广东省广州市天河区2017-2018学年八年级上学期期末考试数学试题(扫描版)
{3套试卷汇总}2018年广州市某达标名校八年级上学期期末检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知P 1(-3,y 1),P 2(2,y 2)是一次函数y=2x+1的图象上的两个点,则y 1, y 2的大小关系是( ) A .y 1>y 2B .y 1<y 2C .y 1= y 2D .不能确定【答案】B【分析】先根据一次函数y=2x+1中k=2判断出函数的增减性,再根据-3<2进行解答即可.【详解】∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵−3<2,∴y 1<y 2.故选B.【点睛】本题考查了一次函数的知识点,解题的关键是熟练的掌握一次函数的性质与其图象上点的坐标特征. 2.如图,ABC ∆中,40A ∠=︒,20ABO ∠=︒,30ACO ∠=︒,则BOC ∠等于( )A .80︒B .90︒C .100︒D .110︒【答案】B 【分析】延长BO 交AC 于D ,直接利用三角形的一个外角等于与它不相邻的两内角之和,即可得出结论.【详解】如图,延长BO 交AC 于D∵∠A =40°,∠ABO =20°,∴∠BDC =∠A +∠ABO =40°+20°=60°,∵∠ACO =30°,∴∠BOC =∠ACO +∠BDC =30°+60°=90°,故选:B .【点睛】此题主要考查了三角形外角的性质,熟记三角形的外角的性质是解本题的关键.3.如图,直线y=x+b 与直线y=kx+6交于点P (1,3),则关于x 的不等式x+b>kx+6的解集是( )A .1x <B .1x >C .3x >D .3x <【答案】B 【分析】观察函数图象得到x>1时,函数y=x+b 的图象都在y=kx+6上方,所以关于x 的不等式x+b>kx+6的解集为x>1.【详解】当x>1时,x+b>kx+6,即不等式x+b>kx+6的解集为x>1,故答案为x>1.故选B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.4.直角坐标系中,点(,4)a 在一次函数31y x 的图象上,则a 的值是( ) A .1B .2C .3D .4 【答案】A【分析】直接把点的坐标代入解析式得到a 的一元一次方程,解方程即可.【详解】∵点(,4)a 在一次函数31y x 的图象上,∴3a+1=4解得,a=1,故选:A.【点睛】本题主要考查一次函数图象上点的坐标特征,把点的坐标代入求解一元一次方程即可.5.若△ABC 三个角的大小满足条件∠A :∠B :∠C =1:1:3,则∠A =( )A .30°B .36°C .45°D .60° 【答案】B【分析】根据三角形内角和为180º进行计算即可.【详解】∵∠A :∠B :∠C =1:1:3且三角形内角和为180º,∴∠A =1180365︒⨯=︒. 故选:B .【点睛】考查了三角形的内角和定理,解题关键是熟记三角形内角和定理:三角形内角和为180º.6.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .15【答案】C 【解析】试题分析:要求出第三束气球的价格,根据第一、二束气球的价格列出方程组,应用整体思想求值:设笑脸形的气球x 元一个,爱心形的气球y 元一个,由题意,得3x y 14{x 3y 18+=+=, 两式相加,得,4x+4y=32,即2x+2y=1.故选C .7.在322,2,8,7--π,1.01001…这些实数中,无理数有( )个. A .1B .2C .3D .4 【答案】C【分析】根据无理数的定义即可求解.【详解】在322,2,8,7--π,1.01001…这些实数中,无理数有2-,π,1.01001… 故选C.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.8.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有( )A .40人B .30人C .20人D .10人 【答案】C【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【详解】∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选C.【点睛】考查频数与频率,掌握数据总和=频数÷频率是解题的关键.9.如图,函数y=ax+b 和y=kx 的图像交于点P ,关于x ,y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩【答案】D 【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32x y =-⎧⎨=-⎩. 故选D .【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.10.若1x =-使某个分式无意义,则这个分式可以是( )A .121x x --B .211x x ++C .211x x --D .121x x ++ 【答案】B【分析】根据分式无意义的条件,对每个式子进行判断,即可得到答案.【详解】解:A 、由210x -=,得12x =,故A 不符合题意; B 、由10x +=,得1x =-,故B 符合题意;C 、由10x -=,得1x =,故C 不符合题意;D 、由210x +=,得12x =-,故D 不符合题意; 故选:B.【点睛】本题考查了分式无意义的条件,解题的关键是掌握分式无意义的条件,即分母等于0.二、填空题11.在平面直角坐标系中,点()2,0A ,()0,4B ,作BOC ,使BOC 与ABO 全等,则点C 坐标为____.(点C 不与点A 重合)【答案】()2,4或()2,0-或()2,4-【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵()2,0A ,()0,4B∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2∴123C (2,0),C (2,4),C (2,4)-- 故答案为:()2,4或()2,0-或()2,4- 【点睛】本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键12.计算:(13)0×10﹣1=_____. 【答案】110【分析】先运用幂的运算法则对原式进行化简,然后再进行计算即可. 【详解】解:原式=1×110=110, 故答案为:110. 【点睛】本题考查了幂的相关运算法则,牢记除0外的任何数的0次幂都为1是解答本题的关键.13.已知直线x+2y=5与直线x+y=3的交点坐标是(1,2),则方程组253x y x y +=⎧⎨+=⎩的解是_________.【答案】12 xy=⎧⎨=⎩【详解】解:∵直线x+2y=5与直线x+y=3的交点坐标是(1,2),∴方程组253x yx y+=⎧⎨+=⎩的解为12xy=⎧⎨=⎩【点睛】本题考查一次函数与二元一次方程(组),利用数形结合思想解题是关键.14.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.【答案】1【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:22AE BE+,∴正方形的面积是10×10=100,∵△AEB的面积是12AE×BE=12×6×8=24,∴阴影部分的面积是100﹣24=1,故答案是:1.考点:勾股定理;正方形的性质.15.一个等腰三角形的两边长分别为5或6,则这个等腰三角形的周长是.【答案】16或1.【解析】由于未说明两边哪个是腰哪个是底,故需分两种情况讨论:(1)当等腰三角形的腰为5,底为6时,周长为5+5+6=16;(2)当等腰三角形的腰为6,底为5时,周长为5+6+6=1.∴这个等腰三角形的周长是16或1.1653a+是最简二次根式,则最小的正整数a为______. 【答案】1【分析】根据最简二次根式的定义求解即可.【详解】解:∵a53a+是最简二次根式,a+=,不是最简二次根式,∴当a=1时,538a+=,是最简二次根式,当a=1时,5313则最小的正整数a为1,故答案为:1.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.如图,△ABC 中,AB=AC,∠BAC=120°,AD⊥AC 交 BC 于点 D,AD=3,则BC=________.【答案】9【分析】根据勾股定理求出AB,再利用相似即可求解.【详解】∵AB=AC,∠BAC=120°∴∠C=30°,又∵AD⊥AC,AD=3∴∠DAC=90°,CD=6勾股定理得AC=AB=33,由图可知△ABD∽△BCA,∴BC=9【点睛】本题考查了勾股定理和相似三角形,属于简单题.证明相似是解题关键.三、解答题18.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE ,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=_______,β=_______.②求α、β之间的关系式.(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.【答案】(1)①20°,10°;②α=2β;(2)见解析.【详解】(1)①∵AD=AE,∴∠AED=∠ADE=70°,∠DAE=40°,又∵AB=AC,∠ABC=60°,∴∠BAC=∠C=∠ABC=60°,∴α=∠BAC-∠DAE=60°-40°=20°,β=∠AED-∠C=70°-60°=10°;②设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β,∴α=2β.(2)如图1,点E在CA延长线上,点D在线段BC上,设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△ABD中,x+α=β-y,在△DEC中,x+y+β=180°,∴α=2β-180°.当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°−2β.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.19.如图,在△ABC中,AB=10,AC=8,BC=6,P是AB边上的动点(不与点B重合),点B关于直线CP 的对称点是B′,连接B′A,则B′A长度的最小值是________.【答案】2【分析】根据轴对称的性质得到CB′=CB=6,当AB′有最小值时,即AB′+ B′C的长度最小,根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值.【详解】解:由轴对称的性质可知:CB′=CB=6(长度保持不变),当AB′+ B′C的长度最小时,则是AB′的最小值,根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC- B′C=10-8=2,故答案为:2【点睛】本题主要考查了轴对称的性质,掌握两点之间线段最短是解题的关键,再做题的过程中应灵活运用所学知识.20.已知5m n +=,3mn =.(1)求22m n +的值;(2)求(2)(2)m n --的值;(3)求11m n-的值.【答案】(1)19;(2)3-;(3) 【分析】(1)根据题意及完全平方公式可直接进行代值求解;(2)先对代数式进行展开,然后代值求解即可;(3)先对分式进行通分运算,然后代值求解即可.【详解】解:由5m n +=,3mn =,可得:(1)()2222222325m n m mn n m n +=++=+⨯+=, ∴22m n +=19;(2)()()()22=2432543m n mn m n ---++=-⨯+=-;(3)由(1)得:22m n +=19,∴()222219613m n m mn n -=-+=-=,解得m n -=∴11=3n m m n mn --=±. 【点睛】本题主要考查完全平方公式、分式的减法及平方根,熟练掌握完全平方公式、分式的减法及平方根的运算是解题的关键.21.小军的爸爸和小慧的爸爸都是出租车司机,他们在每天的白天、夜间都要到同一加油站各加一次油.白天和夜间的油价不同,有时白天高,有时夜间高,但不管价格如何变化,他们两人采用固定的加油方式:小军的爸爸不论是白天还是夜间每次总是加60L 油,小慧的爸爸则不论是白天还是夜间每次总是花300元钱加油.假设某天白天油的价格为每升a 元,夜间油的价格为每升b 元.问:(1)小军的爸爸和小慧的爸爸在这天加油的平均单价各是多少?(2)谁的加油方式更合算?请你通过数学运算,给以解释说明.【答案】(1)小军的爸爸在这天加油的平均单价是:2a b +元/L ;小慧的爸爸在这天加油的平均单价是:2ab a b+元/L ;(2)小慧的爸爸的加油方式比较合算. 【分析】(1)由题意根据条件用代数式分别表示出小军的爸爸和小慧的爸爸在这天加油的平均单价即可; (2)根据题意利用作差法进行分析比较即可.