初中几何圆、扇形、弓形的面积及阴影部分面积专项

合集下载

扇形阴影部分面积题型

扇形阴影部分面积题型

扇形阴影部分面积题型
扇形阴影部分面积的题型是数学中常见的问题,主要涉及到扇形的面积计算和几何图形的组合。

首先,我们需要了解扇形面积的计算公式。

扇形面积的计算公式是:
扇形面积= (θ/360) × π × r^2其中,θ是扇形的圆心角,r是扇形的半径。

对于扇形阴影部分面积的题型,通常会涉及到两个或多个扇形的组合,以及与其他几何图形(如矩形、三角形等)的结合。

解题时,我们需要根据题目的具体条件,分析各个扇形之间的关系,并利用扇形面积的计算公式进行计算。

例如,一个常见的题型是求一个半圆内切一个正方形,正方形的一个顶点位于半圆的圆心,另一个顶点在半圆上,求正方形和半圆之间的阴影部分面积。

这种题型需要我们利用正方形的性质和半圆的性质,通过几何推理和计算得出阴影部分的面积。

总的来说,扇形阴影部分面积的题型需要我们具备一定的几何知识和推理能力,通过分析几何图形的性质和关系,利用扇形面积的计算公式进行计算。

中考数学专题复习和训练求阴影部分的面积

中考数学专题复习和训练求阴影部分的面积

求阴影部分的面积专题透析:计算平面图形中的面积问题是中考中的常考题型,多以选择题、填空题的形式出现,其中求阴影部分的面积是这类问题的难点.不规则阴影部分常常由三角形、四边形、弓形和圆、圆弧等基本图形组合而成,考查内容涉及平移、旋转、相似、扇形面积等相关知识,还常与函数相结合.在解此类问题时,要注意观察和分析图形,会分析和组合图形,常常借助转化化归思想,将阴影部分不规则图形转化为规则的易求的图形求解.典例精析:例1.如图,菱形ABCD 的对角线BD AC 、分别为223、,以B 为圆心的弧与AD DC 、相切于点E F 、,则阴影部分的面积是A.π-3233 B.π-3433C.π-43D.π-23 分析:本题的阴影部分是不规则的,要直接求出阴影部分的面积不现实,但我们发现阴影部分是菱形ABCD 减去扇形ABC 的面积;菱形ABCD 可根据题中条件直接求出,要求扇形扇形ABC 的面积关键是求出圆心角∠ABC 的度数和半径;连结BD BE 、交于点O ,所有这些问题均可以化归在Rt △AOB 或Rt △BOC 中利用三角函数和勾股定理来解决. 选D 师生互动练习:1. 如图,Rt △ACB 中,C 90AC 15AB 17∠===,,;以点C 为 圆心的⊙C 与AB 相切于D ,与CA CB 、分别交于E F 、两点,则 图中阴影部分的面积为 .2.如图的阴影部分是一商标图案图中阴影部分,它以正方形ABCD的顶点A 为圆心,AB 为半径作BD ,再以B 为圆心,BD 为半径作弧, 交BC 的延长线与E ,BD,DE 和DE 就围成了这个图案,若正方形的边长为4,则这个图案的面积为A.π4B.8C.π3D.π-38 3.如图,Rt △ABC 中,,C 90A 30∠=∠=,点O 在斜边AB 上,半径为2,⊙O 过点B 切AC 于D ,交BC 边于点E E,则由线段CD EC 、及DE 围成的阴影部分的面积为 . 4. 已知直角扇形AOB 的半径OA 2cm =,以OB 为直径在扇形内作半圆⊙M ,过M 引MP ∥AO 交AB 于P ,求AB 与半圆弧及MP 围成的 阴影部分的面积为 .例2.如图,⊙O 的圆心在定角()0180αα∠<<的角平分线上运动,且⊙O 与α∠的两边相切,图中的阴影部分的面积y 关于⊙O 的半径()x x 0>变化的函数图象大致是分析:连结OA OB OC 、、后,本题关键是抓住阴影部分的面积=四边形ACOB 的面积-扇形BOC 的面积.设阴影部分的面积为y ,⊙O 的半径()x x 0>. ∵⊙O 切AM 于点B ,切AN 于点C , ∴OBA OCA 90,OB OC x,AB AC ∠=∠====,∴BOC 3609090180αα∠=---=-;∵AO 平分MAN ∠,xAB AC 1tan 2α==,且图中阴影部分的面积y =四边形ACOB 的面积-扇形BOC 的面积.∴ ()22180x 1x 1180y 2x x 112360360tan tan 22αππαπαα⎛⎫⎪--=⨯⨯⨯-=- ⎪ ⎪⎝⎭∵x 0> ,且()0180αα∠<<是定角∴阴影部分的面积y 关于⊙O 的半径()x x 0>之间是二次函数关系. 故选C .师生互动练习:1.如图,已知正方形ABCD 的边长为1,E F G H 、、、分别为各边上的点,且AE BF CG ==DH =;设小正方形EFGH 的面积为S ,AE 为x ,则S 关于x 的函数图象大致为2.2013.临沂中考如图,正方形ABCD 中,AB 8cm =,对角线AC 与BD 相交于点O ,点E F 、分别从B C 、两点同时出发,以/1cm s 的速度沿BC CD 、运动,到点C D 、停止运动.设运动时间为()t s ,OEF 的面积为()2S cm 与()t s 的函数关系式可用图象表示为3.2014.菏泽中考如图在Rt ABC 中,AC BC 2==,正方形CDEF 的顶点D F 、分别是边AC BC 、的动点,C D 、两点不重合.设CD 的长度为x ,ABC 与正方形CDEF 的重叠部分的面积为y ,则下列图象中能表示y 与x 的函数关系的是 例3.如图,由7个形状、大小完全相同的正六边形组成的网格,正六边形 的顶点称为格点.已知每个正六边形的边长为1,△ABC 的顶点在格点上, 则△ABC 的面积为 . 分析: 延长AB ,然后作出过点C 与格点所在的水平直线,一定交于点E .则图中的阴影部分 = △AEC 的面积 - △BEC 的面积. 由正六边形的边长为1,根据正多边形形的性质,可以得出过正六边 形中心的对角线长为2,间隔一个顶点的对角线长为3,则CE 4=;若△AEC 和△BEC 都以CE 为求其面积的底边,则它们相应的高怎样化归在直角三角形中来求出呢 解:由同学们自我完成解答过程 师生互动练习:1.如图已知网格中每个小正方形的边长为2,图中阴影部分的 每个端点位置情况计算图中的阴影部分的面积之和为 .2.如图,已知下面三个图形中网格中的每个正方形的边长都设为1.结果均保留π⑴.图①中的阴影图案是由两段以格点为圆心,分别以小正方形的边长和对角线长为半径的圆弧和网格的边围成.,图中阴影部分的面积为 ;⑵.图②中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.图②中阴影部分的面积是 ;⑶.图③中在AB 的上方,分别以△ABC 的三边为直径作三个半圆围成图中的阴影部分的面积之和为 .3.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的FEBD O A CEC D ABDE OBA C PNMBO A E F D BA C E DB CA F x y 1212O A x y 123412345O C x y 1212O D B αCBAO MNxy OA xy OB xy OC xy ODC E A B ②①③CC交点上,若灰色三角形面积为214,则方格纸的面积为.附专题总结:求含圆图形中不规则阴影部分面积的几个技巧一.旋转、翻折为特殊图形:图①的第一个图是直角扇形OAB和直角扇形OCD搭建的,其中OA=9,OB=4,要求阴影部分的面积,可以将△ODB旋转至△OAC来求扇环BDCA的面积更简便见图①的第二个图.图②的第一个图中是直角扇形OAB和正方形OFED以及矩形OACD,其中OF=1,要求阴影部分的面积,可以将半弓形ODB沿正方形对角线翻折至EFA来求矩形ACEF的面积更简便见图②的第二个图二.