200个世界数学奥林匹克不等式题
世界各国与地区奥林匹克竞赛不等式题精选(扫描版打包23份 有小部分答案与解释)

目录奥地利历年奥林匹克竞赛试题精选 (2)巴西历年revenge奥林匹克竞赛试题精选 (3)德国历年奥林匹克竞赛试题精选 (4)俄罗斯+立陶宛数学奥林匹克历年竞赛试题精选 (5)法国历年奥林匹克竞赛试题精选 (8)芬兰历年奥林匹克竞赛试题精选 (9)哥斯达黎加历年奥林匹克竞赛试题精选 (9)韩国历年奥林匹克竞赛试题精选 (10)荷兰历年奥林匹克竞赛试题精选 (11)捷克历年奥林匹克竞赛试题精选 (12)科索沃历年奥林匹克竞赛试题精选 (12)克罗地亚历年奥林匹克竞赛试题精选 (13)马其顿历年奥林匹克竞赛试题精选 (14)美国ELMO奥林匹克竞赛试题精选 (15)摩尔多瓦历年奥林匹克竞赛试题精选 (16)瑞士历年奥林匹克竞赛试题精选 (18)台湾历年奥林匹克竞赛试题精选 (19)乌克兰历年奥林匹克竞赛试题精选 (20)西班牙历年奥林匹克竞赛试题精选 (23)希腊历年奥林匹克竞赛试题精选 (24)香港历年奥林匹克竞赛试题精选 (26)意大利历年奥林匹克竞赛试题精选 (27)印度历年奥林匹克竞赛试题精选 (28)奥地利历年奥林匹克竞赛试题精选巴西历年revenge奥林匹克竞赛试题精选德国历年奥林匹克竞赛试题精选俄罗斯+立陶宛数学奥林匹克历年竞赛试题精选法国历年奥林匹克竞赛试题精选哥斯达黎加历年奥林匹克竞赛试题精选荷兰历年奥林匹克竞赛试题精选捷克历年奥林匹克竞赛试题精选科索沃历年奥林匹克竞赛试题精选克罗地亚历年奥林匹克竞赛试题精选马其顿历年奥林匹克竞赛试题精选美国ELMO奥林匹克竞赛试题精选摩尔多瓦历年奥林匹克竞赛试题精选乌克兰历年奥林匹克竞赛试题精选西班牙历年奥林匹克竞赛试题精选希腊历年奥林匹克竞赛试题精选香港历年奥林匹克竞赛试题精选意大利历年奥林匹克竞赛试题精选印度历年奥林匹克竞赛试题精选31。
高中数学 第三节 不等式奥林匹克竞赛题解

第二章代数第三节不等式B3-001 北京、上海同时制成电子计算机若干台,除本地应用外,北京可支援外地10台,上海可支援外地4台.现在决定给重庆8台,汉口6台,若每台计算机运费如右表所示(单位:百元),又上海、北京当时制造的机器完全相同.问应怎样调运,才能使总的运费最省?【题说】1960年上海市赛高一复赛题6.【解】设北京调给重庆x台,上海调给重庆y台,则0≤x≤10,0≤y≤4x+y=8总运费为8x+4(10-x)+5y+3(4-y)=4x+2y+52=84-2y当y=4时,总运费最小,此时,x=4,10-x=6,4-y=0.答:北京调给重庆4台,调给汉口6台,上海调给重庆4台,这样总运费最省.B3-002 x取什么值时,不等式成立?【题说】第二届(1960年)国际数学奥林匹克题2.本题由匈牙利提供.将原不等式化简得 x2(8x-45)<0,因此,原不等式的解为B3-003甲队有2m个人,乙队有3m个人,现自甲队抽出(14-m)人,乙队抽出(5m-11)人,参加游戏,问甲、乙队各有多少人?参加游戏的人有几种选法?【题说】1962年上海市赛高三决赛题4.【解】抽出的人数必须满足解得m=5.故甲队有2m=10人,乙队有3m=15人,甲队抽出14-m=9(人).乙队抽出5m-11=14(人),从而参加游戏的人共有选法.B3-004 求出所有满足不等式的实数.【题说】第四届(1962年)国际数学奥林匹克题2.本题由匈牙利提供.B3-007 设a1,a2,…,a n为n个正数,且设q为一已知实数,使得0<q<1.求n个数b1,b2,…,b n使1.a k<b k, k=1,2,…,n.【题说】第十五届(1973年)国际数学奥林匹克题6.本题由瑞典提供.【解】设b k=a1q k-1+a2q k-2+…+a k-1q+a k+a k+1q+…+a n q n-k(k=1,2,…,n).1.显然b k>a k对k=1,2,…,n成立.2.比较b k+1=q k a1+q k-1a2+…+qa k+a k+1+…+q n-k-1a n与qb k=q k a1+…+q2a k-1+qa k+q2a k+1+…+q n-k+1a n,qb k的前面k项与bk+1的前面k项相等,其余的项小于b k+1的相应项(因为q<1).因此b k+1>qb k.因此,b1,b2,…,b n满足题目的要求.B3-008求满足条件:x≥1,y≥1,z≥1,xyz=10,x lgx y lgy z lgz≥10的x、y、z的值.【题说】1979年黑龙江省赛二试题3.【解】设lgx=u,lgy=v,lgz=w,则原题条件就变为:u≥0,v≥0,w≥0 (1)u+v+w=1(2)u2+v2+w2≥1(3)(2)平方得 u2+v2+w2+2(uv+vw+wu)=1 (4)(4)-(3)得 uv+vw+wu≤0由(1)得 uv=vw=wu=0(5)由(2)及(5)得:因此满足题意的解为:B3-009长方形的一边长为1cm已知它被两条相互垂直的直线分成四个小长方形,其中三个的面积不小于1cm2,第四个的面积不小于2cm2.问原长方形另一边至少要多长?【题说】第十七届(1983年)全苏数学奥林匹克九年级题6.【解】设小长方形的边长如图所示,则我们要求c+d的最小值,由题设c+d=(a+b)·(c+d)=ac+bd+ad+bcB3-010 m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有的这样的m与n,问3m+4n的最大值是多少?请证明你的结论.【题说】第二届(1987年)全国冬令营赛题6.【解】1987≥2+4+6+2m+1+3+…+(2n-1)=m(m+1)+n2因此,由柯西不等式于是221为3m+4n的上界,当m=27,n=35时,3m+4n取得最大值221.B3-011 求最大的正整数n,使不等式只对一个整数k成立.【题说】第五届(1987年)美国数学邀请赛题8.【解】原式等价于取n=112,则k只能取唯一的整数值97.另一方面,在n>112时,因此满足要求的n=112.B3-012 非负数a和d,正数b和c满足条件b+c≥a+d,这时【题说】第二十二届(1988年)全苏数学奥林匹克九年级题7.【证】不妨设a+b≥c+dc≤c+dB3-013 设a1、a2、…、a n是给定不全为0的实数,r1、r2、…、r n是实数,如果不等式r1(x1-a1)+r2(x2-a2)+…+r n(x n-a n)对任何实数x1、x2、…、x n成立,求,r1、r2、…、r n的值.【题说】第三届(1988年)全国冬令营赛题1.【解】取x i=a i,i=2,3,…,n代入原不等式,得当x1>a1时,由上式得当x1<a1时,上述不等式反号.令x1分别从大于a1与小于a1的方向趋于a1,得到B3-014 对于i=1,2,…,n,有|x i|<1 ,又设|x1|+|x2|+…+|x n|=19+|x1+…+x n|.那么整数n的最小值是多少?【题说】第六届(1988年)美国数学邀请赛题4.另一方面,令x1=x2=…=x10=0.95,x11=x12=…=x20=-0.95,则有故n=20即为所求最小值.B3-015 设m、n为正整数,证明存在与m、n无关的常数a【题说】1989年瑞典数学奥林匹克题5.【解】 a max=3因为 m2≡0,1,2,4(mod7)所以 7n2-m2≡-m2≡0,6,5,3(mod7)a=3maxB3-016 设x、y、z>0且x+y+z=1.求1/x+4/y+9/z的最小值.【题说】1990年日本第一轮选拔赛题10.【解】 1/x+4/y+9/z=(x+y+z)(1/x+4/y+9/z)B3-017 设n为自然数,对任意实数x、y、z,恒有(x2+y2+z2)2≤n(x4+y4+z4)成立,求n的最小值.【题说】1990年全国联赛一试题2(3).原题为填空题.【解】(x2+y2+z2)2=x4+y4+z4+2x2y2+2y2z2+2z2x2≤x4+y4+z4+(x4+y4)+(y4+z4)+(z4+x4)=3(x4+y4+z4)当x=y=z>0时,原不等式化为9x4≤3nx4,故n≥3.