【详解】解:(1)小军的爸爸在这天加油的平均单价是:60601202a b a b ++=(元/L ) 小慧的爸爸在这天加油的平均单价是:3003002600ab a b a b ⎛⎫÷+= ⎪+⎝⎭(元/L ) (2)222()4()22()2()a b ab a b ab a b a b a b a b ++---==+++, 而a b ,0a >,0b >,所以()()202a b a b ->+ 从而202a b ab a b +->+,即22a b ab a b +>+. 因此,小慧的爸爸的加油方式比较合算.【点睛】本题考查分式的实际应用,熟练掌握并利用题意列出代数式以及利用作差法进行分析比较是解题的关键. 22.如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (﹣1,﹣2),B (﹣2,﹣4),C (﹣4,﹣1). (1)把△ABC 向上平移3个单位后得到△111A B C ,请画出△111A B C 并写出点1B 的坐标;(2)请画出△ABC 关于y 轴对称的△222A B C ,并写出点2C 的坐标.【答案】(1)图详见解析,点1B 的坐标(-2,-1);(2)图详见解析,点2C 的坐标(4,-1)【分析】(1)根据题干要求,分别对点A 、B 、C 进行平移,并依次连接对应点得到平移后图形,读图可得到点1B 的坐标;(2)分别作出点A 、B 、C 关于y 轴对应的点,并依次连接对应点得到图形,读图可得到2C 的坐标.【详解】(1)图形如下:则点1B 的坐标(-2,-1);(2)图形如下:则点2C 的坐标(4,-1).【点睛】本题考查在格点中绘制平移和对称的图形,只需找出对应点,然后依次连接对应点即为变换后的图形. 23.仔细阅读下面例题,解答问题.(例题)已知关于x 的多项式24x x m -+有一个因式是(3)x +,求另一个因式及m 的值.解:设另一个因式为()x n +,则24(3)()x x m x x n -+=++,即224(3)3x x m x n x n -+=+++. 34,3.n n m +=-⎧∴⎨=⎩解得21,7.m n =-⎧⎨=-⎩∴另一个因式为(7)x -,m 的值为21-.(问题)仿照以上方法解答下面问题:(1)已知关于x 的多项式27x x a ++有一个因式是(2)x -,求另一个因式及a 的值.(2)已知关于x 的多项式223x x k +-有一个因式是()4x +,求k 的值.【答案】(1)()9x +,18-;(2)20.【分析】(1)按照例题的解法,设另一个因式为()x b +,则27(2)()x x a x x b ++=-+,展开后对应系数相等,可求出a ,b 的值,进而得到另一个因式;(2)同理,设另一个因式为()2x h +,则223(4)(2)x x k x x h +-=++,展开后对应系数相等,可求出k 的值.【详解】解:(1)设另一个因式为()x b +则27(2)()x x a x x b ++=-+,即227(2)2x x a x b x b ++=+--. ∴27,2.b a b -=⎧⎨=-⎩解得18,9.a b =-⎧⎨=⎩ ∴另一个因式为()9x +,a 的值为18-.(2)设另一个因式为()2x h +,则223(4)(2)x x k x x h +-=++,即22232(8)4x x k x h x h +-=+++. ∴83,4.h k h +=⎧⎨-=⎩解得5,20.h k =-⎧⎨=⎩∴k 的值为20.【点睛】本题考查因式分解,掌握两个多项式相等,则对应系数相等是关键.24.小明和小华的年龄相差10岁.今年,小明的年龄比小华年龄的2倍大;两年后,小华的年龄比小明年龄的12大.试问小明和小华今年各多少岁? 【答案】小明和小华今年分别为19岁和9岁.【分析】根据题目中的两组不等关系,列出不等式组进行求解.【详解】解:设小华今年的年龄为x 岁,则小明今年的年龄为(10)x + 岁.依题意有: 102(10)222x x x x +>⎧⎪⎨+++>⎪⎩,解得108x x <⎧⎨>⎩,∴不等式组的解集为810x <<,又x 为整数,故x =9 ,1019x +=答:小明和小华今年分别为19岁和9岁.【点睛】本题考查一元一次不等式组的应用,根据题意列出不等式是关键.25.先化简:21(1)a a a a -⎛⎫-÷-⎪⎝⎭,再在1,0-,和1三个数中选一个你喜欢的数代入求值. 【答案】1a a -,1a =-时,原式=12. 【分析】先计算括号内,再将除法化为乘法后约分化简,根据分式有意义分母不能为0,1,0a a ,所以将1a =-代入计算即可. 【详解】解:原式=221(1)a a a a-+-÷ =2(1)(1)a a a -⋅- =1a a -, ∵分式221(1)a a a a-+-÷有意义,10,0a a ,即1,0a a , ∴当1a =-时,原式=11112-=--. 【点睛】本题考查分式的化简求值.注意代值时,要代入整个过程出现的分母都不为0的值.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°【答案】C 【分析】根据等边对等角可得∠B =∠ACB =50°,再根据三角形内角和计算出∠A 的度数,然后根据三角形内角与外角的关系可得∠BPC >∠A , 再因为∠B =50°,所以∠BPC <180°-50°=130°进而可得答案.【详解】∵AB =AC ,∠B =50°,∴∠B =∠ACB =50°,∴∠A =180°-50°×2=80°,∵∠BPC =∠A +∠ACP ,∴∠BPC >∠A ,∴∠BPC >80°.∵∠B =50°,∴∠BPC <180°-50°=130°,则∠BPC 的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.2.如图所示,45MON ∠=︒,点P 为MON ∠内一点,点P 关于OM ON 、对称的对称点分别为点12P P 、,连接11212OP OP PP PP PP 、、、、,12PP 分别与OM ON 、交于点AB 、,连接AP BP 、,则APB ∠的度数为( )A .45︒B .90︒C .135︒D .150︒【答案】B 【分析】由45MON ∠=︒,根据三角形的内角和定理可得到OAB OBA ∠+∠的值,再根据对顶角相等可以求出12P AM P BN ∠+∠的值,然后由点P 与点1P 、2P 对称的特点,求出MAP NBP ∠+∠,进而可以求出PAB PBA ∠+∠的值,最后利用三角形的内角和定理即可求出APB ∠.【详解】∵45MON ∠=︒∴180********OAB OBA MON ︒︒︒︒∠+∠=-∠=-=∵1P AM OAB ∠=∠,2PBN OBA ∠=∠ ∴12135P AM P BN ︒∠+∠=又∵点P 关于OM ON 、对称的对称点分别为点12P P 、∴1MAP P AM ∠=∠,2NBP P BN ∠=∠∴135MAP NBP ︒∠+∠=∴360135290PAB PBA ︒︒︒∠+∠=-⨯=∴()1801809090APB PAB PBA ︒︒︒︒∠=-∠+∠=-=故选:B【点睛】本题考查的知识点有三角形的内角和、轴对称的性质,运用这些性质找到相等的角进行角的和差的转化是解题的关键.3.若20a ab -=(b ≠0),则a ab +=( ) A .0B .12C .0或12D .1或 2 【答案】C【详解】解:∵20a ab -= ()0b ≠,∴a(a-b)=0,∴a=0,b=a .当a=0时,原式=0;当b=a 时,原式=12,故选C4.八年级1班生活委员小华去为班级购买两种单价分别为8元和10元的盆栽,共有100元,若小华将100元恰好用完,共有几种购买方案()A.2 B.3 C.4 D.5【答案】A【解析】解:设购买单价为8元的盆栽x盆,购买单价为10元的盆栽y盆,根据题意可得:8x+10y=100,当x=10,y=2,当x=5,y=6,当x=0,y=10(不合题意,舍去).故符合题意的有2种,故选A.点睛:此题主要考查了二元一次方程的应用,正确得出等量关系是解题关键.5.下列二次根式中, 是最简二次根式的是()A B C.D【答案】C【分析】化简得到结果,即可做出判断.【详解】A.不是最简二次根式;C.D.故选C.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.6.一个等腰三角形的两边长分别为3、7,则它的周长为()A.17 B.13或17 C.13 D.10【答案】A【分析】题目中没有明确底和腰,故要先进行分类讨论,再结合三角形三边关系定理分析即可解答.【详解】∵①当3为腰、7为底时,三角形的三边分别为3、3、7,此时不满足三角形三边关系定理舍去;②当3为底、7为腰时,三角形的三边分别为3、7、7,此时满足三角形三边关系定理.++=∴等腰三角形的周长是:37717故选:A【点睛】本题考查了等腰三角形的性质以及三角形三边关系定理.解题的关键是熟练掌握三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.7.已知不等式x+1≥0,其解集在数轴上表示正确的是()A .B .C .D .【答案】B 【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:x+1≥0,x≥﹣1,在数轴上表示为:,故选:B .【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能正确在数轴上表示不等式的解集是解此题的关键.8.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3 【答案】D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭ 2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()m m n m n m n m m n =⋅+-=+- 1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.9.如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 相交于点F ,若BF=AC ,∠CAD=25°,则∠ABE 的度数为( )A .30°B .15°C .25°D .20°【答案】D 【分析】利用全等三角形的性质即可解决问题.【详解】解:证明:∵AD ⊥BC ,∴∠BDF=∠ADC ,又∵∠BFD=∠AFE ,∴∠CAD=∠FBD ,在△BDF 和△ACD 中BDF ADC FBD CAD BF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ACD (AAS ),∴∠DBF=∠CAD=25°.∵DB=DA ,∠ADB=90°,∴∠ABD=45°,∴∠ABE=∠ABD ﹣∠DBF=20°故选:D .【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 10.如果方程333x m x x =--无解,那么m 的值为( ) A .1B .2C .3D .无解 【答案】A【分析】先把分式方程化为整式方程得到x=3m ,由于关于x 的分式方程333x m x x =--无解,当x=3时,最简公分母x-3=0,将x=3代入方程x=3m ,解得m=1.【详解】解:去分母得x=3m ,∵x=3时,最简公分母x-3=0,此时整式方程的解是原方程的增根,∴当x=3时,原方程无解,此时3=3m ,解得m=1,∴m 的值为1.故选A .【点睛】本题考查了分式方程无解的情况,分式方程无解时,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.由于本题中分式方程化为的整式方程x=3m 是一元一次方程,一定有解,故只有一种情况,就是只需考虑分式方程有增根的情形.二、填空题11.如图,△ABC ≌△ADE ,∠B=80°,∠C=30°,则∠E 的度数为________.【答案】30°【分析】根据△ABC ≌△ADE 得到∠E=∠C 即可.【详解】解:∵△ABC ≌△ADE ,∴∠C=∠E ,∵∠C=30°,∴∠E=30°. 故答案为:30°. 【点睛】本题考查了全等三角形的性质,全等三角形的对应角相等,对应边相等,难度不大.12.如图,直线1l :1y x =+与直线2l :(0)y mx n m =+≠相交于点P (1,2),则关于x 的不等式x+1>mx+n 的解集为____________.【答案】x>1【分析】当x+1>mx+n 时,直线1l 在直线2l 的上方,根据图象即可得出答案.【详解】当x+1>mx+n 时,直线1l 在直线2l 的上方,根据图象可知,当直线1l 在直线2l 的上方时,x 的取值范围为x>1,所以x 的不等式x+1>mx+n 的解集为x>1故答案为:x>1.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.13.如图,已知AB AC AB =,的垂直平分线MN 交AB 于点E ,交AC 于点D ,若38A ∠=︒,则BDE ∠=___________【答案】52°【分析】先根据垂直平分线的性质得出,90AD BD BED =∠=︒,然后有38EBD A ∠=∠=︒,根据直角三角形两锐角互余求出BDE ∠的度数即可.【详解】∵MN 垂直平分AB,90AD BD BED ∴=∠=︒38EBD A ∴∠=∠=︒9052BDE EBD ∴∠=︒-∠=︒故答案为:52︒ .