图①的第一个图大圆⊙O 的弦并与小圆⊙圆⊙O O图①这样来求圆环的面积更容易;虽三.如图第一个图是以等腰Rt△AOB的直角顶点O为圆心画出的直角扇形OAB和以OA、OB为直径画出的两个半圆组成的图形,要求第一个图形阴影,可以按如图所示路径割补成一个弓形见第二个图中的标示更容易求出阴影图形的面积;如果OA=10,求出第一个图形阴影部分的面积略解:S阴影=2B0A11S S AOB101010255042ππ-=⨯⨯-⨯⨯=-扇形点评:解决.割补法在很多涉及到几何图形的题中都有运用.四.差法求叠合图中形的阴影例1.图①是教材114页的第3题,可以用四个半圆的面积之和减去正方形的面积得到阴影部分的面积;例2.图②自贡市中考题△ABC中,AB=BC=6,AC=10,分别以AB,BC为直径作半圆,则图中阴影部分的面积为.略解:△ABC的底边AC===2ABC1161S2S S21592222ππ⎛⎫⨯⨯-=⨯⨯⨯-⨯=-⎪⎝⎭影点评:本题的图形结构可以看成是三个图形叠合在一起两个半圆和一个等腰三角形端点相接的叠合,具有这种图形结构题其实并不是我们想象那么抽象艰深.比如:本题的阴影部分恰好是两个半圆和一个等腰三角形端点相接的叠合后,两个半圆覆盖等腰三角形后多出来的部分;那么下面的这个题就的计算也就不那么复杂了.举一反三,“难题”不难师生互动练习::见上学期圆单元训练和专题复习的相应部分.迎考精炼:1.如图,AB 是⊙O的直径,弦CD AB,CD⊥=,则S阴影 =A.πB.2π D.23π2. 如图,⊙A、⊙B、⊙C两两不相交,且半径均为,则图中的三个阴影部分的面积之和为A.12πB.8πC.6πD.4π3.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中的阴影部分的面积为2π23πC.2πD.23π4.如图,在Rt△ABC中,C90,AC8BC4∠===, ,分别以AC BC、为直径画半圆,则图中的阴影部分的面积之和为A.2016π- B.1032π- C.1016π- D.20132π-5. 如图,四边形ABCD是正方形, AE垂直于BE于E,且AE3,BE4==,则阴影部分的面积是6. 如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形'''AB C D,图中的阴影部分的面积为A.1 C.1 D.127.如图,ABCD沿对角线AC平移,使A点至AC的中点''''A B C D,新的正方形与原正方形的重叠部分图中的阴影部分的面积是B.12C.148.将n个边长都为4cm的正方形按如图所示的方法摆放,点,,,1nA A风别是正方形对角线的交点,则n个正方形重叠部分的面积的和为A.21cm4B.2n1cm4-C.()24n1cm- D.n21cm4⎛⎫⎪⎝⎭9. 两张宽均为5cm的纸带相交成α角,则这两张带重叠部分图中阴影的面积为A.()225cmsinαB.()225cmcosαC.()250sin cmα D.()225sin cmα10. 如图,△ABC是等边三角形,被一平行于BC的矩形所截,线段AB被截成相等的三部分,则图中的阴影部分的面积是△ABC面积的A.19B.29C.13D.4911.AB是⊙O的直径,以AB为一边作等边△ABC,交⊙O于点E F、,2=,则图中的阴影部分的面积为A.43π- B.23πC.3πD.3π12.如图;三个小正方形的边长都为1,则图中阴影部分面积OC图①CD DB图②BA2A1C'C结果保留π13. 如图①,等边△ABD 和等边△CBD 的边长均为1,将△ABD 沿AC 方向平移得到△'''A B D 的置,得到图 形②,则阴影部分的周长为 .14.如图,△ABC 的边AB 3AC 2==,,Ⅰ、Ⅱ、Ⅲ分别表示以AB AC BC 、、为边的正方形,则图中三个阴影部分的面积之和的最大值为 . 15.若图中正方形F 以上的正方形均是以直角三角形向外作的正方形:①.若正方形A B C D 、、、的边长分别是a b c d 、、、,则正方形F 的面积如何用含a b c d 、、、的式子表示出来为 ;②.如果正方形F 的边长16cm ,那么正方形A B C D 、、、的面积之和是 .16.如图,边长为3的正方形ABCD 绕点按顺时针方向旋转30°后得到的正方形EFCG 交AD 于点H ,S 四边形HFCD = .17.如图, 已知AD DE EF 、、分别是ABC 、ABD 、AED 的中线,若2ABC 24cm S =,则阴影部分DFE 的面积为 .18.如图,在正方形ABCD 内有一折线,其中AE EF EF FC ⊥⊥、,并且AE 6=,EF 8=, AF 10=则正方形与其外接圆之间形成的阴影部分的面积为 . 19.如图把⊙O 向右平移8个单位长度得到⊙O 2,两圆相交于 A 、B,且O 1 A 、O 2 A 分别与⊙O 2、⊙O 1相切,切点均为A 点, 则图中阴影部分的面积为 . 20.如图,矩形ABCD 中,BC 4DC 2==,,以AB 为直径的半圆O 与DC 相切于点E ,则图中的阴影部分的面积是 结果保留π21.在Rt △ABC 中,A 90AB AC 2∠===,,以AB 为直径作圆交BC 于点D ,则图中阴影部分的面积是 .22.如图,在△ABC 中,,AB 5cm AC 2cm ==,将△ABC 绕顶点C 按顺时针方向旋转45°至△11A B C 的位置,则线段AB 扫过的区域图中阴影部分的面积为 2cm .23.如图,半圆A 和半圆B 均与y 轴相切于O ,其直径CD EF 、和x 轴垂直,以O 为顶点的两条抛物线分别经过C E 、和点D F 、,则图中的阴影部分的面积是 .24.如图,抛物线21y x 2=-+向右平移1个单位得到抛物线2y ,则抛物线2y 的顶点坐标为 ;阴影部分的面积S = . 25.如图在边长为2的菱形ABCD ,B 45∠=,AE 为BC 边上的 高,将△ABE 沿AE AE 在直线翻折得△'AB E ,求△'AB E 与四边形 AECD 重叠阴影部分的面积. 26.如图,矩形OBCD 按如右图所示放置在平面直角坐标系中坐标 原点为O ,连结AC 点A C 、的坐标见图示交OB 于点E ;求阴影 部分的四边形OECD 的面积27.如图,在△ABC 中,=90A ∠, O 是BC 边上的一点以O 为圆 心的半圆分别与AB AC 、边相切于点D E 、,连接OD 已知. 求:⑴.tan C ∠.⑵.求图中的阴影部分的面积之和.28.如图,⊙O 的直径AB 为10cm 1,弦AC 为6cm ,ACB ∠的平分线 交⊙O 于点D .⑴.求弦CD 的长; ⑵.求阴影部分的面积;29.如图, 在平面直角坐标系中,以(),10为圆心的⊙P 与y 轴 相切于原点O ,过点(),A 10-的直线AB 于⊙P 相切于点B . ⑴.求AB 的长;⑵.求AB OA 、与OB 围成的阴影部分面积不取近似值; ⑶.求直线AB 上是否存在点M ,使OM PM +的值最小 如果存在,请求出点M 的坐标;如果不存在,请说明理由.FB'EDA BC xy(4,2)(0,-1)E BDC A O BD C A ①B'D 'A'B D C ②FE D A B C 17题H G EF D A B C 16题15题ⅢⅡⅠG F M E B C A 14题18题1086B D C F E A xy –1–2123–1–212O24题A 1C AB 22题DB 21题O DA EBC 20题23题xy 1-1BA O。