所以,n的最小值是3.B3-019 a、b、c是一个任意三角形的三边长,证明:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.【题说】第六届(1964年)国际数学奥林匹克题2.本题由匈牙利提供.【证】不妨设a≤b≤c.3abc-a2(b+c-a)-b2(c+a-b)-c2(a+b-c)=a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)≥b(b-c)(b-a)+c(c-a)(c-b)≥c(c-b)[(c-a)(b-a)]=c(c-b)2≥0 B3-020 怎样的整数a,b,c满足不等式 a2+b2+c2+3<ab+3b+2c?【题说】1965年匈牙利数学奥林匹克题1.【解】对于整数a、b、c,所要解的不等式等价于a2+b2+c2+4≤ab+3b+2c这个不等式可以变成由此可知,原不等式只可能有唯一的一组解a=1,b=2,c=1.B3-021有限数a1,a2,…,a n(n≥3)满足关系式a1=a n=0,a k-1+a k+1≥2a k(k=2,3,…,n-1),证明:数a1,a2,…,a n中没有正数.【题说】1966年~1967年波兰数学奥林匹克二试题1.【证】设a1,a2,…,a n中,a r最大,s是满足等式a s=a r的最小下标.若n>s>1,则a s-1;<a s,a s+1≤a s,从而a s-1+a s+1<2a s,与已知条件a s-1+a s+1≥2a s矛盾.故只有s=1或s=n,于是a r=0,数a1,a2,…,a n中没有正数,B3-022设a、b、c、d是正数,证明不等式a+b<c+d(1)(a+b)(c+d)<ab+cd (2)(a+b)cd<ab(c+d)(3)中至少有一个不正确.【题说】第三届(1969年)全苏数学奥林匹克九年级题1.【证】假定(1)、(2)、(3)都正确.则(a+b)2(c+d)<(a+b)(ab+cd)<ab(a+b)+ab(c+d)<2ab(c+d)从而(a+b)2<2ab,矛盾.B3-023 证明:任何正数a1,a2,…,a n满足不等式【题说】第三届(1969年)全苏数学奥林匹克十年级题6.原不等式左端的和大于故原不等式得证.【注】可以考虑更强的不等式(1954年美国数学家夏皮罗提出的猜测)对n≤12上式成立.对偶数n≥14与奇数n ≥27不成立.B3-024证明:对所有满足条件x1>0,x2>0,x1y1-成立,并求出等号成立的充要条件.【题说】第十一届(1969年)国际数学奥林匹克题6.本题由原苏联提供.所以当且仅当x1=x2,y1=y2,z1=z2时,等号成立.B3-025 设a、b、n都是自然数,且a>1,b>1,n>1,A n-1和A n 是a进制数系中的数,B n-1和B n是b进制数系中的数.A n-1、A n、B n-1和B n呈如下形式:A n-1=x n-1x n-2…x0,A n=x n x n-1…x0(a进制的位置表示法);B n-1=x n-1x n-2…x0,B n=x n x n-1…x0(b进制的位置表示法).其中x n≠0,x n-1≠0.证明:当a>b时,有【题说】第十二届(1970年)国际数学奥林匹克题2.本题由罗马尼亚提供.【证】由于a>b,故A n B n-1-A n-1B n=(x n a n-1+A n-1)B n-1-(x n b n-1+B n-1)A n-1=x n[x n-1(a n-1b n-2-a n-2b n-1)+…+x0(a n-1-b n-1)]>0B3-026 (n>2)是自然数,证明下述论断仅对n=3和n=5成立:对任意实数a1,a2,…,a n都有(a1-a2)·(a1-a3)…(a1-a n)+(a2-a1)·(a2-a3)…(a2-a n)+…+(a n-a1)·(a n-a2)…(a n-a n-1)≥0【题说】第十三届(1971年)国际数学奥林匹克题1.本题由匈牙利提供.1979年湖南省赛二试题4.【证】不妨设a1≤a2≤a3≤…≤a n.若n为偶数,令a1<a2=a3=…=a n,则左边小于0,因而不等式不成立;若n=3,则左边前两项的和为(a1-a2)2≥0第三项不小于0,故不等式成立;若n=5,则同样可知左边前两项的和不小于0,末两项的和也不小于0,第三项不小于0,因此左边总不小于0,不等式成立;若n≥7,令a1=a2=a3<a4<a5=a6=…=a n则左边只有一个非零项(a4-a1)(a4-a2)…(a4-a n)<0故不等式不成立.B3-027 A=(a ij)是一个元素为非负整数的矩阵,其中i、j=1,2,…,n.该矩阵有如下性质:如果某一a ij=0,那么对i和j有a i1+a i2+…+a in+a1j+a2j+…+a nj≥n证明:这个矩阵所有元素的和不小于0.5n2.【题说】第十三届(1971年)国际数学奥林匹克题6.本题由瑞典提供.【证】交换A的两行或两列不改变题设的A的性质(因为行和与列和均不变、只是交换了位置),因此我们可以先通过交换两行或两列的变换,使得有尽可能大的k满足a11=a22=…=a kk=0.此时对于i,j>k有a ij≠0.对于i≤k,j>k,若a ij=0,则a ji≠0,因若不然,交换i,j行,就会使a11=a22=…=a kk=a jj=0,与k的极大性矛盾.因而对于j>k,仍有a j1+…+a jn+a1j+…+a nj≥nB3-028求出所有能使不等式组成立的所有解(x1,x2,x3,x4,x5),其中x1,x2,x3,x4,x5都是正实数.【题说】第十四届(1972年)国际数学奥林匹克题4.本题由荷兰提供.【解】为方便起见,令x5+i=x i,则可以把原不等式组简写为将它们加起来得=x5=x2=x4.反之,如果x i都相等,原不等式组当然成立.B3-029 证明:对于正数a、b、c,下述不等式成立:a3+b3+c3+3abc≥ab(a+b)+bc(b+c)+ac(a+c)(1)【题说】第九届(1975年)全苏数学奥林匹克十年级题2.【证】不失一般性,可假定a≥b≥c.那末c(a-c)(b-c)≥0,(a-b)2(a+b-c)≥0从而 c3+abc≥ac2+bc2 (2)a3+b3+2abc≥ab(a+b)+a2c+b2c (3)(2)、(3)两式相加即得(1)式.B3-030已知a1,a2,…,a n为任何两两各不相同的正整数,求证对任何正整数n,下列不等式成立;【题说】第二十届(1978年)国际数学奥林匹克题5.本题由法国提供.【证】由柯西不等式【别证】利用排序不等式.B3-031 已知0≤a1,0≤a2,0≤a3,a1+a2+a3=1,0<λ1<λ2<λ3.求证:下面不等式成立【题说】1979年北京市赛二试题5.本题是康托洛维奇不等式的特例.【证】对任意正实数x,B3-032设a、b、c为正实数,证明【题说】第三届(1974年)美国数学奥林匹克题2.注意:这是一个对称不等式.【证】不失一般性,可以假定a≥b≥c>0.原不等式即a2a-b-c·b2b-a-c·c2c-a-b≥1 (1)由2a-b-c>0,得a2a-b-c·b2b-a-c≥b2a-b-c·b2b-a-c=b a+b-2ca=b=c时,等号成立.【别证】可以利用等式然后证明右端括号为正.B3-033 设x i、y i是实数(i=1,…,n).且x1≥x2≥…≥x n;y1≥y2≥…≥y n;z1、z2、…、z n是y1、y2、…、y n的任一个排列,证明【题说】第十七届(1975年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.【证】由排序不等式所以原式成立.B3-034有n个数a1,a2,…,a n.假设C=(a1-b1)2+(a2-b2)2+…+(a n-b n)2D=(a1-b n)2+(a2-b n)2+…+(a n-b n)2证明:C≤D≤2C.