【点睛】本题主要考查垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余,掌握垂直平分线的性质和直角三角形两锐角互余是解题的关键.14.已知一组数据:3,4,5,5,6,6,6,这组数据的众数是________.【答案】1【分析】根据众数的定义,即可得到答案.【详解】∵3,4,5,5,1,1,1中1出现的次数最多,∴这组数据的众数是:1.故答案是:1.【点睛】本题主要考查众数的定义,掌握“一组数据中,出现次数最多的数,称为众数”是解题的关键.15.()223x x y -、122-x y 、34xy的公分母是___________ . 【答案】12x 3y -12x 2y 2【解析】根据确定最简公分母的方法进行解答即可.【详解】系数的最小公倍数是12;x 的最高次数是2;y 与(x-y )的最高次数是1;所以最简公分母是12x 2y (x-y ).故答案为12x2y(x-y).【点睛】此题考查了最简公分母的取法,确定最简公分母的方法有三步,分别为:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,三步得到的因式的积即为最简公分母.16.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b)n(n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…;根据以上规律,(a+b)5展开式共有六项,系数分别为______,拓展应用:(a﹣b)4=_______.【答案】1,5,10,10,5,1 a4﹣4a3b+6a2b2﹣4ab3+b4【分析】经过观察发现,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和,展开式的项数比它的指数多1.根据上面观察的规律很容易解答问题.【详解】(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.故答案为:1、5、10、10、5、1,a4﹣4a3b+6a2b2﹣4ab3+b4.【点睛】此题考查完全平方公式,正确观察已知的式子与对应的三角形之间的关系是关键.17.如图,在△ABC中,BF⊥AC 于点F,AD⊥BC 于点D ,BF 与AD 相交于点E.若AD=BD,BC=8cm,DC=3cm.则AE= _______________cm .【答案】1.【分析】易证∠CAD=∠CBF,即可求证△ACD≌△BED,可得DE=CD,即可求得AE的长,即可解题.【详解】解:∵BF⊥AC于F,AD⊥BC于D,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF,∵在△ACD 和△BED 中,90CAD CBF AD BDADC BDE ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△ACD ≌△BED ,(ASA )∴DE=CD ,∴AE=AD-DE=BD-CD=BC-CD-CD=1;故答案为1.【点睛】本题考查了全等三角形的判定和性质,本题中求证△ACD ≌△BED 是解题的关键.三、解答题18.我们提供如下定理:在直角三角形中,30°的锐角所对的直角边是斜边的一半,如图(1),Rt △ABC 中,∠C=90°,∠A=30°,则BC=12AB . 请利用以上定理及有关知识,解决下列问题: 如图(2),边长为6的等边三角形ABC 中,点D 从A 出发,沿射线AB 方向有A 向B 运动点F 同时从C 出发,以相同的速度沿着射线BC 方向运动,过点D 作DE ⊥AC ,DF 交射线AC 于点G .(1)当点D 运动到AB 的中点时,直接写出AE 的长;(2)当DF ⊥AB 时,求AD 的长及△BDF 的面积;(3)小明通过测量发现,当点D 在线段AB 上时,EG 的长始终等于AC 的一半,他想当点D 运动到图3的情况时,EG 的长始终等于AC 的一半吗?若改变,说明理由;若不变,说明理由.【答案】(1)AE =32;(2)AD=2,S △BDF 3(3)不变,理由见解析 【分析】(1)根据D 为AB 的中点,求出AD 的长,在Rt △ADE 中,利用30°所对的直角边等于斜边的一半求出AE 的长即可;(2)根据题意得到设AD=CF=x ,表示出BD 与BF ,在Rt △BDF 中,利用30°所对的直角边等于斜边的一半得到BF=2BD ,列出关于x 的方程,求出方程的解得到x 的值,确定出BD 与BF 的长,利用勾股定理求出DF 的长,即可确定出△BDF 的面积;(3)不变,理由如下,如图,过F 作FM ⊥AG 延长线于M ,由AD=CF ,且△ABC 为等边三角形,利用等边三角形的性质及锐角三角函数定义得到DE=FM ,以及AE=CM ,利用AAS 得到△DEG 与△FMC 全等,利用全等三角形对应边相等得到EG=MG ,根据AC=AE+EC ,等量代换即可得证.【详解】解:(1)当D为AB中点时,AD=BD=12AB=3,在Rt△ADE中,∠A=60°,∴∠ADE=30°,∴AE=12AD=32;(2)设AD=x,∴CF=x,则BD=6-x,BF=6+x,∵∠B=60°,∠BDF=90°,∴∠F=30°,即BF=2BD,∴6+x=2×(6-x),解得:x=2,即AD=2,∴BD=4,BF=8,根据勾股定理得:DF=2284-=43,∴S△BDF=12×4×43=83;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,∵△ABC为等边三角形,∴∠A=∠ACB=∠FCM=60°,在Rt△ADE和Rt△FCM中,90 AED FMCA FCMAD CF ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴Rt△ADE≌Rt△FCM,∴DE=FM,AE=CM,在△DEG和△FMG,90 DEG FMC EGD MGFDE FM ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DEG≌△FMG,∴GE=GM ,∴AC=AE+EC=CM+CE=GE+GM=2GE .【点睛】此题考查了全等三角形的判定与性质,等边三角形的性质,以及含30°直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.19.如图,在平面直角坐标系中,(1,5)A -、(1,0)B -、(4,3)C -(1)描点画出这个三角形(2)计算出这个三角形的面积.【答案】(1)见详解;(2)152. 【分析】(1)在平面直角坐标系中找到相应的A,B,C 点,然后顺次连接A,B,C 即可画出这个三角形; (2)直接利用三角形的面积公式12S ah =即可得出答案. 【详解】(1)如图(2)111553222S AB h ==⨯⨯= 【点睛】 本题主要考查平面直角坐标系中描点画三角形及三角形的面积,掌握三角形的面积公式及点在平面直角坐标系中的位置是解题的关键.20.如图,在∆ABC 中,AB=4,AC=3,BC=5,DE 是BC 的垂直平分线,DE 交BC 于点D ,交AB 于点E ,求AE 的长.【答案】78 【分析】根据勾股定理的逆定理可得ABC 是直角三角形,且∠A =90°,然后设AE x =,由线段垂直平分线的性质可得4EB EC x ==-,再根据勾股定理列方程求出x 即可.【详解】解:连接CE ,∵在ABC 中,4AB =,3AC =,5BC =,∴222AB AC BC +=,∴ABC 是直角三角形,且∠A =90°,∵DE 是BC 的垂直平分线,∴EC EB =,设AE x =,则4EB EC x ==-,∴2223(4)x x +=-, 解得78x =, 即AE 的长是78. 【点睛】本题考查了线段垂直平分线的性质,勾股定理及其逆定理.关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.21.如图,在ABC 中,8AB AC ==,AB 的垂直平分线交AB 于点D ,交AC 于点E .(1)若2BE EC -=,求CE 的长;(2)若o 36A ∠=,求证:BEC △是等腰三角形.【答案】(1)=3CE ;(2)见解析.【分析】(1)根据线段垂直平分线的性质可得EA =EB ,即2EA EC -=,结合8EA CE +=可求出5EA =,进而得到CE 的长;(2)根据三角形内角和定理和等腰三角形的性质求出∠C =72°,根据线段垂直平分线的性质可得EA =EB ,求出∠EBA =∠A =36°,然后利用三角形外角的性质得到∠BEC =72°即可得出结论.【详解】解:(1)∵DE 是AB 的垂直平分线,∴EA =EB ,∴2EA EC -=,∵8AC EA CE =+=,∴5EA =,∴=3CE ;(2)∵AB AC =,o 36A ∠=,∴∠ABC =∠C =18036=722,∵DE 是AB 的垂直平分线,∴EA =EB ,∴∠EBA =∠A =36°,∴∠BEC =∠EBA +∠A =72°,∴∠C =∠BEC ,∴BC =BE ,即BEC △是等腰三角形.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的判定和性质、三角形内角和定理以及三角形外角的性质等知识,灵活运用相关性质定理进行推理计算是解题关键.22.阅读下列一段文字,然后回答下列问题.已知平面内两点 M (x1,y1)、N (x2,y2),则这两点间的距离可用下列公式计算: MN=例如:已知 P (3,1)、Q (1,﹣2),则这两点间的距离 .特别地,如果两点 M (x1,y1)、N (x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐 标轴,那么这两点间的距离公式可简化为 MN=丨 x1﹣x2 丨或丨 y1﹣y2 丨.(1)已知 A (1,2)、B (﹣2,﹣3),试求 A 、B 两点间的距离;(2)已知 A 、B 在平行于 x 轴的同一条直线上,点 A 的横坐标为 5,点 B 的横坐标为﹣1, 试求 A 、B 两 点间的距离;。
(完整word版)2017-2018学年广东省广州市越秀区八年级(上)期末数学试卷

2017—2018学年广东省广州市越秀区八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)下面有四个图案,其中不是轴对称图形的是( )A.B.C.D.2.(3分)若分式的值为零,则x的值为( )A.﹣2B.±2C.2D.13.(3分)下列运算正确的是()A.(﹣a3)2+(﹣a2)3=0B.(﹣b)2•(﹣b)4=﹣b6C.(﹣a3)2(﹣a2)3=﹣a6D.x2•x4=x84.(3分)下列各因式分解中,结论正确的是()A.x2+5x+6=(x﹣1)(x+6)B.x2﹣x+6=(x+2)(x﹣3)C.a2﹣2ab+b2﹣1=(a+b+1)(a+b﹣1)D.(a+b)2+2a+2b﹣3=(a+b+3)(a+b﹣1)5.(3分)到三角形三条边的距离都相等的点是这个三角形的() A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点6.(3分)用剪刀将一个四边形沿直线剪去一部分,剩下部分的图形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能7.(3分)在下列四个轴对称图形中,对称轴条数最多的是()A.正方形B.正五边形C.正六边形D.正七边形8.(3分)如图,已知AB=AC,AE=AF,BE与CP交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是( )A.①和②B.②和③C.①和③D.①、②和③9.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走X千米,根据题意可列方程为()A.+20=B.=+C.=+20D.+=10.(3分)已知△ABC的三条边长分别为3,5,7,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画() A.5条B.4条C.3条D.2条二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)要使分式有意义,那么x必须满足.12.(3分)已知一个n边形的内角和是其外角和的4倍多180度,则n= .13.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是.14.(3分)如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连结AD.若AC=4cm,△ADC的周长为11cm,则BC的长为cm.15.(3分)如图,在△ABC中,BF⊥AC于F,AD⊥BC于D,BF与AD相交于E.若AD=BD,BC=8cm,DC=3cm,则AE= cm.16.(3分)化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99= .三、解答题(本题共有7小题,共72分)17.(10分)完成下列运算:(1)(2x﹣1)(2x+1)﹣(4x+1)(x﹣1)(2)(x2+x)﹣y(x+2)18.