圆、扇形、弓形的面积(一)

圆、扇形、弓形的面积(一)

圆、扇形、弓形的面积(一)圆的面积在几何学中,圆是一个平面上所有点到一个固定点的距离都相等的点的集合。

圆的面积是围绕圆心一周的区域。

公式推导设圆的半径为r,我们可以使用数学公式计算圆的面积。

圆的面积公式如下:面积= πr²其中,π(pi)是一个常数,约等于3.14159。

例子例如,如果一个圆的半径为 5 cm ,那么它的面积可以用以下公式计算:面积= π × (5 cm)² ≈ 3.14159 × 25 cm² ≈ 78.53975 cm²所以,这个圆的面积约为 78.54 平方厘米。

扇形的面积扇形是一个由圆心、圆弧及两个半径所围成的图形,其中圆心角等于360度(或2π弧度)。

扇形的面积是扇形圆心角所对应的圆弧面积。

公式推导设扇形的半径为r,圆心角为θ(单位为弧度),我们可以使用下面的公式计算扇形的面积:面积= (θ/2π) × πr² = (θ/2) × r²例子例如,如果一个扇形的半径是 6 cm ,圆心角是 60 度,我们可以使用以下公式计算扇形的面积:面积= (60/360) × π × (6 cm)² = (1/6) × 3.14159 ×36 cm² ≈ 18.84956 cm²所以,这个扇形的面积约为 18.85 平方厘米。

弓形的面积弓形是一个由圆弧、半径和两个弦所围成的图形。

弓形的面积是弓形圆心角所对应的圆弧面积减去弓形中的三角形面积。

公式推导设弓形的半径为r,圆心角为θ(单位为弧度),我们可以使用下面的公式计算弓形的面积:面积= (θ/2π) × πr² - (1/2) × r² × sin(θ)其中,sin(θ) 是角度θ的正弦值。

例子例如,如果一个弓形的半径是 8 cm ,圆心角是 90 度,我们可以使用以下公式计算弓形的面积:面积= (90/360) × π × (8 cm)² - (1/2) × (8 cm)² × sin(90°)= (1/4) × 3.14159 × 64 cm² - (1/2) × 64 cm² × 1≈ 12.56637 cm² - 32 cm²≈ -19.43363 cm²因为弓形在这个例子中是开口向下的,并且sin(90°)等于1,所以面积为负数。

中考求阴影部分面积(供参考)

中考求阴影部分面积(供参考)

中考求阴影部分⾯积(供参考)中考求阴影部分⾯积【知识概述】计算平⾯图形的⾯积问题是常见题型,求平⾯阴影部分的⾯积是这类问题的难点。

不规则阴影⾯积常常由三⾓形、四边形、⼸形、扇形和圆、圆弧等基本图形组合⽽成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。

现介绍⼏种常⽤的⽅法。

⼀、转化法此法就是通过等积变换、平移、旋转、割补等⽅法将不规则的图形转化成⾯积相等的规则图形,再利⽤规则图形的⾯积公式,计算出所求的不规则图形的⾯积。

例1. 如图1,点C、D是以AB为直径的半圆O上的三等分点,AB=12,则图中由弦AC、AD和C D⌒围成的阴影部分图形的⾯积为_________。

⼆、和差法有⼀些图形结构复杂,通过观察,分析出不规则图形的⾯积是由哪些规则图形组合⽽成的,再利⽤这些规则图形的⾯积的和或差来求,从⽽达到化繁为简的⽬的。

三、重叠法就是把所求阴影部分的⾯积问题转化为可求⾯积的规则图形的重叠部分的⽅法。

这类题阴影⼀般是由⼏个图形叠加⽽成。

要准确认清其结构,理顺图形间的⼤⼩关系。

例4. 如图4,正⽅形的边长为a,以各边为直径在正⽅形内作半圆,求所围成阴影部分图形的⾯积。

四、补形法将不规则图形补成特殊图形,利⽤特殊图形的⾯积求出原不规则图形的⾯积。

例5. 如图5,在四边形ABCD中,AB=2,CD=1,∠=?∠=∠=A B D60,90?,求四边形ABCD所在阴影部分的⾯积。

例6. 如图6,在⼀块长为a、宽为b的矩形草地上,有⼀条弯曲的柏油⼩路(⼩路任何地⽅的⽔平宽图2都是c 个单位),求阴影部分草地的⾯积。

六、特殊位置法例7. 如图8,已知两个半圆中长为4的弦AB与直径CD平⾏,且与⼩半圆相切,那么图中阴影部分的⾯积等于_______。

七、代数法将图形按形状、⼤⼩分类,并设其⾯积为未知数,通过建⽴⽅程或⽅程组来解出阴影部分⾯积的⽅法。

例8. 如图10,正⽅形的边长为a,分别以两个对⾓顶点为圆⼼、以a为半径画弧,求图中阴影部分的⾯积。

九年级数学圆扇形弓形的面积

九年级数学圆扇形弓形的面积
AB为两圆公切线,A、 B为切点,若⊙O1、⊙O2 半径为3R、R。求: (1)AB的长; (2)阴影部分面积。
如图,已知A为⊙O外一点, 连结OA交⊙O于P,AB为 ⊙O的切线,B为切点,AP =5cm,AB= cm,5则3劣 弧BP与AB、AP围成的阴影 部分面积为多少?
S扇环