【题说】第十三届(1978年)全苏数学奥林匹克十年级题10.【证】设f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2则 f(x)=n(x-b n)2+f(b n)(1)现在用归纳法来证明不等式C≤D≤2C.当n=1时,C=D,故有C≤D≤2C.假设当n时,不等式成立,往a1,a2,…,a n中添一个数a n+1,此时C 增加了(a n+1-b n+1)2,而D增加了(a n+1-b n+1)2+f(b n+1)-f(b n).在(1)式中,令x=bn+1,得这样,D增加的值(a n+1-b n+1)2+f(b n+1)-f(b n)在(a n+1-b n+1)2与2(a n+1-b n+1)2之间,从而,对于n+1时,也有C≤D≤2C所以,对一切n,都有C≤D≤2CB3-035 a、b、c、d、e为整数,满足1≤a<b<c<d<e其中[m,n]为m、n的最小公倍数.【题说】第十一届(1979年)加拿大数学奥林匹克题3.【证】更一般地,可以证明:对于n个整数a1,a2,…,a n,满足1≤a1<a2<…<a n 时,有n=2时,(1)显然成立.假设n=k-1时(1)成立,考虑n=k的情况:若a k>2k,则若a k≤2k,则其中(m,n)为m、n的最大公约数,从而B3-036 S为正奇数集{a i},i=1,2,…,n.没有两个差|a i-a j|相等,1≤i<j ≤n.求证:【题说】1979年英国数学奥林匹克题3.【证】不妨设a1<a2<…<a n,r为整数且2≤r≤n.对于1≤所以, a r≥a1+r(r-1)≥1+r(r-1)r=1时,上式也成立,故B3-037对于n为一正整数,以p(n)表示将n表为一个或较多个正整数的和的方法数,例如p(4)=5,因为有5个不同的和,即1+1+1+1,1+1+21+3,2+2,4证明:当n>1时,p(n+1)-2p(n)+p(n-1)≥0【题说】1979年英国数学奥林匹克题5.【证】将n的p(n)个不同的表达式各加上1,得到p(n)个n+1的不同表达式,每一个都包含加数1.而且,n+1的每一个含有加数1的表达式,都可由这方法得到.因此将n+1表为大于1的整数的和的方法数q(n+1)=p(n+1)-p(n)同样将n+1表为大于2的整数的和的方法数即q(n+1)-q(n).显然q(n+1)-q(n)≥0因此p(n+1)-2p(n)+p(n-1)≥0B3-038若0≤a,b,c≤1,证明:【题说】第九届(1980年)美国数学奥林匹克题5.结论可以推广到n个数的情形.【证】令因为(1-b)(1-c)(1+b+c)≤(1-b)(1-c)(1+b)(1+c)=(1-b2)(1-c2)≤1(当a、b、c轮换时均成立)因此δ≥0.B3-039 若x为正实数,n为正整数.证明:其中[t]表示不超过t的最大整数.【题说】第十届(1981年)美国数学奥林匹克题5.【证】用数学归纳法.当n=1,2时,(1)显然成立.假设(1)对n≤k-1均成立.kx k=kx k-1+[kx]=(k-1)x k-1+x k-1+[kx] (2)(k-1)x k-1=(k-2)x k-2+x k-2+[(k-1)x] (3)…2x2=x1+x1+[2x](k)将(2)至(k)式相加,得kx k=x k-1+x k-2+…+x1+x1+[kx]+[(k-1)x]+…+[2x]因此,由归纳假定,kx k≤[kx]+2([(k-1)x]+[(k-2)x]+…+[x])但是[(k-m)x]+[mx]≤[(k-m)x+mx](m<k),所以kx k≤[kx]+([(k-1)x)]+[x])+…+([x]+[(k-1)x])≤k[kx]即x k≤[kx].此即所欲证之(1)式.B3-041 设a、b、c是三角形的边长,证明:a2b(a-b)+b2c(b -c)+c2a(c-a)≥0,并说明等号何时成立.【题说】第二十四届(1983年)国际数学奥林匹克题6.本题由美国提供.【证】设a是最大边,原式左边=a(b-c)2(b+c-a)+b(a-b)(a-c)(a+b-c)显然上式是非负的,从而原式成立,当且仅当a=b=c,即这三角形为正三角形时等号成立.B3-043 设x1,x2,…,x n都是正整,求证:【题说】1984年全国联赛二试题5.本题可用柯西不等式、数学归纳法等多种方法证明.将以上各式相加,即得所要证的不等式.B3-044设P(x)=a0+a1x+…+a k x k为整系数多项式,其中奇系数的个数由W(P)来表示,设Q i(x)=(1+x)i,i=0,1,…,n.如果i1,i2,…,i n是整数,且0≤i1<i2<…<i n,证明:【题说】第二十六届(1985年)国际数学奥林匹克题3.本题由荷兰提供.当i n=1时,命题显然成立.设i n>1并且命题在i n换为较小的数时成立.令k=2m<i n<2m+1,(1)i1<k.设i r<k,i r+1>k,Q=R+(1+x)k S,其中的次数均小于K,由(1)(1+x)k≡1+x k(mod2),故W(Q)=W(R+S+x k S)=W(R+S)+W(S)≥W(R)的次数均小于K.W(Q)=W(S+x k S)=2W(S)≥2W(R)=W(R+x k R)=W((1+x k)R)045 证明:对于任意的正数a1,a2,…,a n不等式成立.【题说】第二十届(1986年)全苏数学奥林匹克十年级题2.【证】不妨设a1≤a2≤…≤a n.因为当2≤k≤(n+1)/2时【注】原不等式可加强为B3-046 正数a,b,c,A,B,C满足条件a+A=b+B=c+C=k证明: aB+bC+cA <k2【题说】第二十一届(1987年)全苏数学奥林匹克八年级题5.【证】由题设k3=(a+A)(b+B)(c+C)=abc+ABC+aB(c+C)+bC(a+A)+cA(b+B)=abc+ABC+k(aB+bC+cA)>k(aB+bC+cA)即 aB+bC+cA<k2B3-048证明:对于任意的正整数n,不等式(2n+1)n≥(2n)n+(2n-1)n 成立.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题8.【证】只须证明由恒等式所以(1)式成立.B3-049已知a、b为正实数,且1/a+1/b=1.试证:对每一个n∈N,有(a+b)n -a n-b n≥22n-2n+1【题说】1988年全国联赛一试题5.【证】用数学归纳法证.(1)当n=1时,左边=0=右边,命题成立.(2)假设n=k时,不等式成立,即(a+b)k-a k-b k≥22k-2k+1当n=k+1时,左边=(a+b)k+1-a k+l-b k+1=(a+b)[(a+b)k-a k-b k]+a k b+ab k从而有≥2·2k+1=2k+2所以,左边≥4(22k-2k+1)+2k+2=22(k+1)-2k+2=右边由(1)及(2),对一切n∈N,不等式成立.B3-050已知a5-a3+a=2.证明:3<a6<4.【题说】第十四届(1988年)全俄数学奥林匹克八年级题3.【证】由a5-a3+a=2,变形为(1)a[(a2-1)2+a2]=2(2)由(2)知 a>0且a≠1(1)÷a得 a4-a2+1=2/a (3)(1)×a得 a6-a4+a2=2a (4)(3)+(4)得 a6+1=2(a+1/a)>4 (5)又由(1)知 2=(a5+a)-a3>2a3-a3=a3故 a3<2(6)由(5)和(6)得3<a6<4.B3-051已知a、b、c、d是任意正数,求证:【题说】1989年四川省赛二试题1.由平均值不等式,(2)≤2ab+2ac+2ad+2bc+2bd+2cd+2a2+c2+b2+d2=(a+b+c+d)(3)(2)÷(3)即得结论.B3-052已知x i∈R(i=1,2,…,n,n≥2),满足【题说】1989年全国联赛二试题2.