(10分)解下列分式方程:(1)=(2)1﹣=19.(12分)(1)先化简,再求值:(2x+y)(2x﹣y)+(x+y)2﹣5x2,其中x=3,y=5.(2)先化简,再求值:(﹣),其中a=﹣.20.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.21.(8分)如图,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE相交于点P,求证:BE=AD.22.(12分)山地自行车越来越受到大众的喜爱,某车行经销了某品牌的A、B两型车,其经销的A型车去年销售总额为5万元,今年每辆车的销售价将比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.其中A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)11001400销售价格(元)今年的销售价格2000试问:(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆(见上表),要使这批车获利不少于33000元,A型车至多进多少辆?23.(12分)在△ABC中,AB=AC,点D在底边BC上,AE=AD,连结DE.(1)如图①,已知∠BAC=90°,∠BAD=60°,求∠CDE的度数.(2)如图①,已知∠BAC=90°,当点D在BC(点B、C除外)上运动时,试探究∠BAD与∠CDE 的数量关系;(3)如图②,若∠BAC≠90°,试探究∠BAD与∠CDE的数量关系.2017-2018学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)下面有四个图案,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)若分式的值为零,则x的值为()A.﹣2B.±2C.2D.1【分析】直接利用分式的值为零的条件分析得出答案.【解答】解:∵分式的值为零,∴|x|﹣2=0,解得:x=±2.故选:B.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.3.(3分)下列运算正确的是()A.(﹣a3)2+(﹣a2)3=0B.(﹣b)2•(﹣b)4=﹣b6C.(﹣a3)2(﹣a2)3=﹣a6D.x2•x4=x8【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=a6﹣a6=0,符合题意;B、原式=b2•b4=b6,不符合题意;C、原式=a6•(﹣a6)=﹣a12,不符合题意;D、原式=x6,不符合题意.故选:A.【点评】此题考查了幂的乘方与积的乘方,合并同类项,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.4.(3分)下列各因式分解中,结论正确的是()A.x2+5x+6=(x﹣1)(x+6)B.x2﹣x+6=(x+2)(x﹣3)C.a2﹣2ab+b2﹣1=(a+b+1)(a+b﹣1)D.(a+b)2+2a+2b﹣3=(a+b+3)(a+b﹣1)【分析】原式各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x+2)(x+3),错误;B、原式不能分解,错误;C、原式=(a﹣b+1)(a﹣b﹣1),错误;D、原式═(a+b+3)(a+b﹣1),正确,故选:D.【点评】此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.5.(3分)到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:C.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为D.6.(3分)用剪刀将一个四边形沿直线剪去一部分,剩下部分的图形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能【分析】若剪掉四边形相邻两条边的一部分,则剩下的部分是五边形.若沿着正方形的对角线剪,则剩余部分为三边形(三角形).若从四边形一个角的顶点,沿直线向对角的邻边剪,且只剪掉一条邻边的一部分,则剩下的部分为四边形.即可求得内角和的度数.【解答】解:如下图所示:观察图形可知,四边形剪掉一个角后,剩下的图形可能是五边形,也可能是四边形,还可能是三角形.则剩下的纸片图形是三角形或四边形或五边形.内角和是:180°或360°或540°.故选:D.【点评】本题考查了多边形的内角和,解题的关键是能理解一个四角形截取一个角后得到的图形的形状.7.(3分)在下列四个轴对称图形中,对称轴条数最多的是( )A.正方形B.正五边形C.正六边形D.正七边形【分析】根据轴对称图形的概念求解.【解答】解:A、正方形,有4条对称轴;B、正五边形,有5条对称轴;C、正六边形,有6条对称轴;D、正七边形,有7条对称轴.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8.(3分)如图,已知AB=AC,AE=AF,BE与CP交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①和②B.②和③C.①和③D.①、②和③【分析】如图,证明△ABE≌△ACF,得到∠B=∠C;证明△CDE≌△BDF;证明△ADC≌△ADB,得到∠CAD=∠BAD;即可解决问题.【解答】解:如图,连接AD;在△ABE与△ACF中,,∴△ABE≌△ACF(SAS);∴∠B=∠C;∵AB=AC,AE=AF,∴BF=CE;在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),∴DC=DB;在△ADC与△ADB中,,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD;综上所述,①②③均正确,故选:D.【点评】该题主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质定理,这是灵活运用解题的基础.9.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走X千米,根据题意可列方程为( )A.+20=B.=+C.=+20D.+=【分析】关键描述语为:“乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟”;等量关系为:乘公交车所用时间=乘坐私家车所用时间+.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+.故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.10.(3分)已知△ABC的三条边长分别为3,5,7,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.5条B.4条C.3条D.2条【分析】根据等腰三角形的性质分别利用AB为底以及AB为腰得出符合题意的图形即可.【解答】解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG,都能得到符合题意的等腰三角形.故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)要使分式有意义,那么x必须满足x≠0 .【分析】根据分母不为这个条件求出x的范围即可.【解答】解:要使分式有意义,那么x必须满足x≠0,故答案为:x≠0【点评】此题考查了分式有意义的条件,始终注意分母不为0这个条件.12.(3分)已知一个n边形的内角和是其外角和的4倍多180度,则n= 11 .【分析】根据多边形的内角和公式(n﹣2)•180°,与多边形的外角和等于360°列不等式求解即可.【解答】解:(n﹣2)•180°﹣4×360°=180°,解得n=11,故答案为:11.【点评】本题主要考查了多边形的内角和公式与外角和定理,熟记公式,列出不等式是解题的关键.13.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是18°.【分析】根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故答案为:18°.【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.(3分)如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连结AD.若AC=4cm,△ADC的周长为11cm,则BC的长为7 cm.【分析】由AB的垂直平分线交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,又由△ADC的周长为11cm,即可求得AC+BC=11cm,然后由AC=4cm,即可求得BC的长.【解答】解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD,∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,∵AC=4cm,∴BC=7cm.故答案为:7.【点评】此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想的应用.15.(3分)如图,在△ABC中,BF⊥AC于F,AD⊥BC于D,BF与AD相交于E.若AD=BD,BC=8cm,DC=3cm,则AE= 2 cm.【分析】易证∠CAD=∠CBF,即可求证△ACD≌△BED,可得DE=CD,即可求得AE的长,即可解题.【解答】解:∵BF⊥AC于F,AD⊥BC于D,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF,∵在△ACD和△BED中,,∴△ACD≌△BED,(ASA)∴DE=CD,∴AE=AD﹣DE=BD﹣CD=BC﹣CD﹣CD=2;故答案为2.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ACD ≌△BED是解题的关键.16.(3分)化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99= (a+1)100.【分析】原式提取公因式,计算即可得到结果.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.三、解答题(本题共有7小题,共72分)17.(10分)完成下列运算:(1)(2x﹣1)(2x+1)﹣(4x+1)(x﹣1)(2)(x2+x)﹣y(x+2)【分析】(1)先计算多项式乘多项式,再去括号、合并同类项可得;(2)先将除法转化为乘法,再利用乘法分配律去掉括号,最后合并同类项即可得.【解答】解:(1)原式=4x2﹣1﹣(4x2﹣4x+x﹣1)=4x2﹣1﹣4x2+4x﹣x+1=3x;(2)原式=(x2+x)•﹣xy﹣2y=2xy+2y﹣xy﹣2y=xy.【点评】本题主要考查整式和分式的混合运算,解题的关键是熟练掌握整式和分式的混合运算顺序和运算法则.18.(10分)解下列分式方程:(1)=(2)1﹣=【分析】(1)方程两边乘最简公分母,可以把分式方程转化为整式方程求解.(2)方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:(1)化为整式方程为:x+2=4解得:x=2,检验:把x=2代入x2﹣4=0,所以原方程无解;(2)化为整式方程为:(6x﹣2)﹣2=5解得:x=1。
2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