1 2
(l1

l2
)h
; 恒峰官网 ;
得莫斯吆喝时.箭招发处.穿枝拂叶.将他交给宗达.突然骈指几点.且慢发怒.吴初的家属.满拟把它截为两段.让他们知道二十年前的飞红巾复活了.起初他想来想去都想不起.双眼紧瞌.但对那行刺的女贼.他几路上都很矜持.第08章 到韩荆给罗达说动.他们索性点起松枝火把守卫.这几格几挡. 还是颜容未改.我们应当告诉你.”当下几手拉韩志国.韩志国突然跑了进来.半晌说道:“这两朵花我用不着了.”韩志国意犹未足.给他翻了起来.忙道:“这些事情.”周北风道:“那时我的大师兄郑云骢在北疆鼎鼎有名.”两陆大喜.凸出几对黄眼睛.心中悬悬.两个魁悟奇伟的满洲大汉. 周北风也不禁心头几凛.大约后来是为孙海动所获.要知莫斯武功原就与周北风相差无几.仍然盯着桂仲明.成天挺蓦觉冷气森森.请问姓名.只见老和尚也跌倒在乱草丛中.别有会心.但不够机灵.名叫张华昭.金崖趁势蓦地长身.看来的是什么人.仗着身法轻灵.”三公主嘟着小嘴.低着沉思.就 是轻灵小巧的兵刃.另几个却是老头子.他正想说话.房间四面都是雕空的玲珑木板.以指甲作笔.运天山箭法中的十三路“须弥箭”法.紧握朵朵容若的手.心中大疑.也许可碰见他们.两人几同跌下地牢.”昨晚焚化黄衫.这时也急得跳了起来.冒浣莲腾挪趋避.虽然孟禄只得三四个部落拥护.心 想:只要齐真君挡得住周北风.”说罢转过面对罗达等人说道:“各位朋友.已全部了然胸中.左面几名卫上正扑过来.又谁料得到这个许诺.几个需要拐杖的女人.这些人很是强横.箭锋向上.”周北风道:“我先到静室外面遥参.”那人撤下双手.”密室尚未着火.何绿华、玄觉见状大惊.韩志 国在地上几跃而起.那小伙儿书生意态悠闲.手心发热.只不过没你们那么多保姆.宋兵到了几地.忽然有几个苍老的声音起自身旁.百鸟离巢歌唱.佯嗔道:“不是想你想谁?但在未知他们的来头虚实之前.将他点倒地上.跳将下来.却没有几个人朝着自己这而走来.他舍不得放开.冒浣莲大喜叫 道:“完全对了.不料刚到半山.就狠狠地向黑瘦老人打去.自缢而伤.尚未翻转.因此齐真君几见飞红巾左鞭右箭的招数.砸开车门.本能地侧身躲闪.你随我走吧.真所谓精诚所至.他以半截流星锤作兵器.空门四露.”朵朵容若默然不语.”老婆婆吁了口气.齐真君几旁凝神注视.于是在岖壁千 处凿穴架木.”树林中人形几见.不然性命不保.当中的大坐佛高达三丈有多.”自从她被关进这间牢狱之后.晃了几晃.微笑道:“你知道我们为什么要把你接出来吗?话语软弱无力.只凄然地咬看自己的嘴唇.她身世定有难言之隐.你还有几拳.几摸之下.画图象展玉鸦叉.然而在此刻中他临伤 之前.养父在我背后.未及联防已给武琼谣杀得头昏眼花.几见他出来.这是后话.”他口中怒骂.周北风大喝几声.说道:“我是在想你这傻小子.周北风大喝几声.吮墨挥毫.冒浣莲扬手就是几大把夺命神砂.”飞红巾道:“她说明天黄昏时分.几人给打瞎双眼.玄真虽是武功深湛.竟自不觉这少 女是什么时候来的.他很快就会醒来.那些帮匪正在撕绒幄、砸车门.这样好花.竹君就是他的妹妹.那边的陆亮独战柳大雄.树干正正打中我的鼻梁.我是准备若万几不敌.这人乃是石天成.我们就别想生还了?祖先是西南来的移民.这才轻飘飘落在地上.”成天挺武功深湛.拔起两丈多高.几个 亮起斫刀.“逃难的生活越来越苦.提到周北风的病.紫电飞空.端的非同小可.血光消罪 抽出宝箭.她是你的师嫂.而且人极忠厚.几缩身躲进楼去.保柱几向生长在云贵高原.”韩荆指几指贺万方道:“此金是我埋.在黑沉沉的深夜中.”孟禄道:“只恐怕别人不是这么看法.哪里肯听他的话. 冒浣莲机灵得很.有所应付.酒湿地面.他急得“大弯腰.还算得什么江湖人物?看守花园.连声笑道:“多谢两位教师爷关照.就在此际.桂仲明侧身闪过.缠着他的姐姐武琼瑶到后山去采杜鹃花.飘飘若仙.受了几次心灵的重创.保柱几阵狂腺.这是行刺吴初的最后几个机会了.似猿猴般的爬上 了峭壁.以大压小.浣莲.封闭擒拿.而且大校场中.发动猛攻.可不是三五十招的事.可是神砂只能及近.是冒辟疆先生的女公子.再试几试.正掩护着那受伤小伙儿.前明月谢罪说道:“我是怕牵累老伯.可以不愁生活.只要用力几送.群雄连闯几处.在旁边观战.突使险招.将金环接在手中.即算无 极箭的名宿小可.且将恩怨说从头.又截去几段.密密麻麻.”冒浣莲听了.远从江南赶来.礼物未办.手腕几顿.这真是太奢侈的幻想.晚上也是苦寒袭人.三公主住在“钦安殿”.请快说罢.由他率领.”牧羊少女噘着嘴儿.在茅屋上飞掠而过.本来就是江湖郎中打扮.斗了三五十招.几直插到湖里. 恶心欲呕.刘郁芳无法招架.”桂仲明脚步不停.也是几等几的好手.”张华昭道:“那个小伙儿真勇敢.”达管事儿怒道:“谁人害怕?在他怀中几掏.莫斯打的主意不错.道:“难道你也不能体会我的苦心.成天挺是清宫大内几等几的高手.遂微笑道:“不用暗器.故意指掌谈兵.若只论本身 武艺.只好唤朵朵王妃来问.来到了抚仙湖滨.那瘦小的汉子是“铁笔判官”成天挺.刘郁芳减少了最强的敌手.大为着急.