我国常用高程基准
我国现行高程基准

我国现行高程基准摘要:一、引言二、我国现行高程基准的定义与背景1.高程基准的定义2.我国现行高程基准的背景三、我国现行高程基准的特点1.高程基准的建立方法2.高程基准的数值3.高程基准的适用范围四、我国现行高程基准的应用领域1.国土测绘2.工程建设3.科学研究五、我国现行高程基准的与国际高程基准的接轨情况六、结论正文:一、引言高程基准是地球表面高程测量的起始基准,对于国土测绘、工程建设、科学研究等领域具有重要的意义。
本文将详细介绍我国现行高程基准的相关内容。
二、我国现行高程基准的定义与背景1.高程基准的定义高程基准是地球表面上的一点,作为高程测量的起始点。
我国现行高程基准是1985国家高程基准,以青岛国家海洋局验潮站1985年1月1日验潮数据计算的黄海平均海平面作为基准面。
2.我国现行高程基准的背景自20世纪初以来,我国先后采用过多个高程基准。
1985国家高程基准是在总结过去经验教训的基础上,经过科学论证,采用现代技术手段重新确立的高程基准。
三、我国现行高程基准的特点1.高程基准的建立方法我国现行高程基准采用了基于验潮站数据的平均海平面作为基准面,通过计算得出。
2.高程基准的数值我国现行高程基准的基准面黄海平均海平面,以1985年1月1日青岛国家海洋局验潮站验潮数据为准,数值为0。
3.高程基准的适用范围我国现行高程基准适用于我国国土范围内的所有高程测量和计算。
四、我国现行高程基准的应用领域1.国土测绘我国现行高程基准在国土测绘领域发挥着重要作用,为我国的地图制图、地籍管理、土地利用规划等工作提供了高程参考基准。
2.工程建设在工程建设领域,我国现行高程基准为各类工程项目的高程测量、设计、施工及验收提供了统一的尺度。
3.科学研究我国现行高程基准在科学研究领域,如地理、地质、气象、水文等领域的研究中发挥着重要作用。
五、我国现行高程基准的与国际高程基准的接轨情况我国现行高程基准与国际高程基准(如1980年国际地球参考系统)已经实现了接轨,这有利于我国高程基准在全球范围内的应用和交流。
我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(WorldGe odetic System)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
我国采用的高程基准

我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫"1956年黄海高程系统",为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。
但由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为:1985年国家高程基准高程=1956年黄海高程-0.029m。
1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。
1956黄海高程水准原点的高程是72.289米。
1985国家高程系统的水准原点的高程是72.260米。
习惯说法是"新的比旧的低0.029m",黄海平均海平面是"新的比旧的高"。
由于潮汐存在波长为19年的周期变化,所以高程基准应采用19年的观测数据进行计算。
其实,1985国家高程基准就是这么计算来的。
具体计算方法是:根据1952年~1979年的潮汐观测资料,计算时取19年的资料为一组, 滑动步长为1年,得到10 组以19年为一个周期的平均海面, 取均值得到的结果作为黄海平均海水面,然后再推算出水准原点的高程。
高程表示地面点到基准面的距离,用来确定地面点的高低。
地面点到大地水准面(俗称海平面)的铅垂距离,成为该店的绝对高程,也称海拔。
不过由于海水受到潮汐,风浪等影响,是一个动态的平面,它的高低在时时刻刻发生着变化,而且不同地区的海水面高低也不一样。
为此我国在青岛大港设立了验潮站,长期记录和观测黄海海水面得高低变化,取其平均值作为我国大地水准面的位置,并在青岛观象山上建立了水准原点(绝对高程的起算点)。
我国的黄海高程系就是根据地面点到此水准原点的距离建立的。
我国现行高程基准