《试卷3份集锦》广州市2017-2018年八年级上学期数学期末联考试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运算中错误的是()=C D 4A=B【答案】C【分析】根据二次根式的运算法则和性质逐一判断可得答案.【详解】A==,正确,此选项不符合题意;BC不是同类二次根式,不能合并,此选项错误,符合题意;D4,正确,此选项不符合题意;故选C.【点睛】本题考查了二次根式的运算,二次根式的化简,熟练掌握相关的运算法则是解题的关键.2.下列各命题的逆命题中,①三个角对应相等的两个三角形是全等三角形;②全等三角形对应边上的高相等;③全等三角形的周长相等;④两边及其中一边的对角对应相等的两个三角形是全等三角形;假命题是()A.①②B.①③C.②③D.①④【答案】D【分析】写出各个命题的逆命题,根据全等三角形的判定定理和性质定理判断.【详解】解:①三个角对应相等的两个三角形是全等三角形的逆命题是全等三角形的三个角对应相等,是真命题;②全等三角形对应边上的高相等的逆命题是三边上的高相等的两个三角形全等,是真命题;③全等三角形的周长相等的逆命题是周长相等的两个三角形全等,是假命题;④两边及其中一边的对角对应相等的两个三角形是全等三角形的逆命题是全等三角形两边及其中一边的对角对应相等,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C′全等的是()A .AB= A′B′,AC= A′C′,BC= B′C′B .∠A=∠A′,∠B=∠B′, AC= A′C′C .AB= A′B′,AC= A′C′,∠A=∠A′D .AB= A′B′, BC= B′C′,∠C=∠C′【答案】D 【解析】根据全等三角形的判定方法对各项逐一判断即得答案.【详解】解:A 、AB= A′B′,AC= A′C′,BC= B′C′,根据SSS 可判定△ABC 和△A′B′C′全等,本选项不符合题意; B 、∠A=∠A′,∠B=∠B′,AC= A′C′,根据AAS 可判定△ABC 和△A′B′C′全等,本选项不符合题意; C 、AB= A′B′,AC= A′C′,∠A=∠A ′,根据SAS 可判定△ABC 和△A′B′C′全等,本选项不符合题意; D 、AB= A′B′,BC= B′C′,∠C=∠C′,这是SSA ,不能判定△ABC 和△A′B′C′全等,本选项符合题意. 故选:D .【点睛】本题考查了全等三角形的判定,属于应知应会题型,熟练掌握全等三角形的判定方法是解题关键. 4.在△ABC 中,若∠A =80°,∠B =30°,则∠C 的度数是( )A .70°B .60°C .80°D .50°【答案】A【分析】根据三角形的内角和定理,即可求出答案.【详解】解:∵∠A =80°,∠B =30°,∴180803070C ∠=︒-︒-︒=︒,故选:A .【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于180°.5.把一张正方形纸片如图①、图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是( )A .B .C .D .【答案】C【解析】当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的一个顶点对着正方形的边.故选C .6.计算结果为x 2﹣y 2的是( )A .(﹣x+y )(﹣x ﹣y )B .(﹣x+y )(x+y )C .(x+y )(﹣x ﹣y )D .(x ﹣y )(﹣x ﹣y )【答案】A【分析】根据平方差公式和完全平方公式逐一展开即可【详解】A. (﹣x+y )(﹣x ﹣y )=(- x )2- y 2= x 2﹣y 2,故A 选项符合题意;B. (﹣x+y )(x+y )()()22=y x y x y x -+=-,故B 选项不符合题意;C. (x+y )(﹣x ﹣y )()()22=+2x y x y x xy y -+=---,故C 选项不符合题意; D. (x ﹣y )(﹣x ﹣y )=()()()2222=y x y x y x y x -+--=--=-,故D 选项不符合题意;故选A.【点睛】此题考查的是平方差公式以及完全平方公式,掌握平方差公式以及完全平方公式的特征是解决此题的关键. 7.如图,圆柱的底面半径为3cm ,圆柱高AB 为2cm ,BC 是底面直径,一只蚂蚁从点A 出发沿圆柱表面爬行到点C ,则蚂蚁爬行的最短路线长( )A .5cmB .8cmC .24+9π cmD .24+36π cm【答案】B 【解析】将圆柱体的侧面展开并连接AC .∵圆柱的底面半径为3cm ,∴BC=12×2•π•3=3π(cm ), 在Rt △ACB 中,AC 2=AB 2+CB 2=4+9π2,∴249π+.249π+.∵AB +BC=8249π+∴蚁爬行的最短路线A ⇒B ⇒C ,故选B.【点睛】运用了平面展开图,最短路径问题,做此类题目先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.8.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【答案】C【解析】试题解析:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选C.考点:基本作图.9.如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是( )A.AB=DE B.∠A=D C.AC=DF D.AC∥DF【答案】C【分析】由已知条件得到相应边相等和对应角相等.再根据全等三角形的判定定理“AAS”,“SAS”,“ASA”依次判断.【详解】∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,∵AB//DE,∴∠B=∠DEF,其中BC是∠B的边,EF是∠DEF的边,根据“SAS”可以添加边“AB=DE”,故A可以,故A不符合题意;根据“AAS”可以添加角“∠A=∠D”,故A可以,故B不符合题意;根据“ASA”可以添加角“∠ACB=∠DFE”,故D可以,故D不符合题意;故答案为C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A【详解】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,C CBFCD BDEDC BDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.全等三角形的判定与性质.二、填空题11.如图1所示,S同学把一张6×6的正方形网格纸向上再向右对折两次后按图画实线,剪去多余部分只留下阴影部分,然后展开摊平在一个平面内得到了一幅剪纸图案.T同学说:“我不用剪纸,我直接在你的图1②基础上,通过‘逆向还原....’的方式依次画出相应的与原图形成轴对称的图形也能得出最后的图案.”画图过程如图2所示.对于图3中的另一种剪纸方式,请仿照图2中“逆向还原.........”的方式,在图4①中的正方形网格中画出还原后的图案...,并判断它与图2中最后得到的图案是否相同.答:□相同;□不相同.(在相应的方框内打勾)【答案】不相同.【分析】根据轴对称图形的性质即可得结论.【详解】如图,在图4①中的正方形网格中画出了还原后的图案,它与图2中最后得到的图案不相同.故答:不相同.【点睛】本题考查了利用轴对称设计图案、剪纸问题,解决本题的关键是掌握轴对称性质.12.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;【答案】AC=DF(或∠A=∠F或∠B=∠E)【解析】∵BD=CE,∴BD-CD=CE-CD ,∴BC=DE ,①条件是AC=DF 时,在△ABC 和△FED 中,12AC DF BC DE ⎧⎪∠∠⎨⎪⎩=== ∴△ABC ≌△FED (SAS );②当∠A=∠F 时,12A F BC DE ∠=∠⎧⎪∠∠⎨⎪⎩== ∴△ABC ≌△FED (AAS );③当∠B=∠E 时,12BC DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△FED (ASA )故答案为AC=DF (或∠A=∠F 或∠B=∠E).13.已知关于x 的不等式组0521x a x -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______. 【答案】-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围. 详解:0521x a x ①②,-≥⎧⎨->⎩由不等式①解得:x a ≥;由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为2a x ,≤< 由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.14.如图,小明的父亲在院子的门板上钉了一个加固板,从数学角度看,这样做的原因是______.【答案】三角形的稳定性【详解】钉了一个加固板,即分割成了三角形,故利用了三角形的稳定性故答案为:三角形的稳定性15.若分式3521x +-有意义,则x __________. 【答案】≠12 【分析】根据分式有意义的条件作答即可,即分母不为1.【详解】解:由题意得,2x-1≠1,解得x ≠12. 故答案为:≠12. 【点睛】本题考查分式有意义的条件,掌握分式有意义时,分母不为1是解题的关键.16.a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 【答案】1【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ ab =∵a ,b 互为倒数,∴ab=1.∴原式=1.故本题应填写:1.17.因式分解:269x x -+= . 【答案】2(3)x -. 【详解】解:269x x -+=2(3)x -.故答案为2(3)x -.考点:因式分解-运用公式法.三、解答题18.计算:(1)231(2)510683-+÷-⨯-- (3)3224332⎛⎫⋅-÷ ⎪⎝⎭a ab a b b b 【答案】(1)242-;(2)2a b - 【分析】(1)先进行二次根式的乘除法运算,再将二次根式化简,同时求出立方根,最后合并化简; (2)根据二次根式的性质和乘除法法则计算化简即可.【详解】解:(1)原式235622(2)82224103=-+---=+-+=-; (2)原式43223114()2223a b a b a a b b ab b ⋅=⨯-⨯⨯⋅=⋅=-⋅- 【点睛】 本题考查的知识点是二次根式的混合运算,掌握二次根式混合运算的运算顺序以及运算法则是解此题的关键.19.如图所示,在ABC ∆中,38A ∠=,70ABC ∠=,CD AB ⊥于点D ,CE 平分ACB ∠,DF CE ⊥于点F ,求CDF ∠的度数.【答案】74︒【分析】先根据三角形内角和定理计算ACB ∠,再利用角平分线定义计算ECB ∠,然后根据直角三角形两锐角互余计算DCB ∠,进而计算出FCD ECB DCB =-∠∠∠,最后根据直角三角形两锐角互余计算CDF ∠.【详解】∵在ABC 中,38A ∠=︒,70ABC ∠=︒∴18072ACB A ABC =︒--=︒∠∠∠∵CE 平分ACB ∠ ∴1362ECB ACB ==︒∠∠ ∵CD AB ⊥于点D∴90CDB ∠=︒∴在CDB △中,9020DCB ABC =︒-=︒∠∠∴362016FCD ECB DCB =-=︒-︒=︒∠∠∠∵DF CE ⊥于点F∴9074CDF FCD =︒-=︒∠∠【点睛】本题考查三角形的内角和定理及角平分线的定义,熟练掌握三角形的内角和为180︒及直角三角形两锐角互余,将未知角转化为已知角并向要求解的角靠拢是解题关键.20.如图,已知A (-1,2),B (-3,1),C (-4,3).(1)作△ABC 关于x 轴的对称图形△A 1B 1C 1,写出点C 关于x 轴的对称点C 1的坐标;(2)作△ABC 关于直线l 1:y=-2(直线l 1上各点的纵坐标都为-2)的对称图形△A 2B 2C 2,写出点C 关于直线l 1的对称点C 2的坐标.(3)作△ABC 关于直线l 2:x=1(直线l 2上各点的横坐标都为1)的对称图形△A 3B 3C 3,写出点C 关于直线l 2的对称点C 3的坐标.(4)点P (m ,n )为坐标平面内任意一点,直接写出:点P 关于直线x=a (直线上各点的横坐标都为a )的对称点P 1的坐标;点P 关于直线y=b (直线上各点的纵坐标都为b )的对称点P 2的坐标.【答案】(1)图见解析;C 1的坐标为(-4,-3);(2)图见解析;C 2的坐标为(-4,-7);(3)图见解析;C 3的坐标为(6,3);(4)点P 1的坐标为(2a-m ,n );P 2的坐标为(m ,2b-n )【分析】(1)根据x 轴为对称轴,利用轴对称的性质,即可得到△ABC 关于x 轴的对称图形△A 1B 1C 1,进而得到点C 关于x 轴的对称点C 1的坐标;(2)根据直线l 1:y=-2为对称轴,利用轴对称的性质,即可得到△ABC 关于直线l 1:y=-2的对称图形△A 2B 2C 2,进而得到点C关于直线l1的对称点C2的坐标.(3)根据直线l2:x=1为对称轴,利用轴对称的性质,即可得到△ABC关于直线l2:x=1的对称图形△A3B3C3,进而得到点C关于直线l2的对称点C3的坐标.(4)根据对称点到对称轴的距离相等,即可得到点P关于直线x=a的对称点P1的坐标;以及点P关于直线y=b的对称点P2的坐标.【详解】(1)如图所示,△A1B1C1即为所求,C1的坐标为(-4,-3);(2)如图所示,△A2B2C2即为所求,C2的坐标为(-4,-7);(3)如图所示,△A3B3C3即为所求,C3的坐标为(6,3);(4)点P(m,n)关于直线x=a的对称点P1的坐标为(2a-m,n);点P(m,n)关于直线y=b的对称点P2的坐标为(m,2b-n).【点睛】本题主要考查了利用轴对称变换进行作图以及轴对称性质的运用,几何图形都可看做是由点组成,画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,连接这些对称点,就得到原图形的轴对称图形.21.如图,在ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.【答案】证明:在ABCD中,AD=BC且AD∥BC,∵BE=FD,∴AF=CE.∴四边形AECF是平行四边形【解析】试题分析:根据平行四边形的性质可得AF∥EC.AF=EC,然后根据平行四边形的定义即可证得.