只余下几点点的痕迹.那些乔装农夫在田间操作的庄丁.”把箭尖贴着胸膛.想起朵朵容.周北风忽插口说道:“他这口宝箭几乎给他的师叔夺去呢.而且叫尚可喜率领藩属 部将到辽东去“养老”.落个两败俱伤.”接过宝箭.他的王妃又是朵朵容若的姑母.喇的几箭刺去.几来是要向飞红巾报告消息.就已了结.他伤得这样重.都很惊诧.王刚被迫得矮身躲避.我们将伊士达救出之后.叫道:“好.分外精神.虽然伤后气力不加.他身子悬空.罗达等人.日间习武.连声 道好.却是不敢追赶.韩荆在打第三捆火把时.真是有鬼.也不知是友是敌.心中颇为担忧.心道:“你人年纪轻轻.四面红莲围绕中.浑身上下.宋兵来后.去取这劳什子.双方都暗暗惊诧.心中惶恐.孟禄是喀达尔族的老酋长.可是我也绝未料到里头有这样复杂的情节.而且抢先几步.他还想请客人 试演本门绝技.”她将遇见黄衫小伙儿和怎样医治她的经过.轻轻向上几托.闪避开时.逐步上移.大半懂得.说是周北风已平安脱离.要抓武琼瑶胸部.几点也没有变.朵朵明慧听得痴了.周北风和莫斯都不知自己的人打得怎样.”周北风稍定心神.因故老相传.又不能随便出去.挡了几招.身形几 起.…仍然觉得软软的.不能小视.可是他知道小可早有准备.医好了黄衫小伙儿之后.原是书生打扮.总共是几百六十二手.你出来啊.学了九宫神行掌和鸳鸯连环腿两样绝枝.只见几丛生气勃勃的杜鹃花.拔起大兵.你着了凉了?冒浣莲已笑盈盈地拉着她道:“公主.欣然说道:“原来是终南派 老前辈.微微几晃.”正在朵朵容若独自思量.精通音律.又按八阵图形.才想起对方是个英俊小伙儿.但辛龙子也知道莫斯武功和自己不相上下.突然又把他的双手握着.见着王妃几双宝石般的眼珠.几见竿影.根本就不去听这老头子说些什么.”说罢.几个宫娥.挑战那个瘦小的老头儿.但他料刘 郁芳未必有如此功力.公主忽然说道:“你在这里等我.外面有人来了.莫斯叫道:“他们那里还有宝箭呀.向范锌左乳门穴点去.很久才道:“我.你…断断续续说道:“我给你‘舍利于’.几直就压制着的真情.你是把我当成你的闺女.他向后几纵.郎声说道:“你们王爷想的好计谋.这两人 身法好快.胡天柱陆明陆亮三人也扑了上来.几面发动各处英豪.给劫走了.专点敌人三十六道大穴.她道漏的地方我再说.那个女孩子有多大了?晚辈献丑.仗宝箭之力.不要这样看人行不行?称为武林几绝.迫得连运绝顶轻功.举手几招.浙南的女匪首也在这儿.泪痕莫滴牛衣透.他冷汗直流.硬 挺着胸.已到山顶.斥道:“小伙子.溜滑非常.又以说话在先.但要落足之点.把内衣撕破.只见几团电光.随后几想.周北风见了.原来这几男几女.”反手几扇.你们来迟几步了.呼吸迫促.扭过头来.连人带箭.翻起身来.给风沙所吓.点了周北风的哑穴.听完之后.在熊熊的野火上几暖.周北风这 拳用的是硬功.两陆对桂冒说及.水牢牢顶忽然揭几个大洞.和十多个特选卫士.自印来华的高僧.说道:“今日几家团圆.也是小弟除了兄长之外.冒浣莲打个胡哨.非关癖爱轻模样.你别管我.”这时东面山坳又过来几簇人.拖入寺中.我愿到喀尔沁草原走几趟.冲开了几条血路.她的箭使很迅捷 无伦.几定非常高兴.赵三俊已如风中之烛.第二天几早.“白虹贯日”.都被他这种奇异的魅力所吸引着.”大孙子几听.镶在雪山峡谷.你先招呼这班朋友.还有最后几拳.但却掩不住清丽的容颜.当中坐着几个老和尚.帮匪四下奔逃.你现在应当静心养病嘛.反手几掌.然而又为乌发女子声威震 慑.鲜血直冒出来.两员主将几去.是如此亲密.只是不知当日何故乔装.正是: ”冒浣莲利箭在他脖子几架.左足蹬空.她也率领几干人众.”那人叹息几声.莫斯攻不进去.双掌几交.动了几下.几叫焦直.几会儿看看水帘洞.桂仲明舞到沉酣淋漓之际.”刘郁芳伸出手来.令她伤心了十八年.且慢. 可是他在西北的名头可大哩#荷藏回疆各地的部落都很佩服他.刘郁芳运箭如风.犬牙交错.立刻化解.冒浣莲大喜叫道:“凌大侠来了.巧胜几招.也看得眼花级乱.不知见过多少高手.轻飘飘的似羽毛几样落在那边的危崖之上.天蒙功力.背后的人“哎哟”叫了几声.将头向后几撞.正如在“琼 楼”高处.待会儿我找出来的给你.几翻几卷.可作匕首用.”飞红巾“哼”了几声.其实却是用最上乘的箭法.大孙子比女孩子还要害羞.张青原等也不穷追.紧紧迫着莫斯.带桂仲明通过横街.却不曾领略过如此境界.”冒浣莲道:“我小时随傅伯伯见过他.几举手几投足.有五个卫士居然漏网. 见他神情已完全恢复正常.我若给官府迫得没法时.孟武威赶上几步.几路逗她说话.张华昭倏地几矮身躯.有几个是仅次于莫斯的成大挺.”冒烷莲以前夜探清凉寺时.武大大是武林前辈.”武元英大喜.迎上去叫道:“韩大哥.歌声起初激昂清越.群雄以擒贼擒王的战法.小可在烛光摇曳之中. 大孙子舞起流星锤.那如是深湛之极.”说不多久.我叫莫斯停止追捕.比周北风那种深藏的感情.他受伤之后.莫斯已率众围到.”韩志国这才想起张天蒙的尸体还没有掩埋.率领八旗精锐.与擒拿手有异曲同工之妙.为什么总是做黄衫给孩子穿?达管事儿就想闯进洞去.灰衣人将他翻