因为 A/n≤a≤A,B≤b≤B/nB3-053已知a1,a2,…,a n是n个正数,满足a1·a2…a n=1,求证(2+a1)(2+a2)…(2+an)≥3n【题说】1989年全国联赛一试题3.B3-054对于任何实数x1,x2,x3,如果x1+x2+x3=0,那么x1x2+x2x3+x3x1≤0,请证明之.又对于什么样的n(n≥4),如果x1+x2+…+x n=0,那么x1x2+x2x3+…+x n-1x n+x n x1≤0?【题说】1989年瑞典数学奥林匹克题3.【证】如果x1+x2+x3=0,则有当n=4时,若x1+x2+x3+x4=0,则即n=4时,命题成立.当n≥5时,令x1=x2=1,x4=-2,x3=x5=x6=…=x n=0,则x1+x2+x3+x4+…+x n=0而 x1x2+x2x3+x3x4+…+x n-1x n+x n x1=l>0 所以n≥5时,命题不成立.B3-055证明:对于任意的x、y、z∈(0,1),不等式x(1-y)+y(1-z)+z (1-x)<1成立.【题说】第十五届(1989年)全俄数学奥林匹克九年级题6.【证】设f(x)=(1-y-z)x+y(1-z)+z,它是x的一次函数,因此关于x是单调的.因为f(0)=y-yz+z=(y-1)(1-z)+1<1f(1)=1-yz<1所以当x∈(0,1)时,f(x)的最大值小于1,即x(1-y)+y(1-z)+z(1-x)<1B3-056证明:若a、b、c为三角形三边的长,且a+b+c=1,则【题说】第二十三届(1989年)全苏数学奥林匹克九年级题2.1990年意大利数学奥林匹克题4.所以B3-057已知二次函数f(x)=ax2+bx+c,当-1≤x≤1时,有-1≤f(x)≤1求证:当-2≤x≤2时,有-7≤f(x)≤7.【题说】1990年南昌市赛二试题1【证】由已知 -1≤f(1)=a+b+c≤1 (1)-1≤f(0)=c≤1(2)-1≤f(-1)=a-b+c≤1 (3)(1)+(3)得 -1≤a+c≤1 (4)由(4)、(2)得 -2≤a≤2从而 |4a±2b+c|=|2(a±b+c)+2a-c| ≤2|a±b+c|+2|a|+|c|≤7即 |f(±2)|≤7|f(x)|≤7所以,当|x|≤2时B3-058证明:对于和为1的正数a1,a2,…,a n,不等式成立.【题说】第二十四届(1990年)全苏数学奥林匹克十年级题2.当a1=a2=…=a n=时,上式取等号.B3-059设a、b、c、d是满足ab+bc+cd+da=1的非负数.试证:【题说】第三十一届(1990年)IMO预选题88.本题由泰国提供.【证】设则由柯西不等式熟知所以B3-060设a1≤a2≤…≤a7≤a8是8个给定的实数,且x=(a1+a2+…+a7+a8)/8;【题说】1991年中国国家教委数学试验班招生数学题3.【证】≥0并且由柯西不等式,y≥x2,所以B3-061已知0<a<1,x2+y=0,求证:【题说】1991年全国联赛一试题5.B3-063已知a1,a2,…,a n>1(n≥2),且|a k+1-a k|<1,k=1,2,…,n-1.证明: a1/a2+a2/a3+…+a n-1/a n+a n/a1<2n-1【题说】第十七届(1991年)全俄数学奥林匹克九年级题8.【证】若a k≤a k+1(k=1,2,…,n-1),则a k/a k+1≤1,故a1/a2+a2/a3+…+a n-1/a n+a n/a1<(n-1)+na1/a1=2n-1(n≥2)若有a k>a k+1,则由|a k+1-a k|<1知a k/a k+1<1+1/a k+1<2设有p个k值使a k≤a k+1,(n-1-p)个k值使a k>a k+1,则a1/a2+a2/a3+…+a n-1/a n≤p+2(n-1-p)同时 a n/a1=[(a n-a n-1)+…+(a2-a1)+a1]/a1<p+1因此 a1/a2+a2/a3+…+a n-1/a n+a n/a1<p+2(n-1-p)+p+1=2n-1B3-064令其中m,n∈N,证明a m+a n≥m m+n n【题说】第二十届(1991年)美国数学奥林匹克题4.【证】不妨设m≥n,则故n≤a≤m,而有m m-a m=(m-a)(m m-1+m m-2a+…+a m-1)≤(m-a)(m m-1+m m-1+…+a m-1)=(m-a)m m (2)a n-n n=(a-n)(a n-1+a n-2+…+n n-1)≥(a-n)n n由(1)有(m-a)m m=(a-n)n n (3)将(2)、(3)代入,即得a n-n n≥m m-a m或a m+a n≥m m+n n此即所求证之式.B3-065设a、b、c是非负数,证明:【题说】第二十五届(1991年)全苏数学奥林匹克十年级题1.【证】(a+b+c)2=(a2+bc)+(b2+ca)+(c2+ab)所以原不等式成立.B3-066设a i≥0(i=1,2,…,n),a=min{a1,a2,…,a n},试证式中a n+1=a1.【题说】1992年第七届数学冬令营题2.B3-067设n(≥2)是整数,证明:【题说】1992年日本数学奥林匹克题3.B3-068 n是正整数,证明:【题说】1992年澳大利亚数学奥林匹克题8.【证】因为B3-069对x、y、z≥0,证明不等式x(x-z)2+y(y-z)2≥(x-z)(y-z)(x+y-z)等号何时成立?【题说】第二十四届(1992年)加拿大数学奥林匹克题2.【解】原不等式即x3+y3+z3+3xyz≥x2y+xy2+y2z+yz2+z2x+zx2由对称性,可设x≥z≥y,于是x(x-z)2+y(y-z)2≥0≥(x-z)(y-z)(x+y+z)B3-070设实数x、y、z满足条件yz+zx+xy=-1,求x2+5y2+8z2的最小值和最大值.【题说】1992年英国数学奥林匹克题4.【解】由于(y-2z)2+(x+2y十2z)2≥0所以x2+5y2+8z2≥-4(xy+yz+zx)=4的最小值为4.x2+5y2+8z2>x2当y→0时,函数x2+5y2+8z2的值可趋于无穷大.B3-071设A是一个有n个元素的集合,A的m个子集A1,A2,…,A n两两互不包含,证明:其中a i为A i中元素个数.【题说】1993年全国联赛二试题2.【证】A中元素的全排列共n!个.其中开头a i个元素取自A i中的,有a i!(n-a i)!个.由于A i与A j(i≠j)互不包含,故这些排列与开头a j个元素取自A j中的不同.由柯西不等式,结合(1)便得(2).B3-073设函数f:R+→R+满足条件:对任意x、y∈R+,f(xy)≤f(x)f(y).试证:对任总x>0,n∈N,有【题说】1993年中国数学奥林匹克(第八届数学冬令营)题6.【证】f(x2)≤f2(x),所以f(x2)≤f(x)f1/2(x2).假设有则≥f n-1(x n)所以(1)对所有的自然数n成立.B3-075设a、b、c、d都是正实数,求证不等式【题说】第三十四届(1993年)IMO预选题本题由美国提供.【证】由柯西不等式即又(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2≥0结合(1)、(2)即得结论.B3-076设a1,a2,…,a n为n个非负实数,且a1+a2+…a n=n.证明:【题说】1994年合肥市赛题4.一方面由柯西不等式知B3-077已知f(z)=c0z n+c1z n-1+…+c n (1)是z的n次复系数多项式.求证:存在一个复数z0,|z0|=1,使|f(z0)|≥|c0|+|c n|(2)【题说】1994年中国数学奥林匹克(第九届数学冬令营)题4.【证】取复数β,使|β|=1且βn·c0与c n辐角相同,从而|βn c0+c n|=|βn c0|+|c n|=|c0|+|c n|再令ω=e2πi/n,a k=β·ωk(0≤k≤n-1)故必有一个k,使 |f(αk)|≥|c0|+|c n|显然,|αk|=1,于是αk就是所求的z0。
数学奥林匹克竞赛题目