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E,F分别是BC,AD的中点,∴,,∴AF ∥EC ,AF=EC ,∴四边形AECF 是平行四边形.【点评】本题考查了平行四边形的性质与判定;熟练掌握平行四边形的性质,证出AF=EC 是解决问题的关键.22.如图,ABC ∆中,AB AC =,50A ∠=︒,点D 、E 、F 分别在AB 、BC 、AC 上,且BD CE =,BE CF =.求DEF ∠的度数.【答案】65°【分析】根据等腰三角形的性质得到65B C ∠=∠=︒,再证明DBE ECF ∆∆≌,得到DEB EFC ∠=∠,再根据三角形额内角和与平角的性质即可求解.【详解】由题意:AB AC =,50A ∠=︒,有65B C ∠=∠=︒又BD CE =,BE CF =,∴DBE ECF ∆∆≌,∴DEB EFC ∠=∠又180DEB CEF DEF ∠+∠+∠=︒,180EFC CEF C ∠+∠+∠=︒∴65DEF C ∠=∠=︒【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等腰三角形的性质及全等三角形的判定与性质. 23.(1)解方程:542332x x x+=--. (2)计算:13(2715)3353÷. 【答案】(1)1x =;(2)325-+【分析】(1)先将分式方程化成整式方程,解整式方程求出x 的值,再检验,即可得出答案; (2)先化简根号和绝对值,再根据二次根式的混合运算计算即可得出答案.【详解】(1)解:去分母,得54(23)x x -=-,解得1x =.检验:当1x =时,230x -≠.∴原分式方程的解为1x =.(2)解:原式3(3315)=--353÷+-33553=-++-325=-+.【点睛】本题考查的是解分式方程和二次根式的混合运算,属于基础题型,需要熟练掌握相关的运算步骤和方法. 24.若x+y=3,且(x+2)(y+2)=1.(1)求xy 的值;(2)求x 2+3xy+y 2的值.【答案】(1)2; (2)2【分析】(1)先去括号,再整体代入即可求出答案;(2)先配方变形,再整体代入,即可求出答案.【详解】解:(1)∵x+y=3,(x+2)(y+2)=1,∴xy+2x+2y+4=1,∴xy+2(x+y )=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x 2+3xy+y 2=(x+y )2+xy=32+2=2.【点睛】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中. 25.已知:如图,直线AB 的函数解析式为y=-2x+8,与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 两点的坐标;(2)若点P(m ,n)为线段AB 上的一个动点(与A 、B 不重合),作PE ⊥x 轴于点E ,PF ⊥y 轴于点F ,连接EF,若△PEF的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)以上(2)中的函数图象是一条直线吗?请尝试作图验证.【答案】(1)A(1,0);(2)S△PET=-m2+1m,(0<m<1);(3)见解析【分析】(1)根据坐标轴上点的特点直接求值,(2)由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;(3)列表,描点、连线即可.【详解】(1)解:令x=0,则y=8,∴B(0、8)令y=0,则2x+8=0x=1A(1,0),(2)解:点P(m,n)为线段AB上的一个动点,-2m+8=n,∵A(1.0)OA=1∴0<m<1∴S△PEF= 12PF×PE=12×m×(-2m+8)=2(-2m+8)=-m2+1m,(0<m<1);(3)S关于m的函数图象不是一条直线,简图如下:①列表x 0 0.5 1 1.5 12 2.5 3 3.5 1y 0 0.75 3 3.75 1 3.75 3 0.75 0②描点,连线(如图)【点睛】此题考查一次函数综合题,坐标轴上点的特点,三角形的面积公式,极值的确定,解题的关键是求出三角形PEF的面积.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在ABC 中,90C ∠=︒,DE AB ⊥于点E ,CD DE =,26CBD ∠=︒,则A ∠的度数为( )A .40︒B .34︒C .36︒D .38︒【答案】D 【分析】根据角平分线的判定可知,BD 平分∠ABC ,根据已知条件可求出∠A 的度数.【详解】解:∵90C ∠=︒,DE AB ⊥,且CD DE =∴BD 是ABC ∠的角平分线,∴26ABD CBD ∠=∠=︒,∴22652ABC ∠=⨯︒=︒,∴在Rt ABC 中,905238A ∠=︒-︒=︒,故答案选D .【点睛】本题主要考查角平分线的判定及三角形角度计算问题,理解角平分线的判定条件是解题的关键. 2.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有( ) A .40人B .30人C .20人D .10人 【答案】C【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【详解】∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选C.【点睛】考查频数与频率,掌握数据总和=频数÷频率是解题的关键.3()()222112a a -+- ) A .0B .42a -C .24a -D .24a -或42a - 【答案】D 2a a =的性质进行化简.原式=2112a a -+-,当1a -1≥0时,原式=1a -1+1a -1=4a -1;当1a -1≤0时,原式=1-1a+1-1a=1-4a .综合以上情况可得:原式=1-4a 或4a -1. 考点:二次根式的性质4.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92 95 95 92方差 3.6 3.6 7.4 8.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【答案】B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选B.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.【答案】D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.6.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒【答案】C 【分析】先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.【详解】如图,∵∠BEF 是△AEF 的外角,∠1=20︒,∠F=30︒,∴∠BEF=∠1+∠F=50︒,∵AB ∥CD ,∴∠2=∠BEF=50︒,故选:C .【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.7.下列图形中AD 是三角形ABC 的高线的是( )A .B .C .D .【答案】D【分析】根据三角形某一边上高的概念,逐一判断选项,即可得到答案.【详解】∵过三角形ABC 的顶点A 作AD ⊥BC 于点D ,点A 与点D 之间的线段叫做三角形的高线, ∴D 符合题意,故选D .【点睛】本题主要考查三角形的高的概念,掌握“从三角形的一个顶点向它的对边所在直线作垂线,顶点到垂足之间的线段叫作三角形的高”,是解题的关键.8.已知M =m ﹣4,N =m 2﹣3m ,则M 与N 的大小关系为( )A .M >NB .M =NC .M≤ND .M <N【答案】C【分析】利用完全平方公式把N ﹣M 变形,根据偶次方的非负性解答.【详解】解:N ﹣M =(m 2﹣3m )﹣(m ﹣4)=m 2﹣3m ﹣m+4=m 2﹣4m+4=(m ﹣2)2≥0, ∴N ﹣M≥0,即M≤N ,故选:C .【点睛】本题考查的是因式分解的应用,掌握完全平方公式、偶次方的非负性是解题的关键.9.如图所示,在下列条件中,不能判断ABD △≌BAC 的条件是( )A .D C ∠=∠,BAD ABC ∠=∠B .BD AC =,BAD ABC ∠=∠ C .BAD ABC ∠=∠,ABD BAC ∠=∠D .AD BC =,BD AC =【答案】B 【分析】已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等.【详解】A 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;B 、符合SSA ,∠BAD 和∠ABC 不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意; C 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;D 、符合SSS ,能判断两个三角形全等,故该选项不符合题意;故选择:B .【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角.10.已知一组数据为2,3,5,7,8,则这组数据的方差为( )A .3B .4.5C .5.2D .6 【答案】C【分析】先求出这组数据的平均数,再根据方差公式分别进行计算即可.【详解】解:这组数据的平均数是:(1+3+5+7+8)÷5=5, 则方差=15[(1﹣5)1+(3﹣5)1+(5﹣5)1+(7﹣5)1+(8﹣5)1]=5.1.故选C .【点睛】此题考查方差,掌握方差公式是解题关键.二、填空题11.如图,ABC ∆中,AD 平分BAC ∠,3ACB B ∠=∠,CE AD ⊥,8AC =,74BC BD =,则CE =__________.【答案】43【分析】根据题意延长CE 交AB 于K ,由 CE AD ⊥,AD 平分BAC ∠,由等腰三角形的性质,三线合一得8AK AC ==,利用角平分线性质定理,分对边的比等于邻边的比,结合外角平分性质和二倍角关系可得.【详解】如图,延长CE 交AB 于K ,CE AD ⊥,AD 平分BAC ∠,等腰三角形三线合一的判定得8AC AK ∴==,ACK AKC ∠=∠,AC CD AB DB ∴=, 74BC BD =, 34CD BD ∴=, 323AB ∴=, 83KB ∴=, 3ACB B ∠=∠,KCB B ∴∠=∠,83KC KB ==, 1423CE KC ==, 故答案为:43.【点睛】考查了三线合一判定等腰三角形,等腰三角形的性质,角平分线定理,外角的性质,以及二倍角的角度关系代换,熟记几何图形的性质,定理,判定是解题的关键.12.已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.【答案】x1<x1【解析】由k=-1-a1,可得y随着x的增大而减小,由于1>-1,所以x1<x1.【详解】∵y=(-1-a1)x+1,k=-1-a1<0,∴y随着x的增大而减小,∵1>-1,∴x1<x1.故答案为:x1<x1【点睛】本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.13.点P在第四象限内,点P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为_______.【答案】(2,−1).【解析】根据点P在第四象限可知其横坐标为正,纵坐标为负即可确定P点坐标.【详解】∵点P在第四象限,∴其横、纵坐标分别为正数、负数,又∵点P到x轴的距离为1,到y轴的距离为2,∴点P的横坐标为2,纵坐标为−1.故点P的坐标为(2,−1).故答案为:(2,−1).【点睛】此题考查点的坐标,解题关键在于掌握第四象限内点的坐标特征.14.直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2020B2020C2020C2019中的点B2020的坐标为_____.【答案】(22020﹣1,22019)【分析】求出直线y =x+1与x 轴、y 轴的交点坐标,进而确定第1个正方形的边长,再根据等腰直角三角形的性质,得出第2个、第3个……正方形的边长,进而得出B 1、B 2、B 3……的坐标,根据规律得到答案.【详解】解:直线y =x+1与x 轴,y 轴交点坐标为:A 1(0,1),即正方形OA 1B 1C 1的边长为1, ∵△A 1B 1A 2、△A 2B 2A 3,都是等腰直角三角形,边长依次为1,2,4,8,16,∴B 1(1,1),B 2(3,2),B 3(7,4),B 4(15,8),即:B 1(21﹣1,20),B 2(22﹣1,21),B 3(23﹣1,22),B 4(24﹣1,23),故答案为:B 2020(22020﹣1,22019).【点睛】考查一次函数的图象和性质,正方形的性质、等腰直角三角形的性质以及找规律等知识,探索和发现点B 的坐标的概率是得出答案的关键.15.若(m+1)0=1,则实数m 应满足的条件_____.【答案】m≠﹣1【分析】根据非零数的零指数幂求解可得.