,完全取决于m的大小.解答:解:(1)设生产A型挖掘机x台,则B型挖掘机(100﹣x)台,由题意得22400≤200x+240(100﹣x)≤22500,解得37.5≤x≤40.∵x取非负整数,∴x为38,39,40.∴有三种生产方案①A型38台,B型62台;②A型39台,B型61台;③A型40台,B型60台.(2)设获得利润W(万元),由题意得W=50x+60(100﹣x)=6000﹣10x∴当x=38时,W最大=5620(万元),即生产A型38台,B型62台时,获得最大利润.(3)由题意得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x总之,当0<m<10,则x=38时,W最大,即生产A型38台,B型62台;当m=10时,m﹣10=0则三种生产方案获得利润相等;当m>10,则x=40时,W最大,即生产A型40台,B型60台.点评:考查学生解决实际问题的能力,试题的特色是在要求学生能读懂题意,并且会用函数知识去解题,以及会讨论函数的最大值.要结合自变量的范围求函数的最大值,并要把(m﹣10)正负性考虑清楚,分情况讨论问题.18.(2013•台州)在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?考点:一元一次不等式的应用.分析:设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.解答:解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.点评:本题考查了一元一次不等式的应用,难度一般,解答本题的关键是表示出胜场得分和输场得分并列出不等式.19.(2013•本溪)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;(2)设该中学购买篮球m个,根据购买三种球的总费用不超过6000元,可得出不等式,解出即可.解答:解:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤6000,解得:m≤33,∵m是整数,∴m最大可取33.答:这所中学最多可以购买篮球33个.点评:本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.20.(2011•温州)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.考点:一元一次不等式的应用;一元一次方程的应用.专题:应用题;压轴题.分析:(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克,列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,列出不等式求解即可.解答:解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克,由题意得:x+4x+20+400×40%=400,∴x=44,∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克,则所含蛋白质质量为4y克,所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%,∴y≥40,∴﹣5y≤﹣200,∴380﹣5y≤380﹣200,即380﹣5y≤180,∴所含碳水化合物质量的最大值为180克.点评:本题由课本例题改编而成(原题为浙教版七年级下P96例题),这使学生对试题有“亲切感”,而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点,给出两个量的和的范围,求其中一个量的最值,隐含着函数最值思想.本题切入点较多,方法灵活,解题方式多样化,可用不等式解题,也可用极端原理求解,不同的解答反映出思维的不同层次.21.(2010•菏泽)我市为绿化城区,计划购买甲、乙两种树苗共计500棵,甲种树苗每棵50元,乙种树苗每棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%,95%.(1)如果购买两种树苗共用28000元,那么甲、乙两种树苗各买了多少棵?(2)市绿化部门研究决定,购买树苗的钱数不得超过34000元,应如何选购树苗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我预学
1.家电下乡是我国应对国际金融危机,惠农强农,带动工业生产,
促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,则该手机的销售价格为多少元?
2. 根据题意,列出下列各题的不等式.
(1)甲、乙两地相距36km,某人要在7.5h内从甲地骑车到乙地,则此人每小时至少骑多少km?设每小时至少骑xkm,根据题意,得.
(2)小慧准备用21元钱买笔和笔记本.已知每支铅笔2元,每本笔记本4元2角.她买了两本笔记本后,最多还可买几支铅笔?设最多还可买x支铅笔,根据题意,得.
3. 阅读教材中的本节内容后回答:
(1)列不等式解应用题和列解应用题的方法和步骤类似.
(2)列方程解应用题的关键是找的数量关系;而列不等式解应用题的关键是找的数量关系.
我求助:预习后,你或许有些疑问,请写在下面的空白处:
我梳理
1.请你类比归纳一下列一元一次不等式解应用题的一般步骤?
(1);(2);
(3);(4);
(5).
2.请你总结下应用题中体现不等量关系的常见词:
个性反思:通过本节课的学习,你一定有很多感想和收获,请写在下面的空白处:
我达标
1.现有150吨泥沙需要搬运,搬运的货车每辆的最大承载量为4吨,
则至少需要_______辆货车才能把这些泥沙一次性搬运完毕.
2.小聪同学准备用自己节省的零花钱买一台英语复读机,他现在已
存有45元,计划从现在起以后每个月节省30元,直到他至少
..有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()
A.3045300
x-≥B.3045300
x+≥
C.3045300
x+≤
x-≤D.3045300
3.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的记录,则他第7次射击不能少于( )
A.6环B.7环C.8环D.9环
4.九年级毕业班的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片,共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()
A.至多6人B.至少6人C.至多5人D.至少5人
5. 某学校把学生的纸笔测试、实践能力两项成绩分别按60%、40%
的比例计入学期总成绩.小明实践能力这一项成绩是81分,若想学期总成绩不低于90分,则纸笔测试的成绩至少是分.
6. 某种商品的进价为800元,出售时标价为1200元,后来由于该商
品积压,商店准备打折销售,但要保证利润率不低于5%,则该商
品至少打几折销售?
我挑战
7. 小明和爸爸、妈妈三人玩跷跷板,三人的体重一共为150千克,
爸爸坐在跷跷板的一端;体重只有妈妈的一半的小明和妈妈一同
坐在跷跷板的另一端,这时,爸爸的那一端仍然着地,请你猜猜
小明的体重应小于()
A.49千克B.50千克C.24千克D.25千克
8.某商店的老板销售一种商品,他要以不低于进价20%的价格才能
出售,但为了获得更多利润,他以高出进价80%的价格标价.若你
想买下标价为360元的这种商品,最多降价(),商店老板才肯
出售.
A.80元B.100元C.120元D.160元
9.某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机118台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147 000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1 000元/台,1 500元/台,2 000元/台.求该商场至少购买丙种电视机多少台?
10. 某市为绿化城区,计划购买甲、乙两种树苗共计500棵,甲种树
苗每棵50元,乙种树苗每棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%,95%.
⑴如果购买两种树苗共用28000元,那么甲、乙两种树苗各买了多少棵?
⑵市绿化部门研究决定,购买树苗的钱数不得超过34000元,则
至少购买甲树苗多少棵?
⑶要使这批树苗的成活率不低于92%,则最多购买甲树苗多少
棵?
我登峰
11. 某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠方案.方案甲:买一支毛笔就赠送一本书法练习本;方案乙:按购买金额打九折销售. 某校欲为校书法兴趣小组购买这种毛笔10支,书法练习本)10(≥x x 本.问该校应选择哪种优惠方案更省钱?
5.3 一元一次不等式(3)
1. 38;
2. B ;
3.B ;
4.B ;
5.96;
6.7折.
7.D ;
8.C ;
9.14台;10.(1)甲
种树苗400棵,乙种树苗100棵;(2)200棵;(3)300棵.11.当50
x >时,甲方案省钱;当50x =时,两种方案一样;(3)当1050x ≤<时,
乙方案省钱.。

相关文档
最新文档