数学奥林匹克竞赛题目尽管数学奥林匹克竞赛的题目复杂多样,但它们都有一个共同点,那就是挑战参赛者的思维能力和数学解题技巧。
以下是一些数学奥林匹克竞赛题目的示例,展示了数学之美以及对于问题求解的创新思维。
1. 最长公共子序列题目:给定两个字符串s1和s2,找出它们最长的公共子序列的长度。
解析:这是一个经典的动态规划问题。
我们可以使用一个二维数组dp来记录状态,其中dp[i][j]表示s1的前i个字符和s2的前j个字符的最长公共子序列的长度。
通过状态转移方程,我们可以逐步填充整个dp数组,最后的答案即为dp[m][n],其中m和n分别为s1和s2的长度。
2. 素数判定题目:给定一个正整数n,判断它是否为素数。
解析:素数判定是一个经典的数论问题。
可以使用试除法来判断一个数是否为素数,即判断它是否有除了1和它自身以外的因子。
从2开始到根号n,依次判断n是否能整除这些数,如果能整除,则n不是素数,反之,则是素数。
3. 数字组合题目:给定一个正整数n,找出所有由1到n个数字组成的排列。
解析:这是一个典型的回溯算法问题。
我们可以使用递归的方式来生成所有的排列。
每次递归时,从1到n中选择一个数字,并将其加入当前排列中,在继续递归生成剩余的排列。
我们使用一个布尔数组visited来记录某个数字是否已经在当前排列中出现过,以防止重复选择。
4. 数列求和题目:给定一个数列1, 3, 5, 7, 9, ...,求前n个数的和。
解析:这是一个等差数列的求和问题。
可以使用数学公式来解决,即等差数列的和公式:S = (首项 + 末项) * 项数 / 2。
根据题目给出的数列,我们可以得到首项为1,末项为(2n - 1),项数为n,代入公式即可求得和。
5. 二进制矩阵计算题目:给定一个二进制矩阵,求相邻的1所组成的区域的面积。
解析:这是一个图的深度优先搜索问题。
我们可以遍历整个二进制矩阵,对于每个为1的位置,递归地搜索与其相邻的1,并计算区域的面积。
国际数学奥林匹克(IMO)竞赛试题(第47届)及答案

1.△ABC的内心为I,三角形内一点P满足∠PBA+∠PCA=∠PBC+∠PCB.求证,AP ≥AI,而且等号当且仅当P=I时成立.证:∠PBC+∠PCB= 12(∠ABC+∠ACB)=∠IBC+∠ICB,故∠PBI=∠PCI,从而P,B,C,I四点共圆.但由内外角平分线相垂直知B,C,I与BC 边上的旁切圆心T 共圆,且IT是这个圆的直径,IT的中点O为圆心.由于A,I,T共线(∠BAC的平分线),且P在圆周上,AP+PO≥AO=AI+IO,PO=IO,故AP≥AI.等号当且仅当P为线段AO与圆周的交点即P=I时成立.2.正2006 边形P 的一条对角线称为好的,如果它的两端点将P 的边界分成的两部分各含P的奇数条边.P的边也是好的.设P被不在P的内部相交的2003 条对角线剖分为三角形.试求这种剖分图中有两条边为好的等腰三角形个数的最大值.解:对于剖分图中的任一三角形ABC,P的边界被A,B,C分为3段,A-B段所含P 的边数记作m(AB).由于m(AB)+ m(BC)+ m(CA)=2006,故等腰三角形若有两条好边,,故等腰三角形若有两条好边,它们必是两腰.称这样的等腰三角形为好三角形.考虑任一好三角形ABC(AB=AC).A-B 段上若有别的好三角形,其两腰所截下的P 的边数为偶数.由于剖分图中的三角形互不交叉,由于剖分图中的三角形互不交叉,而而A-B 段上P 的边数为奇数,故A-B 段上必有P的一边α不属于更小的腰段,同理A-C段上也有P的一边β不属于更小的腰段,令△ABC 对应于{α,β}.由上述取法,两个不同的好三角形对应的二元集无公共元,因此好三角形不多于20062=1003 个.设P=A1A2…A2006,用对角线A1A2k+1(1≤k≤1002)及A2k+1A2k+3(1≤k≤1001)所作的剖分图恰有1003 个好三角形.因此,好三角形个数的最大值是1003.3.求最小实数M ,使得对一切实数 a ,b ,c 都成立不等式2222222222|()()()|()ab a b bc b c ca c a M a b c -+-+-++≤解:222222()()()ab a b bc b c ca c a -+-+-()()()()a b b c c a a b c =----++.设a b x b c y c a z a b c s -=-=-=++=,,,,则22222221()3a b c x y z s ++=+++. 原不等式成为22222()9||(0)M x y z s xyzs x y z +++++=≥.x y z ,,中两个同号而与另一个反号.不妨设 x y ,≥0.则2221||()2z x y x y x y =+++,≥,2()4x y xy +≥.于是由算术-几何平均不等式 222222223()(())2x y z s x y s +++++≥=22222111(()()())222x y x y x y s ++++++6223414())42()||162||8x y s x y s xyzs +=+≥(≥ 即9232M =时原不等式成立. 等号在21s x y ===,,2z =-,即::(23):2:(23)a b c =+-时达到,故所求的最小的9232M =. 4.求所有的整数对(x y ,),使得212122x x y +++=.解:对于每组解(x y ,),显然0x ≥,且()x y -,也是解.0x =时给出两组解(02)±,.设x y ,>0,原式化为12(21)(1)(1)x x y y ++=+-.1y +与1y -同为偶数且只有一个被4整除.故3x ≥,且可令12x y m e -=+g ,其中m 为正的奇数,1e =±.代入化简得2212(8)x m m e --=-.若1e =,2801m m -=≤,.不满足上式.故必1e =-,此时22212(8)2(8)x m m m -+=--≥,解得3m ≤.但1m =不符合,只有3m =,4x =,23y =.因此共有4组整数解(02)(423)±±,,,.5.设()P x 为n 次(n >1)整系数多项式,k 是一个正整数.考虑多项式()(((())))Q x P P P x =L L ,其中 P 出现k 次.证明,最多存在 n 个整数t ,使得()Q t t =.证:若Q 的每个整数不动点都是 P 的不动点,结论显然成立.设有整数0x 使得00()Q x x =,00()P x x ¹.作递推数列1()(012)i i x P x i +==L ,,.它以 k 为周期.差分数列1(12)i i i xxi -D =-=L ,,的每一项整除后一项.由周期性及10D ¹,所有||i D 为同一个正整数u .令121111min{}m k m m m m m m x x x x u x x x x x x -++-==-=-=L ,,,,,. 数列的周期为 2.即0x 是 P 的2-周期点.设 a 是P 的另一个2-周期点,() b P a =(允许b =a ).则0a x -与1b x -互相整除,故01||||a x b x -=-,同理01||||b x a x -=-.展开绝对值号,若二者同取正号,推出01x x =,矛盾.故必有一个取负号而得到01a b x x +=+.记01x x C +=,我们得到:Q 的每个整数不动点都是方程 ()P x x C +=的根.由于P 的次数n 大于 1,这个方程为n 次.故得本题结论.6.对于凸多边形P 的每一边b ,以b 为一边在P 内作一个面积最大的三角形.证明,所有这些三角形的面积之和不小于P 的面积的两倍.证:过P 的每个顶点有唯一的直线平分P 的面积,将该直线与P 的边界的另一交点也看作 P 的顶点(允许若干个相继顶点共线).每两条面积平分线都交于 P 内.P 可 看成一个 2n 边形122-12n n A A A A L ,每条对角线i i n A A +是P 的面积平分线(i =1,2,…,n ,2i n i AA+=).