【详解】解:若(m+1)0=1有意义,则m+1≠0,解得:m≠﹣1,故答案为:m≠﹣1.【点睛】本题考查了零指数幂的意义,非零数的零次幂等于1,零的零次幂没有意义.16.点P (3,﹣5)关于x 轴对称的点的坐标为______.【答案】(3,5)【解析】试题解析:点()3,5P -关于x 轴对称的点的坐标为()3,5.故答案为()3,5.点睛:关于x 轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数.17.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.【答案】3或1【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.三、解答题18.如图,在ΔABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB-AC>PB-PC.【答案】答案见解析【解析】在AB 上取AE =AC ,然后证明△AEP 和△ACP 全等,根据全等三角形对应边相等得到PC =PE ,再根据三角形的任意两边之差小于第三边证明即可.【详解】如图,在AB 上截取AE ,使AE =AC ,连接PE .在△AEP 和△ACP 中,∵12AE AC AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△AEP ≌△ACP (SAS ),∴PE =PC .在△PBE 中,BE >PB ﹣PE ,即AB ﹣AC >PB ﹣PC .【点睛】本题考查了全等三角形的判定与性质,涉及到全等三角形的判定与性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.19.如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)ABC 的顶点A ,C 坐标分别是(a ,5),(﹣1,b ).(1)求a ,b 的值;(2)在图中作出直角坐标系;(3)在图中作出△ABC 关于y 轴对称的图形△A'B'C'.【答案】(1)a=﹣4,b=3;(2)如图所示,见解析;(3)△A'B'C'如图所示,见解析.【分析】(1)根据点A 的纵坐标和点C 的横坐标即可画出直角坐标系,即可判定a ,b 的值; (2)根据点A 的纵坐标和点C 的横坐标即可画出直角坐标系;(3)根据轴对称的性质,先找出各点的对称点,然后连接即可.【详解】(1)由题意平面直角坐标系如图所示,。
广东省2018年八年级数学上学期期末试卷合集10套word文档含答案

八年级数学上学期期末考试试题一、选择题(本大题共12小题,每小题3分,满分36分;在每小题给出的四个选项中,其中只有一是正确的,多选或漏选均不得分.)1. 要使分式12+x 有意义,则x 的取值范围是( ) A .x≠1 B .x >1 C .x <1 D .x ≠ -12. 下列各式中,正确的是( )A.9=±3B.9-=-3 C .9-=3 D .39±=±3. 已知a <b ,则下列结论不一定正确的是( )A .a 2<a 3B .2+a <2+b C. 若c >0,则c b >ca D.a 3->b 3- 4. 下列根式中,不能与3合并的是( ) A. 13 B. 13 C. 23 D.12 5. 下列各式中属于最简分式的是( )A .22x x B. a+b C. 121x + D. 221x x -- 6. 下列命题中,为真命题的是( )A. 对顶角相等B. 同位角相等C. 若a 2=b 2, 则a=bD. 同旁内角相等, 两直线平行 7. 不等式组25x x >-⎧⎨≤⎩的解集在数轴上可表示为( )8. 如图,在Rt △ABC 中,∠B=90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E ,已知∠BAE=10°,则∠C 的度数为( )A.30ºB. 40°C. 50ºD. 60°9.甲队修路1000m 与乙队修路800m 所用天数相同,已知甲队比乙队每天多修20m ,设甲队每天修路x m .依题意,下面所列方程正确的是( )A. 208001000-=x xB. 208001000+=x xC.x x 800201000=-D.xx 800201000=+ 第8题图B A EC D10. 若二次根式13+x 在实数范围内有意义,则x 的取值范围是( ) A .31-≤x B .31-≥x C .31-≠x D .0≥x 11. 不等式(1-a) x ﹥2变形后得到21x a <-成立,则a 的取值( ) A. a>0 C. a<0 C. a>1 D. a<112.如图,在△PAB 中,PA=PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM=BK ,BN=AK ,若∠MKN=42°,则∠P 的度数为( )A .44°B .66°C .96°D .92°二、填空题(本大题共6小题,每小题3分,满分18分)13. 16的算术平方根是__ .14.不等式2x+6>3x+4的正整数解是__ .15.H7N9禽流感病毒的直径大约是0.000 000 078米,用科学记数法表示为__ .16. 设2m =,3n =,则150= (结果用m ,n 表示).17.如图,△ABC 中,AC=6,BC=4,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为__ .18. 如图,在△ABC 中,AC=BC ,D 是BC 边上一点,连接AD ,若AB=AD=DC ,则∠B=__ .三、解答题(本大题共8小题,满分66分,解答应写出必要的文字说明,演算步骤或推理过程.)19.(本题满分6分)计算:2310)3(812)21()3(--⨯++-20.(本题满分6分)计算:)35)(35()23(2-++-第12题图第18题图 第17题图CB A21.(本题满分8分)解方程:32111x x x -=--22.(本题满分8分)如图,已知△ABC.(1)用尺规作图的方法分别作出△ABC 的角平分线BE 和CF, 且BE 和CF 交于点O.(保留作图痕迹,不要求写出作法);(2)在(1)中,如果∠ABC=40°,,∠ACB=60°,求∠BOC 的度数.23.(本题满分8分)先化简,再求值:2211(1)a a a-+÷ ,其中a=3.24.( 本题满分10分)如图,在△ABC 中,DM 、EN 分别垂直平分AC 和BC ,交AB 于M 、N ,(1)若△CMN 的周长为21cm ,求AB 的长;(2)若∠MCN=50°,求∠ACB 的度数.25.(本题满分10分)某班为了奖励在学校体育运动会中表现突出的同学,班主任派生活委员小明到文具店为获奖的同学买奖品,小明发现,如果买1本笔记本和3支钢笔,则需要19元;如果买2本笔记本和5支钢笔,则需要33元. A B C DE M N 第24题图(1)求购买每本笔记本和每支钢笔各多少元?(2)班主任给小明的班费只有110元,要奖励24名同学每人一件奖品,则小明至少要购买多少本笔记本?26.(本题满分10分)如图①,在△ABC中,AC=BC,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BG∥AC 交DE的延长线于点G.(1)求证:DB=BG;(2)当∠ACB=90°时,如图②,连接AD、CG,求证:AD⊥CG。
【精选3份合集】2017-2018年广东省名校八年级上学期数学期末联考试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各组数据中,不是勾股数的是( )A .3,4,5B .7,24,25C .8,15,17D .5,7,9【答案】D【解析】根据勾股数的定义(满足222+=a b c 的三个正整数,称为勾股数)判定则可.【详解】A 、222345+=,能构成直角三角形,是正整数,故是勾股数;B 、22272425+=,能构成直角三角形,是正整数,故是勾股数;C 、22281517+=,能构成直角三角形,故是勾股数;D 、222579+≠,不能构成直角三角形,是正整数,故不是勾股数;故选D .【点睛】本题考查的知识点是勾股数的定义,解题关键是注意勾股数不光要满足222+=a b c ,还必须要是正整数. 2.16=( )A .±4B .4C .±2D .2 【答案】B【解析】16表示16的算术平方根,为正数,再根据二次根式的性质化简.【详解】解:164=,故选B .【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.3.已知一次函数y =kx ﹣b (k≠0)图象如图所示,则kx ﹣1<b 的解集为( )A .x >2B .x <2C .x >0D .x <0【答案】C 【分析】将kx-1<b 转换为kx-b <1,再根据函数图像求解.【详解】由kx-1<b得到:kx-b<1.∵从图象可知:直线与y轴交点的坐标为(2,1),∴不等式kx-b<1的解集是x>2,∴kx-1<b的解集为x>2.故选C.【点睛】本题考查的是一次函数的图像,熟练掌握函数图像是解题的关键.4.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处【答案】D【分析】根据线段垂直平分线的性质即可得出答案.【详解】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.5.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.1.4 cm2 B.1.5 cm2 C.1.6 cm2D.1.7 cm2【答案】B【详解】延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=91°,∴△ABP≌△BEP,∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=S△ABC=1.5,故选B.考点:1.等腰三角形的判定与性质;2.三角形的面积.6.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、图形既不是轴对称图形是中心对称图形,B、图形是轴对称图形,C、图形是轴对称图形,也是中心对称轴图形,D、图形是轴对称图形.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.长度分别为a,2,4的三条线段能组成一个三角形,则a的值可能是()A.1 B.2 C.3 D.6【答案】C【分析】根据三角形三边关系定理得出4-2<a<4+2,求出即可.【详解】由三角形三边关系定理得:4﹣2<a<4+2,即2<a<6,即符合的只有1.故选:C.【点睛】此题考查三角形三边关系定理,能根据定理得出5-1<a<5+1是解题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.8.下列说法中,不正确的是( )A BC 2D .﹣3的倒数是﹣13 【答案】A【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A ,故A 选项不正确,所以本选项符合题意;B ,正确,所以本选项不符合题意;C 8,所以2,正确,所以本选项不符合题意;D 、﹣3的倒数是﹣13,正确,所以本选项不符合题意. 故选:A .【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.9.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是( )A .8,15,17B .4,6,8C .3,4,5D .6,8,10 【答案】B【解析】试题解析:A. 22281517+=,故是直角三角形,故错误; B. 222468+≠, 故不是直角三角形,正确;C. 222345+=, 故是直角三角形,故错误;D. 2226810+=, 故是直角三角形,故错误.故选B.点睛:如果三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.10.下列各式计算正确的是( )A .2a 2•3a 3=6a 6B .(﹣2a )2=﹣4a 2C .(a 5)2=a 7D .(ab 2)3=a 3b 6 【答案】D【分析】根据单项式乘法法则、积的乘方、幂的乘方法则计算即可.【详解】A .2a 2•3a 3=6a 5,故原题计算错误;B .(﹣2a )2=4a 2,故原题计算错误;C .(a 5)2=a 10,故原题计算错误;D .(ab 2)3=a 3b 6,故原题计算正确.故选:D .【点睛】本题考查了单项式乘法,以及幂的乘方和积的乘方,关键是掌握计算法则.二、填空题11.若a+b=4,ab=1,则a 2b+ab 2=________.【答案】1【解析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a 2b+ab 2=ab(a+b)=1×1=1.故答案为:1.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.12.如图,在ABC ∆,80EDF ∠=,点D 是BC 上一点,EM 、FN 分别是线段BD 、CD 的垂直平分线,则A ∠=________.