我国现行高程基准我国现行高程基准是按照国家法律法规和测绘标准,对地球表面进行高程测量和标注的一种基准系统。
它在我国的测绘、规划、建设、水利等领域具有广泛的应用。
一、我国现行高程基准的概述我国现行高程基准以平均海平面为基准,采用了1985年国家高程基准和1992年国际地球参考框架(ITRF)的成果。
在全国范围内设立了一系列高程基准点,构成了高程基准框架。
二、我国现行高程基准的组成部分我国现行高程基准主要包括以下几个部分:1.平均海平面:作为高程基准的起算面,平均海平面是根据多年潮汐观测数据计算得出的。
2.高程基准点:在全国范围内设立的一批高程基准点,用于传递高程基准值。
3.高程基准传递系统:通过一等水准测量、二等水准测量等方法,将高程基准值从基准点传递到其他测站点。
4.地方高程基准:根据地方实际需要,在国家高程基准基础上建立的地方性高程基准。
三、我国现行高程基准的应用领域我国现行高程基准在以下领域发挥着重要作用:1.测绘:地图制作、地形分析、工程测量等。
2.规划:城市规划、土地利用规划、基础设施建设规划等。
3.建设:建筑工程、桥梁工程、隧道工程等。
4.水利:河道整治、水利工程设计、防汛抗旱等。
四、我国现行高程基准的优点与不足优点:1.统一了全国高程基准,提高了测量成果的准确性。
2.采用了现代测绘技术和方法,使高程基准具有较高的精度。
3.建立了完善的高程基准传递体系,保证了高程基准值的准确传递。
不足:1.在一些地形复杂的地区,高程基准传递过程中可能存在误差。
2.地方高程基准与国家标准高程基准的衔接存在一定问题。
五、未来高程基准的发展趋势1.精密水准测量技术的发展,提高高程基准的精度。
2.GNSS技术在高程测量中的应用,实现高程基准的实时更新。
3.信息化技术的发展,提高高程基准的管理和应用水平。
4.融合多源数据,提高高程基准的适用性和准确性。
我国目前采用的高程基准

我国目前采用的高程基准
我国目前采用的高程基准是采用1986年8月投入使用的准北极系高程基准,
也就是中国椭球面1987参考椭球体。
我国高程解释在总体上采用1987参考高程基准,实行三维空间高程系统构建。
中国在1986年4月组建了国家高程基准设置委
员会,拟定了《中国高程基准设置方案》,整个高程基准体系正式投入使用,以实现我国各项测量活动的统一,同时使复杂的高程管理更加合理化、准确化。
此外,我国对1987参考椭球体进行了检定,确定了其参考半径为6378245米,静态偏心率为0.0033528106647474807、动态偏心率为0.0033628929264999372。
其它常用数据,如中央子午线圈数、精度及振动数据等,均可由上述参数计算出来。
自1987年以来,我国还利用GPS技术完成了大规模的全国高程解释,每年大约对
全国3000多个基准点的高程进行修订。
因此,我国目前采用的高程基准是采用1986年8月投入使用的准北极系高程
基准--1987参考椭球体,是三维空间高程系统构建的重要基础,为大量测量活动
提供了统一的基础,从而保证了数据的准确性。
今后,我国还将不断研究高精度的高程基准,以满足测绘活动的需要,为实现精细化的测量和信息管理提供极大的帮助。
我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1。
北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2。
西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298。
257221013。
WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
我国三大坐标系

我国三大常用坐标系区别(北京54、西安80和WGS-84)我国三大常用坐标系区别(北京54、西安80和WGS-84)1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
我国水准零点高程