设i i n A A +与11i i n A A+++交于 i O (i n i OO+=),由面积关系得到,11()()i i i i i n i n S O A A S O A A ++++=△△,11i i i i i i n i i n O A O A O A O A ++++=g g ,故i i n i i O A O A +和11i i n i i O A O A +++ 中必有一个不小于 1,于是以 1i i A A +为一边在 P 内作的面积最大的三角形的面积 11111()max{()()}2()i i i n i i i n i i i i i S A A S A A A S A A A S O A A +++++++≥△,△≥△. 对于每条有向线段i i n A A +uuuuuu r ,P 内部的每一点T 或在它的左侧或在它的右侧.由于T 在11n A A +uuuuuu r 和12111n n n A A A A +++=uuuuuuuuu r uuuuuu r 的相反侧,故必有i 使得T 在i i n A A +uuuuuu r 和11i i n A A +++uuuuuuuuu r 的相反侧,从而T在1i i i O A A +△或1i i n i n O A A +++△中.即211n i i i i O A A P +=ÊU △.于是 221111()2()2()nn i i i i i i i S A A S O A A S P ++==åå≥△≥ P 中同一边上的各个1()i i S A A +之和就是该边上的面积最大的内接三角形面积.。
2013竞赛专题_著名不等式汇集

竞赛中著名不等式汇集作者 阿道夫 (配以典型的例题) 2013.2.28在数学领域里,不等式知识占有广阔的天地。
不等式常以其优美的结构、严谨的解法、恢弘的气势、广阔的知识容纳性、深层的数学背景等,而被众多竞赛大家所看重,也被莘莘学子所追崇。
以下根据自己在前些年教学中的总结并引学了其他贤人的智慧汇集如下,希望对同学们有所帮助。
1. 平均不等式(均值不等式)2. 柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式)3. 排序不等式(排序原理)4. 契比雪夫不等式5. 贝努利不等式6. 琴生不等式7. 含有绝对值的不等式 8. 舒尔不等式 9. 一些几何不等式01 佩多不等式02外森比克不等式03 三角形内角的嵌入不等式10. 内斯比特不等式 11. Holder 不等式.12. 闵可夫斯基(Minkowski )不等式1. 平均不等式(均值不等式)设n a a a ,,,21 是n 个正数,令na a a nn H 111)(21+++=(调和平均值),n n a a a n G 21)(= (几何平均值),na a a n A n+++=21)( (算术平均值),na a a n Q n22221)(+++= (平方平均值), 则有(I )(调和平均几何平均不等式) )()(n G n H ≤; (II )(几何平均算术平均不等式) )()(n A n G ≤; (III )(算术平均平方平均不等式) )()(n Q n A ≤.这些不等式又统称为均值不等式.等号成立的充要条件是n a a a === 21. (I ) )()(n G n H ≤ ⇔na a a n11121+++ ≤n n a a a 21⇔n a a a a a a a a a a a a n nnnnnn≥+++21221121 (1)121221121=⋅nnnnnnna a a a a a a a a a a a,由3的推论2知(1)式成立,故(I )成立.等号成立的充要条件是nnnnnnna a a a a a a a a a a a 21221121===,即n a a a === 21.(II ))()(n A n G ≤ ⇔nn a a a 21≤na a a n+++ 21⇔n a a a a a a a a a a a a nnnnnnn≥+++21212211(2)121212211=⋅nnnnnnna a a a a a a a a a a a,所以由3的推论2知(2)成立,故(II )成立.显然等号成立的充要条件是n a a a === 21.(III ) 令na a a c n+++= 21,再令ii a c α=+ ,n i ,,2,1 =,则1212n n a a a nc ααα+++=++++1212n n a a a ααα=+++++++().∴ 12n ααα+++=0 ,222212()()()n n a c c c ααα++++++++=c =≥=.等号成立的充要条件是222120n ααα+++=,即n a a a === 21.另:G,Q 证明还可以借助2维形式加以证明练习:1).设 的最小值为 .2). 设A 、B 、C 、D 为空间中的四点,求证:证明:如图,取BD 的中点E ,连结AE 和EC ,则在△ABD 和△BCD 中,根据中线的性质,有3). (2005年日本数学奥林匹克)若正实数,,,c b a 满足1=++c b a ,求证1111333≤-++-++-+b a c a c b c b a .证 ∵021>+=-+++=-+b a c b c b a c b , 由均值不等式,得313)1(1113cb c b c b -+=-+++≤-+, ∴ 313acab a c b a -+≤-+.同理可得,313babc b a c b -+≤-+ .313cbca c b a c -+≤-+将上述3个不等式相加,得333111b a c a c b c b a -++-++-+c b a ++≤ 1=.4).(2004年中国香港数学集训队试题)证明对于任意正实数,,,c b a 均有.222444c b a abc ca b bc a ++≥++解:,422244a c b bc a bc a ≥+++,422244b c a ac b ac b ≥+++,422244c b a abc ab c ≥+++ 上述3个式子相加,得)(4)(2)(2222222444c b a c b a abc ac b bc a ++≥+++++, 所以.222444c b a abc ca b bc a ++≥++2. 柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式) 对任意两组实数 ,,…,;,,…,,有,其中等号当且仅当时成立。
数学奥林匹克题解 代数-不等式

代数-不等式北京、上海同时制成电子计算机若干台,除本地应用外,北京可支援外地10台,上海可支援外地4台.现在决定给重庆8台,汉口6台,若每台计算机运费如右表所示(单位:百元),又上海、北京当时制造的机器完全相同.问应怎样调运,才能使总的运费最省?【题说】1960年上海市赛高一复赛题6.【解】设北京调给重庆x台,上海调给重庆y台,则0≤x≤10,0≤y≤4x+y=8总运费为8x+4(10-x)+5y+3(4-y)=4x+2y+52=84-2y当y=4时,总运费最小,此时,x=4,10-x=6,4-y=0.答:北京调给重庆4台,调给汉口6台,上海调给重庆4台,这样总运费最省.B3-002 x取什么值时,不等式成立?【题说】第二届(1960年)国际数学奥林匹克题2.本题由匈牙利提供.将原不等式化简得 x2(8x-45)<0,因此,原不等式的解为B3-003 甲队有2m个人,乙队有3m个人,现自甲队抽出(14-m)人,乙队抽出(5m-11)人,参加游戏,问甲、乙队各有多少人?参加游戏的人有几种选法?【题说】1962年上海市赛高三决赛题4.【解】抽出的人数必须满足解得m=5.故甲队有2m=10人,乙队有3m=15人,甲队抽出14-m=9(人).乙队抽出5m-11=14(人),从而参加游戏的人共有选法.B3-004 求出所有满足不等式的实数.