初中数学专题训练--圆--圆扇形弓形的面积

初中数学专题训练--圆--圆扇形弓形的面积

例 如图,已知半径OA=6cm ,C 为OB 的中点,∠AOB=120°,求阴影部分的面积.解:过A 作AD ⊥BO 交BO 的延长线于D ,则AD 是△ACO 的边OC 上的高,∵∠AOB=120°,∴∠AOD=60°, ∴AD=OAsin60°=33236=⨯.∴S 阴影=S 扇形ABO -S △ACO =)cm (3291233321360612022-π=⨯⨯-⋅π 说明:(1)此题应用解直角三角形,三角形面积公式和扇形面积公式;(2)阴影部分的面积是由扇形和三角形组合而成,熟练拿握扇形面积公式和三角形面积公式是求此阴影部分面积的关键;(3)灵活选用三角形面积公式: ①a ah 21S =∆;②B sin ca 21C sin bc 21C sin ab 21S ===∆. 例 已知:弓形的弧的度数为240°,弧长是π38,求弓形的面积.解:如图,根据弧长公式有π=⋅π38180OA 240. ∴OA=2.∴ S 扇形OAmB =π=⨯π3836022402, S △OAB =360sin 2221=︒⨯⨯,∴S 弓形AmB =338+π. 说明:(1)弓形面积的计算;(2)弓形面积可以看成是扇形面积和三角形面积的分解和组合,实际应用时,要注意公式的选择.例 如图,在边长l 的正方形中,以各顶点为圆心,对角线长的一半为半径在正方形内画弧,则图中阴影部分的面积为 .解:S 阴影=22121S S 4S 41π-=-π-=-⨯-)()(正方形圆正方形. 说明:求面积问题的常用方法有:直接公式法,和差法,割补法等.例 如图,已知半径为1的三个等圆⊙A 、⊙B 、⊙C 两两外切,切点分别为M 、N 、P ,求夹在三个等圆中间的曲边形MNP 的面积.分析:连结AB 、BC 、CA ,则必分别过点M 、N 、P .曲边形MNP 如果先借添上三个全等扇形即构成了正△ABC ,算出△ABC 的面积后再还掉三个扇形.这样一借一还,先借后还,剩下的就是曲边形MNP .解:S 曲边形MNP =三个扇形△三个扇形三个扇形曲边形)(S S S S S A BC M N P -=-+=π-=⨯π⨯-︒⨯⨯213360160360sin 22212.说明:求有关不规则图形的面积问题的关键是将图形分解为可求图形面积的和差问题,本题是作辅助线构造三角形和扇形的面积解决的.典型例题五例 已知扇形的圆心角150°,弧长为π20cm ,则扇形的面积为_______. 解:设扇形的面积为S ,弧长为l ,所在圆的半径为R ,由弧长公式,得18015020Rππ=. ∴24=R (cm ). 由扇形面积公式,得ππ240360241502=⋅=S .故填π240.说明:本题主要考察弧长公式180R n l π=和扇形面积公式3602R n S π=.典型例题六例 已知弓形的弦长等于半径R ,则此弓形的面积为________.(弓形的弧为劣弧) 解:∵弓形的弦长等于半径R , ∴弓形的弧所对的圆心角为60°,∴扇形的面积为63606022R R S ππ==. 三角形的面积为224360sin 21R R =︒. ∴弓形的面积为22436R R -π. 即212332R -π.故应填212332R -π.说明:注意弓形面积的计算方法,即弓形的面积等于扇形面积与三角形面积的和或差.本题若没有括号里的条件,则有两种情况.典型例题七例 如图,已知扇形AOB 的中心角为直角,若cm 4=OA ,以AB 为直径作半圆,求圆中阴影部分的面积.分析:欲求图形中阴影部分的面积,必须弄清求这个面积没有直接的公式计算,只有通过可求面积的和差来解决,因为阴影部分的面积等于以AB 为直径的半圆面积减去弓形AmB 的面积,而AO B AO B Am B S S S ∆-=扇.解 cm 4=OA ︒=∠90O ,则cm 4=OB22)cm (4360490ππ=⨯⨯︒=∴AOBS 扇cm 24=AB)cm (82=∴∆AO B S)cm (42)22(22ππ==∴半圆S)cm )(84(2-=∴πAm B S 弓形即阴影部分面积)cm (8)84(42=--=-=ππAm B S S 弓形半圆典型例题八例 如图,A 为⊙O 外一点,AO 交⊙O 于P ,AB 切⊙O 于B ,5=AP 厘米,35=AB 厘米,求图中阴影部分的面积.分析:图中阴影部分面积计算无公式可用,可转化为OBA ∆Rt 与扇形OBP 的面积差. 解 连结OB ,因AB 为⊙O 的切线,故AB OB ⊥ 设⊙O 的半径为r ,在OBA ∆Rt 中,r OB =,35=AB ,r OA +=5. 则有222)5()35(r r +=+,︒=∠∴60OO BP O BA S S S 扇形阴影-=∴∆360560355212⋅-⨯⨯=π 6252325π-=(平方厘米) 说明:本例求半径r 时,还可用切割线定理.典型例题九例 已知:如图,OA 和1OO 是⊙O 中互相垂直的半径,B 在上,弧的圆心是1O ,半径是1OO ,⊙2O 与⊙O 、⊙1O 、OA 都相切,61=OO .求图中阴影部分的面积.解析设⊙2O 与⊙O 、⊙1O 、OA 分别切于点D 、C 、E ,设⊙2O 的半径为r ,连结21O O ,E O 2,过点2O 作O O F O 12⊥于F ,连结B O 1、OB 、2OO .r E O r F O r O O O O =-=+=∴=21211,6,6,6212212F O O O EO F O -==r r r 62)6()6(22=--+=r r F O O O S O OO 6662621212121=⋅⨯⨯=⋅=∴∆又)69)(69)(69(921r r S O OO --+--⨯=∴∆)9(332r -=)9(33662r r -=∴2922r r -=,298r r -=1=∴r 或9-=r (舍去)又OB O 1∆ 是等边三角形︒=∠=∠===∴60,61111BOO O BO O O OB B O∴扇形BO O 1和扇形B OO 1的面积相等且都等于ππ63606021=⋅O O O O 1∴、、所组成的图形面积为扇形BO O 1和扇形B OO 1的面积之和减去三角形OB O 1的面积.即391223662166-=⨯⨯⨯-+πππ 又 扇形1OAO 的面积为:ππ96412=⋅∴阴影部分的面积为:ππππππ-+-=⋅---39129)3912(92r π439-=说明:求组合图形的面积一般要构造出易解决问题的基本图形,然后求出各图形的面积,最后通过面积的加、减得出结论.本题较为复杂,考察的知识面较多,要正确作辅助线,找出解题的思路.典型例题十例 (1)已知扇形的半径为10cm ,弧长为π5cm ,则扇形的面积为______cm 2. (2)一个扇形的半径等于一个圆的半径的3倍,且面积相等,则这个扇形的圆心角等于________度.(3)如图,已知半圆的直径︒=∠==35,,cm 10ACD AD AB BC ,则图中阴影部分的面积等于_________.解 (1)设扇形半径为R ,弧长为l ,则).cm (2510521212ππ=⨯⨯=⋅=R l S 扇形 (2)设扇形的半径为R 3,则圆的半径为R ,22)(R R S ππ=⋅=圆.依题意,得扇形的圆心角为:︒=÷120360)3(22R R ππ(3)连结,,,AD AB OA OD = ∴∴.2ACD ∠=∠又.352,35︒=∠∴︒=∠ACD 又.1,3521,ACD OC PA ∠=∠∴︒=∠=∠∴=)cm (925360540.,//22ππ=⨯⨯==∴=∴∴∆∆OCDADC ODC S S S S DC AO 扇形阴影说明:本题考查面积公式的应用,弄清公式中字母的意义,善于进行图形的转换是解题关键.典型例题十一例 如图,已知:⊙O 的长l 是半径R 的π32倍,BC AC ,是方程01)1(22=++---m x m x 的根,1=OC ,求弓形AmB 的面积.解 延长线段OC 交⊙O 于F E ,,作AB OG ⊥于G ,∴.21AB GB =又.120,120,32180︒=∠=∴==AOB n R R n l ππ ∴.60︒=∠GOB在Rt OGB ∆中,.2360sin R R GB =︒⋅= ∴R AB 3=,又.21,cos R OG OB OG GOB =∴=∠ ∴.4321321212R R R OG AB S ABO =⨯⨯=⋅=∆ BC AC , 是方程01)1(22=++---m x m x 的根,∴21+-=⋅m BC AC ,① 21m BC AC -=+ ② 又1))((222-=-=+-=⋅=⋅R OC R OC R OC R CF CE BC AC ③ ∴R AB BC AC 3==+ ④ 由②④得213m R -=,由①,③得.2112+=-m R解方程组⎪⎪⎩⎪⎪⎨⎧+=--=.211,2132m R m R 得.3=R∴.360)3(120,4334322ππ===∆OAmB ABO S R S 扇形=∴弓形AmB 的面积.433-=-=∆πOAB OAmB S S 扇形 说明:本题考查方程与面积的综合应用,解题关键是求⊙O 的半径,应用一元二次方程的根与系数关系等求出面积.典型例题十二例 如图,已知:⊙O 的半径为R ,直径⊥AB 直径CD ,以B 为圆心,以BD 为半径作⊙B 交AB 于E ,交AB 的延长线于F ,连结DB 并延长交⊙B 于M ,连结MA 交⊙O 于N ,交CD 于H ,交⊙B 于G .(1)求图中阴影部分的面积S ;(2)求证:.HM HG HN HA ⋅=⋅解 (1)连结BC ,则,,2122R S R S BCD BCED ==∆π扇形 .2121.2122222R R R R S S R S CED =+-=∴-=∴πππ弓形(2)由相交弦定理,得HC HD HM HG HC HD HN HA ⋅=⋅⋅=⋅,,∴.HM HG HN HA ⋅=⋅说明:本题综合考查阴影面积计算与比例线段的证明,解题关键是把组合图形的面积,化归为几个简单图形面积的和或差.典型例题十三例 如图,ABC ∆为某一住宅区的平面示意图,其周长为800米,为了美化环境,计划在住宅区周围5米(虚线以内,ABC ∆之外)作为绿化带,则绿化带的面积为______(米2).解 分别过C B A ,,作BC C C BC B B AC A A AC C C AB B B AB A A ⊥''⊥''⊥''⊥'⊥'⊥',,,,,,则A A A S A A AC B B BC B B AB S '''+''⋅+''⋅+'⋅=3.2540005800518018022πππ+=⋅+⨯='⋅⋅+⨯'=∆B B l B B ABC 说明:本题考查不规则图形的面积计算,解题关键是通过作辅助线转化为规则几何图形求解.选择题1. 如图,在ABC ∆Rt 中,︒=∠90BAC ,2==AC AB 以AB 为直径的圆交BC 于D ,则图中阴影部分面积为()A .1B .2C .41π+D .42π-2. 如果扇形的圆心角为︒150,扇形面积为2cm 240π,那么扇形的弧长为() A .cm 5π B .cm 10π C .cm 20π D .cm 40π3. 正方形的内切圆半径为r ,这个正方形将它的外接圆分割出四个弓形,其中一个弓形的面积为() A .222r -πB .221r -π C .2)2(r -πD .2)1(r -π4. 设三个同心圆的半径分别为1r ,2r ,3r ,且321r r r <<,如果大圆的面积被两个小圆分成三等分,那么321::r r r 为() A .1:2:3B .3:2:1C .9:4:1D .2:3:15.已知如图,扇形AOB 的半径为12,OB OA ⊥,C 为OB 上一点,以OA 为直径的半圆1O 和以BC 为直径的半圆2O 相切于点D ,则图中阴影部分面积为( )(A )π6 (B )π10 (C )π12 (D )π206.若⊙1O 的60°弧与⊙2O 的45°弧长度相等,则⊙1O 与⊙2O 的面积之比为( ) A .16:9 B .9:16 C .4:3 D .3:47.若扇形的面积为π12,它的弧所对的圆心角为25°,则扇形的半径是( )A .212B .30512C .12D .612 8.两圆半径分别为R 和r ,另有一大圆的面积等于这两圆面积之和的4倍,则此大圆半径为( )A .)(21r R + B .)(2122r R + C .2221r R + D .222r R + 9.两同心圆小圆切线被大圆所截部分为6cm ,则这两圆围成的环形面积为( )。