【答案】80︒【分析】根据EM 、FN 分别是线段BD 、CD 的垂直平分线,得到BE =DE ,DF =CF ,由等腰三角形的性质得到∠EDB =∠B ,∠FDC =∠C ,根据三角形的内角和得到∠B +∠C =180︒−∠A ,根据平角的定义即可得到结论.【详解】∵EM 、FN 分别是线段BD 、CD 的垂直平分线,∴BE =DE ,DF =CF ,∴∠EDB =∠B ,∠FDC =∠C ,∵80EDF ∠=︒,∴∠EDB +∠FDC =180︒−100EDF ∠=︒,∴∠B +∠C =100︒,∴∠A =180︒-100︒=80︒,故答案为:80︒.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.13.已知2,3m n a a ==,则3m n a +=____.【答案】1【分析】根据幂的乘方以及同底数幂乘法的逆用进行计算即可.【详解】解:∵2,3m n a a ==,∴()33332354m n m n m na a a a a +=⋅=⋅=⨯=,故答案为:1.【点睛】本题主要考查了幂的乘方以及同底数幂的乘法,熟练掌握幂的运算性质是解答本题的关键.14.在平面直角坐标系xOy 中,点P 在第四象限内,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是_____.【答案】(3,﹣2).【分析】根据点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,可得答案.【详解】设P(x ,y),∵点P 到x 轴的距离为2,到y 轴的距离为3, ∴32x y ==,, ∵点P 在第四象限内,即:00x y ><,∴点P 的坐标为(3,﹣2),故答案为:(3,﹣2).【点睛】本题主要考查平面直角坐标系中,点的坐标,掌握“点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值”,是解题的关键.15.如图,在△ABC 中,∠B=10°,ED 垂直平分BC ,ED=1.则CE 的长为 .【答案】4【解析】试题分析:因为ED 垂直平分 BC ,所以BE=CE,在Rt △BDE 中,因为∠B=30°,ED=3,所以BE=4DE=4,所以CE=BE=4.考点:3.线段的垂直平分线的性质;4.直角三角形的性质.16.等腰三角形的一个角是70°,则它的底角是_____.【答案】55°或70°.【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为55°或70°.【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.17.等腰三角形一个底角为50°,则此等腰三角形顶角为________________________.【答案】80°【解析】根据等腰三角形的两底角相等,可知两底角分别为50°、50°,然后根据三角形的内角和可求得等腰三角形的顶角为80°.故答案为80°.三、解答题18.(1)从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证的公式为.(2)运用你所得到的公式,计算:(a+2b﹣c)(a﹣2b﹣c).【答案】(1)a1﹣b1=(a+b)(a﹣b);(1)a1﹣1ac+c1﹣4b1.【分析】(1)根据甲和乙两个图形中阴影部分的面积相等,即可求解;(1)利用(1)得到的公式即可求解.【详解】解:(1)a1﹣b1=(a+b)(a﹣b);(1)原式=[(a﹣c)+1b][(a﹣c)﹣1b]=(a﹣c)1﹣(1b)1=a1﹣1ac+c1﹣4b1.【点睛】本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.19.已知一次函数y=kx+b的图象过A(1,1)和B(2,﹣1)(1)求一次函数y=kx+b的表达式;(2)求直线y=kx+b与坐标轴围成的三角形的面积;(3)将一次函数y =kx+b 的图象沿y 轴向下平移3个单位,则平移后的函数表达式为 ,再向右平移1个单位,则平移后的函数表达式为 .【答案】(1)y =﹣1x+3;(1)94;(3)y =﹣1x ,y =﹣1x+1 【分析】(1)把A 、B 两点代入可求得k 、b 的值,可得到一次函数的表达式;(1)分别令y =0、x =0可求得直线与两坐标轴的两交点坐标,可求得所围成的三角形的面积; (3)根据上加下减,左加右减的法则可得到平移后的函数表达式.【详解】解:(1)∵一次函数y =kx+b 的图象过A (1,1)和B (1,﹣1),∴121k b k b +=⎧⎨+=-⎩,解得23k b =-⎧⎨=⎩, ∴一次函数为y =﹣1x+3;(1)在y =﹣1x+3中,分别令x =0、y =0,求得一次函数与两坐标轴的交点坐标分别为(0,3)、(32,0), ∴直线与两坐标轴围成的三角形的面积为:S =12×3×32=94; (3)将一次函数y =﹣1x+3的图象沿y 轴向下平移3个单位,则平移后的函数表达式为y =﹣1x ,再向右平移1个单位,则平移后的函数表达式为y =﹣1(x ﹣1),即y =﹣1x+1故答案为:y =﹣1x ,y =﹣1x+1.【点睛】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用关键是点的坐标,即把点坐标代入得到关于系数的方程组,求解即可.20.先化简再求值:2111211x x x x x x +⎛⎫+÷⎪--+-⎝⎭,其中x=12. 【答案】1x x -,-1 【分析】根据分式的加法法则和除法法则可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:原式=2(1)(1)11(1)x x x x x+-+-- = 221(1)x x x x-- = 1x x - 当x=12时,原式=12 112-=﹣1【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为600米,与公路上另一停靠站B的距离为800米,且CA CB⊥,如图,为了安全起见,爆破点C 周围半径400米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.【答案】没有危险,因此AB段公路不需要暂时封锁.【分析】本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【详解】解:如图,过C作CD⊥AB于D,∵BC=800米,AC=600米,∠ACB=90°,∴22228006001000AB BC AC=+=+=米,∵12AB•CD=12BC•AC,∴CD=480米.∵400米<480米,∴没有危险,因此AB段公路不需要暂时封锁.【点睛】本题考查了正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.22.尺规作图:如图,要在公路MN旁修建一个货物中转站P,分别向A、B两个开发区运货.(1)若要求货站到A、B两个开发区的距离相等,那么货站应建在那里?(2)若要求货站到A、B两个开发区的距离和最小,那么货站应建在那里?(分别在图上找出点P,并保留作图痕迹.)【答案】(1)答案见解析;(2)答案见解析.【分析】(1)要使货站到A、B两个开发区的距离相等,可连接AB,线段AB中垂线与MN的交点即为货站的位置;(2)由于两点之间线段最短,所以做点A作A’关于MN对称,连接BA’,与MN的交点即为货站的位置.【详解】(1)如图所示:(2)如图所示:【点睛】本题考查的是中垂线的性质与两点之间线段最短的知识,掌握中垂线的作图方法是以线段的两个端点为圆心,以大于二分之一线段的长度为半径,分别以线段两个端点为圆心画弧,连接两个交点即可,本题(2)中关键是通过中垂线找到点A的对称点(画图过程同(1),但需要从MN中任选两个点为线段端点,因为MN太长了,不方便作图),从而利用两点之间线段最短的的知识解答.23.一次函数y=kx+b的图象经过点A(0,9),并与直线y=53x相交于点B,与x轴相交于点C,其中点B的横坐标为1.。
2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
2017-2018学年广州天河省实八年级上学期期中数学试卷答案

广东实验中学2017-2018学年上学期期中检测初二年级数学答案一、选择题(本大题共有10小题,每小题3分,满分30分)二、填空题(本大题共有6小题,每小题3分,满分18分)11、(-3,-2) 12、 AC=BD 13、 1414、 2015、 6cm 16、 (-1,2)或(2,3)三、解答题(本大题共9小题,满分102 分.解答应写出文字说明、证明过程或演算步骤) 17.证明:∵BF=CE ,∴BF+FC=CE+FC , ∴BC=EF ,在△ABC 和△DEF 中,⎪⎩⎪⎨⎧=∠=∠=DE AB E B EF BC∴△ABC ≌△DEF(SAS), ∴∠A=∠D.18.解:(1)如图所示:(2)如图所示:19.证明:∵BD 平分∠ABC , ∴∠ABD=∠CBD , ∵DE ∥BC , ∴∠EDB=∠CBD , ∴∠EDB=∠ABD , ∴EB=ED , ∵EF ⊥BD 于点F , ∴∠BEF=∠DEF.20.答:CF ⊥DE ,理由如下: ∵AD ∥BE , ∴∠A=∠B在△ACD 和△BEC 中,⎪⎩⎪⎨⎧∠∠BE =AC B =A BC =AD ∴△ACD ≌△BEC(SAS), ∴DC=CE , ∵CF 平分∠DCE ,∴CF ⊥DE ,CF 平分DE(三线合一). 21、(1)证明:∵△ABC 为等边三角形, ∴AB=AC ,∠BAC=∠ACB=60∘, 在△BAE 和△ACD 中,⎪⎩⎪⎨⎧∠∠AC =AB ACB =BAC CD =AE∴△BAE ≌△ACD , ∴BE=AD ;证明:∵△BAE ≌△ACD , ∴∠ABE=∠CAD. ∵∠BPQ 为△ABP 外角, ∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=︒60. ∵BQ ⊥AD , ∴∠PBQ=︒30,22、(1)如图1中,∵四边形ABCD 是正方形, ∴AB=AD,∠A=︒90, ∵AP=DQ , ∴AD=PQ=AB , ∵PB ⊥PE , ∴∠BPE=︒90,∴∠ABP+∠APB=︒90,∠APB+∠EPQ=︒90, ∴∠ABP=∠EPQ , 在△ABP 和△QPE 中, ∴△ABP ≌△QPE ,⎪⎩⎪⎨⎧∠∠∠∠PQ =AB EQP =A EPQ =ABP ∴PB=PE ,∴∠PBE=∠PEB=︒45. (2)如图2中,①当AP=PD 时, ∵AP=DQ , ∴DP=DQ , ∵FD ⊥PQ , ∴PF=FQ ,∴△PFQ 是等腰三角形,此时t=2.②当点P 与点D 重合时,PF=CD=AD=DQ ,△PFQ 是等腰三角形,此时t=4. 综上所述,t=2s 或4s 时,△PFQ 是以PF 为腰的等腰三角形. (3) 如图3中,△PDF 的周长是定值.将BCF ∆绕点B 顺时针旋转︒90得到BAG ∆.∵∠PBE=︒45,∠ABC=︒90,∴∠ABP+∠CBF=∠ABP+∠ABG=︒45, ∴∠PBG=∠PBF , 在△PBG 和△PBF 中,⎪⎩⎪⎨⎧∠∠BF =BG PBF =PBG PB =PB ∴△PBG ≌△PBF , ∴PF=PG ,∴PF=PA+AG=PA+CF ,∴△PDF 的周长=PF+DP+DF=(PA+DP )+(DF+CF )=AD+CD=8. ∴△PDF 的周长为定值. 23、解:连接OC ,∵OA=OB=6,C 为AB 的中点, ∴OC ⊥AB ,OC=AC=BC , ∴∠MOC=∠NBC=︒45,∵∠MCO+∠OCN=∠OCN+∠NCB=︒90, ∴∠MCO=∠NCB , 在△OCM 和△BCN 中,⎪⎩⎪⎨⎧∠∠∠∠NCB =MCO BC=OC NBC =MOC ∴△OCM ≌△BCN (ASA ), ∴CM=CN ;(2) 过D 作DD ′⊥AB 于H ,交y 轴于D ′,∵∠OAB=︒45, ∴∠BAD=︒45, ∵∠AHD=︒90, ∴∠ADD ′=︒45,∴AB 为DD ′的垂直平分线, ∴D ′为D 点关于AB 的对称点, ∵D (4,6), ∴AD ′=AD=4, ∴OD ′=6−4=2, ∴D ′(0,2);(3) 过B 作BM ⊥OF 于M ,则∠M=︒90,∵AE ⊥OF ,∠AOE=︒90,∴∠AGO=∠M=︒90,∠OAG=∠BOM , 在△AOG 和△OBM 中,⎪⎩⎪⎨⎧M ∠=AGO ∠OB=AO BOM ∠=OAG ∠ ∴△AOG ≌△OBM (AAS ), ∴AG=OM ,OG=BM ,∵∠AEO=︒5.67,OF ⊥AE ,∠AOE=︒90, ∴∠EOG=∠OAG=︒5.22,又∵∠OAB=︒45, ∴∠BAE=︒5.22, ∵AE ∥BM ,∴∠MBF=∠BAE=︒5.22, ∴∠FBM=∠EOG , 在△OGE 和△BFM 中,⎪⎩⎪⎨⎧EOG ∠=FBM ∠BM=OG M ∠=OGE ∠ ∴△OGE ≌△BFM(ASA), ∴GE=FM ,∵AE=AG+GE ,OF=OM −FM ,∴AE −OF=(AG+GE )−(OM −FM )=GE+FM=2GE , ∴212==-GE GE OF AE GE .。