【题说】第四届(1962年)国际数学奥林匹克题2.本题由匈牙利提供.B3-007 设a1,a2,…,an为n个正数,且设q为一已知实数,使得0<q<1.求n个数b1,b2,…,bn使1.ak<bk, k=1,2,…,n.【题说】第十五届(1973年)国际数学奥林匹克题6.本题由瑞典提供.【解】设bk=a1qk-1+a2qk-2+…+ak-1q+ak+ak+1q+…+anqn-k(k=1,2,…,n).1.显然bk>ak对k=1,2,…,n成立.2.比较bk+1=qka1+qk-1a2+…+qak+ak+1+…+qn-k-1an与qbk=qka1+…+q2ak-1+qak+q2ak+1+…+qn-k+1an,qbk的前面k项与bk+1的前面k项相等,其余的项小于bk+1的相应项(因为q<1).因此bk+1>qbk.因此,b1,b2,…,bn满足题目的要求.B3-008 求满足条件:x≥1,y≥1,z≥1,xyz=10,xlgxylgyzlgz≥10的x、y、z的值.【题说】1979年黑龙江省赛二试题3.【解】设lgx=u,lgy=v,lgz=w,则原题条件就变为:u≥0,v≥0,w≥0 (1)u+v+w=1(2)u2+v2+w2≥1 (3)(2)平方得 u2+v2+w2+2(uv+vw+wu)=1 (4)(4)-(3)得 uv+vw+wu≤0由(1)得uv=vw=wu=0(5)由(2)及(5)得:因此满足题意的解为:B3-009 长方形的一边长为1cm已知它被两条相互垂直的直线分成四个小长方形,其中三个的面积不小于1cm2,第四个的面积不小于2cm2.问原长方形另一边至少要多长?【题说】第十七届(1983年)全苏数学奥林匹克九年级题6.【解】设小长方形的边长如图所示,则我们要求c+d的最小值,由题设c+d=(a+b)(c+d)=ac+bd+ad+bcB3-010 m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有的这样的m与n,问3m+4n的最大值是多少?请证明你的结论.【题说】第二届(1987年)全国冬令营赛题6.【解】1987≥2+4+6+2m+1+3+…+(2n-1)=m(m+1)+n2因此,由柯西不等式于是221为3m+4n的上界,当m=27,n=35时,3m+4n取得最大值221.B3-011 求最大的正整数n,使不等式只对一个整数k成立.【题说】第五届(1987年)美国数学邀请赛题8.【解】原式等价于取n=112,则k只能取唯一的整数值97.另一方面,在n>112时,因此满足要求的n=112.B3-012 非负数a和d,正数b和c满足条件b+c≥a+d,这时【题说】第二十二届(1988年)全苏数学奥林匹克九年级题7.【证】不妨设a+b≥c+dc≤c+dB3-013 设a1、a2、…、an是给定不全为0的实数,r1、r2、…、rn是实数,如果不等式r1(x1-a1)+r2(x2-a2)+…+rn(xn-an)对任何实数x1、x2、…、xn成立,求,r1、r2、…、rn的值.【题说】第三届(1988年)全国冬令营赛题1.【解】取xi=ai,i=2,3,…,n代入原不等式,得当x1>a1时,由上式得当x1<a1时,上述不等式反号.令x1分别从大于a1与小于a1的方向趋于a1,得到B3-014 对于i=1,2,…,n,有|xi|<1 ,又设|x1|+|x2|+…+|xn|=19+|x1+…+xn|.那么整数n的最小值是多少?【题说】第六届(1988年)美国数学邀请赛题4.另一方面,令x1=x2=…=x10=0.95,x11=x12=…=x20=-0.95,则有故n=20即为所求最小值.B3-015 设m、n为正整数,证明存在与m、n无关的常数a【题说】1989年瑞典数学奥林匹克题5.【解】 amax=3因为m2≡0,1,2,4(mod7)所以 7n2-m2≡-m2≡0,6,5,3(mod7)amax=3B3-016 设x、y、z>0且x+y+z=1.求1/x+4/y+9/z的最小值.【题说】1990年日本第一轮选拔赛题10.【解】 1/x+4/y+9/z=(x+y+z)(1/x+4/y+9/z)B3-017 设n为自然数,对任意实数x、y、z,恒有(x2+y2+z2)2≤n(x4+y4+z4)成立,求n的最小值.【题说】1990年全国联赛一试题2(3).原题为填空题.【解】(x2+y2+z2)2=x4+y4+z4+2x2y2+2y2z2+2z2x2≤x4+y4+z4+(x4+y4)+(y4+z4)+(z4+x4)=3(x4+y4+z4)当x=y=z>0时,原不等式化为9x4≤3nx4,故n≥3.所以,n的最小值是3.B3-019 a、b、c是一个任意三角形的三边长,证明:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.【题说】第六届(1964年)国际数学奥林匹克题2.本题由匈牙利提供.【证】不妨设a≤b≤c.3abc-a2(b+c-a)-b2(c+a-b)-c2(a+b-c)=a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)≥b(b-c)(b-a)+c(c-a)(c-b)≥c(c-b)[(c-a)(b-a)]=c(c-b)2≥0B3-020 怎样的整数a,b,c满足不等式a2+b2+c2+3<ab+3b+2c?【题说】1965年匈牙利数学奥林匹克题1.【解】对于整数a、b、c,所要解的不等式等价于a2+b2+c2+4≤ab+3b+2c这个不等式可以变成由此可知,原不等式只可能有唯一的一组解a=1,b=2,c=1.B3-021 有限数a1,a2,…,an(n≥3)满足关系式a1=an=0,ak-1+ak+1≥2ak(k=2,3,…,n-1),证明:数a1,a2,…,an中没有正数.【题说】1966年~1967年波兰数学奥林匹克二试题1.【证】设a1,a2,…,an中,ar最大,s是满足等式as=ar的最小下标.若n>s>1,则as-1;<as,as+1≤as,从而as-1+as+1<2as,与已知条件as-1+as+1≥2as矛盾.故只有s=1或s=n,于是ar=0,数a1,a2,…,an中没有正数,B3-022 设a、b、c、d是正数,证明不等式a+b<c+d(1)(a+b)(c+d)<ab+cd (2)(a+b)cd<ab(c+d)(3)中至少有一个不正确.【题说】第三届(1969年)全苏数学奥林匹克九年级题1.【证】假定(1)、(2)、(3)都正确.则(a+b)2(c+d)<(a+b)(ab+cd)<ab(a+b)+ab(c+d)<2ab(c+d)从而(a+b)2<2ab,矛盾.B3-023 证明:任何正数a1,a2,…,an满足不等式【题说】第三届(1969年)全苏数学奥林匹克十年级题6.原不等式左端的和大于故原不等式得证.【注】可以考虑更强的不等式(1954年美国数学家夏皮罗提出的猜测)对n≤12上式成立.对偶数n≥14与奇数n≥27不成立.B3-024 证明:对所有满足条件x1>0,x2>0,x1y1-成立,并求出等号成立的充要条件.【题说】第十一届(1969年)国际数学奥林匹克题6.本题由原苏联提供.所以当且仅当x1=x2,y1=y2,z1=z2时,等号成立.B3-025 设a、b、n都是自然数,且a>1,b>1,n>1,An-1和An是a进制数系中的数,Bn-1和Bn 是b进制数系中的数.An-1、An、Bn-1和Bn呈如下形式:An-1=xn-1xn-2…x0,An=xnxn-1…x0(a进制的位置表示法);Bn-1=xn-1xn-2…x0,Bn=xnxn-1…x0(b进制的位置表示法).其中xn≠0,xn-1≠0.证明:当a>b时,有【题说】第十二届(1970年)国际数学奥林匹克题2.本题由罗马尼亚提供.