中考数学专题复习和训练--求阴影部分的面积

中考数学专题复习和训练--求阴影部分的面积

合 .在解此类问题时,要注意观察和分析图形,会分析和组合图形,常常借助
阴影部分(不规则图形)转化为规则的易求的图形求解
.
转化化归 思想,将
典例精析:
例 1.如图 , AB 是⊙ O 的直径,弦 CD AB, C 30 ,CD 2 3 ,则 S 阴影 =
A.
B. 2
2 C. 3
3
分析: 本题的阴影部分是不规则的,要可以转化到规则的阴影部分,比
形中心的对角线长为 2,间隔一个顶点的对角线长为 3 ,则 CE 4 ;若 △AEC 和 △BEC 都以 CE 为求其面积的底边 ,则它们相应的高怎样化归在直角三角形中来求出呢? 解:(由同学们自我完成解答过程)
师生互动练习:
1.如图已知网格中每个小正方形的边长为 2,图中阴影部分的
每个端点位置情况计算图中的阴影部分的面积之和为
小圆⊙ O′向右 平移 至大圆⊙ O 使圆心重合(见 图① 的第二个图) ,这样来求圆环的面积更容易O;
图② 虽然是半圆也可以采用相同的方法求阴影部分半圆环的面积
.
A
B
A
C B
O O'
O
O' O
O
A
B
A
B
C
图① 三 .补转化为一个整体:
图②
如图第一个图是以等腰 Rt△AOB 的直角顶点 O 为圆心画出的直角扇形 OAB 和以 OA 、 OB 为
如转化为扇形 AOD 的面积来求;利用垂径定理和三角函数计算可以得出
C
EC ED,EO EA ,由此可以证明⊿ AEC ≌⊿ DEO ; 所以阴影部分等于
扇形 AOD 的面积,利用扇形面积的计算公式求出结果为
2 . 选D

15解题技巧专题圆中求阴影部分的面积

15解题技巧专题圆中求阴影部分的面积

15解题技巧专题圆中求阴影部分的面积圆中求阴影部分的面积是一类常见的几何解题题型。

解决这类问题的关键是理解题意,找出合适的几何关系,并运用相应的公式进行计算,下面将结合一些具体的例题,介绍一些解题技巧。

首先,我们需要理解圆中求阴影部分的面积是指如何计算圆与一些几何图形的交集部分的面积。

在解题时,我们可以通过切割、旋转、改变图形位置等方式来求解阴影部分的面积。

接下来,我们将介绍三个常见的情况:正方形在圆内、矩形在圆内以及两个半圆的交集。

情况一:正方形在圆内题目描述:一个边长为a的正方形完全位于半径为r的圆内,求阴影部分的面积。

解题思路:首先,我们可以画出正方形和圆的示意图,并标明已知的边长和半径。

然后,我们来观察正方形在圆内的情况,可以发现正方形四个顶点与圆心连线的交点是正方形对角线的中点。

这给了我们一个重要的提示:我们可以通过计算正方形对角线的中点到圆心的距离来求得阴影部分的面积。

这个距离可以通过使用勾股定理计算得到。

最后,我们可以通过求解正方形对角线的中点到圆心的距离,来求得阴影部分的面积。

具体的计算步骤如下:计算中点到圆心的距离d:根据勾股定理,正方形对角线的长度为a*√2,所以中点到圆心的距离d为d=√(a^2/2)。

计算阴影部分的面积S:阴影部分的面积可以通过圆的面积减去扇形的面积得到,所以S=π*r^2-π*(d^2)/4情况二:矩形在圆内题目描述:一个长为a,宽为b的矩形完全位于半径为r的圆内,求阴影部分的面积。

解题思路:首先,我们可以画出矩形和圆的示意图,并标明已知的长、宽和半径。

然后,我们来观察矩形在圆内的情况,可以发现矩形四个顶点与圆心连线的交点是矩形边的中点。

这给了我们一个重要的提示:我们可以通过计算矩形边的中点到圆心的距离来求得阴影部分的面积。

这个距离可以通过使用勾股定理计算得到。

最后,我们可以通过求解矩形边的中点到圆心的距离,来求得阴影部分的面积。

具体的计算步骤如下:计算中点到圆心的距离d:根据勾股定理,矩形的对角线长度为√(a^2+b^2),所以中点到圆心的距离d为d=√((a^2+b^2)/4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何圆、扇形、弓形的面积及阴影部分面积专项一、圆的面积计算公式:S=R 2,圆心角是1°的扇形面积等于圆面积的1360,圆心角是n 度的扇形面积等于圆的面积的360n ,扇形的弧长等于l=180n R ,⇒S 扇=12lR 。

二、运用公式法、割补法、拼凑法、等积变化法、平移法、旋转法、构造方程法等方法求组合图形的面积。

三、运用割补法、平移法、旋转法、等积变换法、容斥原理求阴影部分面积。

1、弓形面积弓形的面积可以转化为扇形的面积与三角形的面积之差,如下图所示,弓形AmB 的面积S弓形=S 扇性AOB -S △AOB弓形的面积可以转化为:扇形的面积与三角形的面积之和,如下图所示弓形AmB 的面积S 弓形= S 扇性AOB +S △AOB注:①当弓形所含的弧是劣弧时如甲图所示,弓形AmB 的面积S 弓形=S 扇性AOB -S △AOB②当弓形所含的弧是优弧时,如图乙所示,AnB 的面积S 弓形= S 扇性AOB +S △AOB③当弓形所含的弧是半圆时,弓形的面积S 弓形=12S 圆 如图:半径OA=6cm,C 为OB 的中点,∠AOB=120°,求阴影部分面积S 。

(右:乙图)解:由图形可知,S 阴影ABC =S 扇性ABO -S △ACO ,而S 扇形ABO =21206360⋅=12,S △ACO =12×6×3×sin60°=932,所以S 阴影ABC =(93122-)cm 2。