我国水准零点高程随着我国经济的不断发展和城市化的加速,地理信息技术的应用越来越广泛。
在地理信息技术中,高程是一个重要的参数,它与地形、水文、气象等多个领域密切相关。
而水准零点高程,则是高程的基准,是测量和计算高程的必备信息。
本文将对我国水准零点高程的概念、测量方法、应用以及未来发展进行探讨。
一、概念水准零点高程,简称高程基准,是指测量和计算高程时所采用的参考面或基准面的高程。
在国际上,高程基准通常采用平均海平面作为参考面。
而在我国,由于地形复杂、地域广阔、地球形状略有偏差等原因,我国采用了自己的高程基准。
我国高程基准的确定是一个漫长而复杂的过程。
早在清朝时期,中国就开始了高程基准的研究。
20世纪初,中国科学家开始使用国际高程基准作为参考系,但由于我国地形复杂,使用国际高程基准的精度有限。
1956年,我国开始建立自己的高程基准,最终确定了“北京54”高程基准作为我国的国家标准高程基准。
二、测量方法测量高程的方法有很多种,其中最常用的是水准测量法。
水准测量法是利用重力和水平面的平衡关系来测量高程的一种方法。
水准测量需要在一定的条件下进行,包括:天气晴朗、风速低、大气稳定等。
测量时需要使用水准仪、水准杆等测量工具。
在我国,高程基准测量是由国家测绘地理信息局负责的。
国家测绘地理信息局建立了一套完整的高程基准测量网络,覆盖全国各地。
高程基准测量的过程中,需要进行大量的现场测量和计算,同时还需要进行数据校核和质量控制等工作,以保证高程基准的准确性和稳定性。
三、应用高程基准是测量和计算高程的基础,对于地理信息系统、土地利用规划、水文预报等多个领域都有重要的应用价值。
以下是几个典型的应用案例:1. 地形分析:高程基准可以用来制作数字高程模型,进行地形分析和地形建模等工作。
2. 水文预报:高程基准可以用来计算流域的坡度、流速等参数,进而预测洪水、干旱等自然灾害。
3. 建筑设计:高程基准可以用来确定建筑物的高度和位置,为城市规划和建设提供基础数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国常用高程基准
任何一个国家在建设基础设施时,都会需要一个可靠的高程参考系统来指导施工,可以保证各种基础设施的天然整体性和一致性。
我国也不例外,由于地处丰富的活动地质板块,地形和地貌复杂,海拔极度变化,需要建立一个可信赖的高程基准系统来确保国家基础设施的建设和落实。
我国常用的高程基准主要有三种:青藏高原高程基准系统、华北平原高程基准系统和东海高程基准系统。
青藏高原高程基准系统,是我国根据我国地理空间分布规律而建立的第一个国家高程系统。
以北京西郊北山脚为起点,南至青藏高原位于拉萨的丙山,以北京西郊北山脚为0m,而拉萨的丙山作为最高点的4,753m高,确定了我国的高程范围。
华北平原高程基准系统,是我国继青藏高原高程基准系统后建立的第二个国家高程系统,以北京的坨子台为起点,到郑州的祁阳台为终点,组成了长3504km的线系,以坨子台的海拔137.5m为0m,祁阳台的海拔154.5m为参考值,从而形成了一个以华北平原为中心的高程基准系统。
东海高程基准系统,是我国由青藏高原高程基准系统和华北平原高程基准系统的延伸建立的第三个国家高程系统,在华北平原高程基准系统的基础上,通过东海岸线以及黄河三角洲的调查,设定以日照口为起点,口海拔0.7m作为0m,完成了东海高程基准系统。
这三个高程基准系统都具有其自身的参考点,因此它们又统称为
国家参考点系统。
它们都拥有一定的高程参照系,这三个系统起到了极大的作用,保证了我国基础设施建设的稳定性和准确性,对维护我国的空间秩序具有十分重要的意义。
除了以上三种常见的高程基准系统,我国还建立了国家位置地理基准系统、国家位置和高程三维参考系统等,它们都构成了我国完整的高程系统。
我国现存的高程基准系统主要是在人工水文和地球物理测量技术的发展和完善下形成的,它具有地形复杂、高程分布不均、水文情况复杂以及地质活动极其剧烈等特点;虽然存在很多技术和理论方面的缺陷,但它仍然为我国基础设施建设和国土空间管理提供了指引和参考,发挥了重要作用。
综上所述,我国常用的高程基准有青藏高原高程基准系统、华北平原高程基准系统和东海高程基准系统,它们的发展为我国基础设施建设和空间管理提供了可靠的参考,发挥了重要作用。