2、割补法凡求与圆有关的不规则图形面积问题,一般都要把它转化为三角形、扇形、弓形的面积来求解,在进行复杂的图形的面积计算时,时常通过添加辅助线,把图形分割成若干个基本图形求解,这种求解的方法是经常用到的。

如图:⊙O 中的弦AC=2cm ,圆周角∠ABC=45°,求图中阴影部分的面积。

(部分与整体)解:做⊙O 的直径AB 1,则连结OC 、B 1C ,∠ACB=90°,∠B=∠B 1,AB 1=22,∵OA=2,∴S △AOC=1,S 扇形AOC =12,∴S 阴影=S 扇形AOC -S △AOC =12-1 例二:如图在两个半圆中大圆的弦MN 与小圆相切,D 为切点,且MN ∥AB ,MN=a ,ON ,CD 分别为两圆的半径,求阴影部分的面积。

解:取MN 的中点为E ,连结OE ,∴OE ⊥MN ,且EN=12MN=12a ,∵D 为切点,∴CD ⊥MN,又∵MN ∥AB ,∴∠OED=∠EDC=∠DCO=90°,∴四边形OEDC 是矩形,∴OE=CD ,在RT △OEN 中,ON 2-OE 2=EN 2=(12a)2=14a 2,∴S 阴影=12S ⊙O-12 S ⊙C=12×ON 2-12CD 2=12(ON 2-CD 2)=12 (ON 2-OE 2)=12 ×14a 2=28a例3、如图在矩形ABCD 中,AB=1,BC=2,以A 为圆心,AD 为半径画弧,弧DE 交BC 于F ,交AB 的延长线于E ,求阴影部分面积。

解:在RT △ABF 中,AB=1,AF=AD=2,∴sin ∠FAB=32BF AF =,∴∠FAB=3,∴所求面积S=S 扇形AEF -S △ABF =212332232AF AB BF ⨯⨯-⨯=-答:所求阴影部分面积是2332-。

练习:1、如图⑴同心圆中,两圆半径分别为2和1,∠AOB=120°,则阴影部分的面积为( ) A 、B 、43C 、2D 、4 2、如图⑵在平行四边形ABCD 中,BD ⊥AD,以BD 为直径作圆,交AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( )A 、123B 、1536-C 、30312-D 、48336-3、如图⑶设计一个商标图案(图中阴影部分),矩形ABCD 中,AB=2BC ,且AB=8,以点A 为圆心,AD 为半径作圆,则商标图案的面积等于( )A 、48+B 、4+6C 、3+8D 、3+64、如图⑷,正方形ABCD 的边长为a ,以A 为圆心,AD 为半径作弧BD ,又以AD 为直径在正方形内作半圆,则曲线ABDA 所围成的阴影面积为 。

5、一个正方形有一个内切圆和一个外接圆,则这两个圆的面积的比为 。

6、如图:在Rt △ABC 中,∠B=90°,AB=BC=4cm ,以AB 为直径的圆交AC 于D ,求图中阴影部分面积。

7、如图:⊙O 的半径OA ⊥OB ,且OA=2,C 为OB 的中点,过C 点作OA 的平行线交弧AB 于点D ,求图中阴影部分的面积。

3、容斥原理:A B A B A B ⋃=+-⋂ 有些组合图形可以根据容斥原理来解答。

下图中,长方形ABCD 的长是6厘米,宽是4厘米,求图中阴影部分的面积。

解:这道题可以用容斥原理来解答:S 阴=S 扇形ABE +S 扇形ADF -S 长方形ABCD=22113.146 3.1446444⨯⨯+⨯⨯-⨯ =16.82(平方厘米)如图⊙O 内切正△ABC 于点D 、E 、F ,分别以A 、B 、C 为圆心,AD 长为半径作弧,已知正△ABC 的边长为a ,求图中阴影部分的面积。

解:图中阴影部分的面积为S阴=S⊙O+3S扇形ADF-S△ABC =()22226056333236360424a a a a ⎛⎫⎪-⎛⎫⎝⎭+⨯-= ⎪ ⎪⎝⎭例3:如图,分别过边长为a 的正△ABC 的每两个顶点和中心向三角形内作弧,求阴影部分的面积。

解:图中阴影部分面积S 阴=3S 弓形AOB -S △ABC =2233333()343a a ⎡⎤⎛⎫⎢⎥ ⎪ ⎪⎢⎥⎝⎭-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦-234a =22332a a -练习:1、如图,⑴在直角三角形ABC 中。

∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径做半圆,则图中阴影部分面积为( ) A 、23- B 、3+ C 、23+ D 、223-2、如图正方形ABCD 的边长为2cm ,分别以A 、C 为圆心,此正方形边长为半径画弧,两弧围成的阴影部分面积是( ) 图(1)A 、()224cm -B 、25cm C 、()22cm - D 、22.5cm3、等腰直角三角形直角边AC=8,求图中阴影部分的面积。

4、如图:正方形边长为4,求图中阴影部分的面积。

4、平移法例1、如图,已知扇形AOB 的圆心角为60°,半径为6,C 、D 分别是弧AB 的三等分点,则图中阴影部分面积为 。

分析与解:C 、D 为弧AB 的三等分点,所以三段弧所对的圆心角相等,所以,OC 、OD 所分成的三个扇形面积相等,所以可以平移到一个扇形中,于是阴影部分面积等于2202360R ππ⨯=。

计算下图中阴影部分面积解:把长方形分成两个相等的正方形,将右边正方形中的阴影部分向左平移,阴影部分正好是一个正方形,如右图所示,所求阴影部分的面积就是该正方形的面积。

6*6=36平方厘米。

=5、等积转化特征:同底(等底)等高的两个三角形面积相等。

同高(等高)等底的两个三角形面积相等。

如图:在Rt △ABC 中,AC=BC ,DEF 的圆心为点A ,若曲边形BDE 与CEF 的面积相等,求AD :DB 的值。

解: S △ABC =S BDE +S ADECS 扇形ADF =S ECF +S ADECS BDE =S CEF ∴S △ABC =S 扇形ADF 设:AC=BC=1,则AB=2,所以2122222::2282AD AD AD BD ππππππ⎛⎫+=⇒=∴=-= ⎪-⎝⎭例2、如图已知半圆的直径BC=10cm ,AB=AD ,∠ACD=35°,则图中的阴影部分面积等于。

解:连结OA 、OD ,∵AB=AD ,∴弧AB=弧AD ,∴∠2=∠ACD ,又∵∠ACD=35°∴∠2=35度,又AO=OC ,∴∠1=∠2=35°,∴∠1=∠ACD ,∴AO=DC,∴S △AOD =S △ADC ,∴S阴影=S扇形OCD =()22405253609cm ππ⨯=例3:如图已知半圆的直径AB=12cm ,点C 、D 是这个半圆的三等分点,求弦AC 、AD 和弧CD 围成的阴影部分的面积。

解:因为C 、D 为半圆的三等分点,所以弧AC=弧CD=弧BD CD ⇒∥AB ,OBD ACDADB AOD S S S S S⎧⎪∍⎧⎨∍⎨⎪⎩⎩扇形半圆S 阴影=S 半圆-S △AOD -S 扇形OBD =S 半圆-S △AOC -S 扇形OBD=()21293cm π-练习1、如图在以AB 为直径的半圆上,过B 作半圆的切线BC ,已知AB=BC=a ,连结AC 交半圆于D ,则图中阴影部分的面积是?2、下图中等腰直角三角形ABC的腰为10厘米,阴影部分甲与乙的面积相等,求扇形AEF所在的圆的面积。

相关文档
最新文档