【证】由于a>b,故AnBn-1-An-1Bn=(xnan-1+An-1)Bn-1-(xnbn-1+Bn-1)An-1=xn[xn-1(an-1bn-2-an-2bn-1)+…+x0(an-1-bn-1)]>0B3-026 (n>2)是自然数,证明下述论断仅对n=3和n=5成立:对任意实数a1,a2,…,an都有(a1-a2)·(a1-a3)…(a1-an)+(a2-a1)·(a2-a3)…(a2-an)+…+(an-a1)·(an-a2)…(an-an-1)≥0【题说】第十三届(1971年)国际数学奥林匹克题1.本题由匈牙利提供.1979年湖南省赛二试题4.【证】不妨设a1≤a2≤a3≤…≤an.若n为偶数,令a1<a2=a3=…=an,则左边小于0,因而不等式不成立;若n=3,则左边前两项的和为(a1-a2)2≥0第三项不小于0,故不等式成立;若n=5,则同样可知左边前两项的和不小于0,末两项的和也不小于0,第三项不小于0,因此左边总不小于0,不等式成立;若n≥7,令a1=a2=a3<a4<a5=a6=…=an则左边只有一个非零项(a4-a1)(a4-a2)…(a4-an)<0故不等式不成立.B3-027 A=(aij)是一个元素为非负整数的矩阵,其中i、j=1,2,…,n.该矩阵有如下性质:如果某一aij=0,那么对i和j有ai1+ai2+…+ain+a1j+a2j+…+anj≥n证明:这个矩阵所有元素的和不小于0.5n2.【题说】第十三届(1971年)国际数学奥林匹克题6.本题由瑞典提供.【证】交换A的两行或两列不改变题设的A的性质(因为行和与列和均不变、只是交换了位置),因此我们可以先通过交换两行或两列的变换,使得有尽可能大的k满足a11=a22=…=akk=0.此时对于i,j>k有aij≠0.对于i≤k,j>k,若aij=0,则aji≠0,因若不然,交换i,j行,就会使a11=a22=…=akk=ajj=0,与k的极大性矛盾.因而对于j>k,仍有aj1+…+ajn+a1j+…+anj≥nB3-028 求出所有能使不等式组成立的所有解(x1,x2,x3,x4,x5),其中x1,x2,x3,x4,x5都是正实数.【题说】第十四届(1972年)国际数学奥林匹克题4.本题由荷兰提供.【解】为方便起见,令x5+i=xi,则可以把原不等式组简写为将它们加起来得=x5=x2=x4.反之,如果xi都相等,原不等式组当然成立.B3-029 证明:对于正数a、b、c,下述不等式成立:a3+b3+c3+3abc≥ab(a+b)+bc(b+c)+ac(a+c)(1)【题说】第九届(1975年)全苏数学奥林匹克十年级题2.【证】不失一般性,可假定a≥b≥c.那末c(a-c)(b-c)≥0,(a-b)2(a+b-c)≥0从而c3+abc≥ac2+bc2(2)a3+b3+2abc≥ab(a+b)+a2c+b2c (3)(2)、(3)两式相加即得(1)式.B3-030 已知a1,a2,…,an为任何两两各不相同的正整数,求证对任何正整数n,下列不等式成立;【题说】第二十届(1978年)国际数学奥林匹克题5.本题由法国提供.【证】由柯西不等式【别证】利用排序不等式.B3-031 已知0≤a1,0≤a2,0≤a3,a1+a2+a3=1,0<λ1<λ2<λ3.求证:下面不等式成立【题说】1979年北京市赛二试题5.本题是康托洛维奇不等式的特例.【证】对任意正实数x,B3-032 设a、b、c为正实数,证明【题说】第三届(1974年)美国数学奥林匹克题2.注意:这是一个对称不等式.【证】不失一般性,可以假定a≥b≥c>0.原不等式即a2a-b-c·b2b-a-c·c2c-a-b≥1 (1)由2a-b-c>0,得a2a-b-c·b2b-a-c≥b2a-b-c·b2b-a-c=ba+b-2ca=b=c时,等号成立.【别证】可以利用等式然后证明右端括号为正.B3-033 设xi、yi是实数(i=1,…,n).且x1≥x2≥ (x)y1≥y2≥…≥ynz1、z2、…、zn是y1、y2、…、yn的任一个排列,证明【题说】第十七届(1975年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.【证】由排序不等式所以原式成立.B3-034 有n个数a1,a2,…,an.假设C=(a1-b1)2+(a2-b2)2+…+(an-bn)2D=(a1-bn)2+(a2-bn)2+…+(an-bn)2证明:C≤D≤2C.【题说】第十三届(1978年)全苏数学奥林匹克十年级题10.【证】设f(x)=(x-a1)2+(x-a2)2+…+(x-an)2则f(x)=n(x-bn)2+f (bn)(1)现在用归纳法来证明不等式C≤D≤2C.当n=1时,C=D,故有C≤D≤2C.假设当n时,不等式成立,往a1,a2,…,an中添一个数an+1,此时C增加了(an+1-bn+1)2,而D增加了(an+1-bn+1)2+f(bn+1)-f(bn).在(1)式中,令x=bn+1,得这样,D增加的值(an+1-bn+1)2+f(bn+1)-f(bn)在(an+1-bn+1)2与2(an+1-bn+1)2之间,从而,对于n+1时,也有C≤D≤2C所以,对一切n,都有C≤D≤2CB3-035 a、b、c、d、e为整数,满足1≤a<b<c<d<e其中[m,n]为m、n的最小公倍数.【题说】第十一届(1979年)加拿大数学奥林匹克题3.【证】更一般地,可以证明:对于n个整数a1,a2,…,an,满足1≤a1<a2<…<an时,有n=2时,(1)显然成立.假设n=k-1时(1)成立,考虑n=k的情况:若ak>2k,则若ak≤2k,则其中(m,n)为m、n的最大公约数,从而B3-036 S为正奇数集{ai},i=1,2,…,n.没有两个差|ai-aj|相等,1≤i<j≤n.求证【题说】1979年英国数学奥林匹克题3.【证】不妨设a1<a2<…<an,r为整数且2≤r≤n.对于1≤所以, ar≥a1+r(r-1)≥1+r(r-1)r=1时,上式也成立,故B3-037 对于n为一正整数,以p(n)表示将n表为一个或较多个正整数的和的方法数,例如p(4)=5,因为有5个不同的和,即1+1+1+1,1+1+21+3,2+2,4证明:当n>1时,p(n+1)-2p(n)+p(n-1)≥0【题说】1979年英国数学奥林匹克题5.【证】将n的p(n)个不同的表达式各加上1,得到p(n)个n+1的不同表达式,每一个都包含加数1.而且,n+1的每一个含有加数1的表达式,都可由这方法得到.因此将n+1表为大于1的整数的和的方法数q(n+1)=p(n+1)-p(n)同样将n+1表为大于2的整数的和的方法数即q(n+1)-q(n).显然q(n+1)-q(n)≥0因此p(n+1)-2p(n)+p(n-1)≥0B3-038 若0≤a,b,c≤1,证明:【题说】第九届(1980年)美国数学奥林匹克题5.结论可以推广到n个数的情形.【证】令因为(1-b)(1-c)(1+b+c)≤(1-b)(1-c)(1+b)(1+c)=(1-b2)(1-c2)≤1(当a、b、c轮换时均成立)因此δ≥0.B3-039 若x为正实数,n为正整数.证明:其中[t]表示不超过t的最大整数.【题说】第十届(1981年)美国数学奥林匹克题5.【证】用数学归纳法.当n=1,2时,(1)显然成立.假设(1)对n≤k-1均成立.kxk=kxk-1+[kx]=(k-1)xk-1+xk-1+[kx](2)(k-1)xk-1=(k-2)xk-2+xk-2+[(k-1)x](3)…2x2=x1+x1+[2x] (k)将(2)至(k)式相加,得kxk=xk-1+xk-2+…+x1+x1+[kx]+[(k-1)x]+…+[2x]因此,由归纳假定,kxk≤[kx]+2([(k-1)x]+[(k-2)x]+…+[x])但是[(k-m)x]+[mx]≤[(k-m)x+mx](m<k),所以kxk≤[kx]+([(k-1)x)]+[x])+…+([x]+[(k-1)x])≤k[kx]即xk≤[kx].此即所欲证之(1)式.B3-041 设a、b、c是三角形的边长,证明:a2b(a-b)+b2c(b-c)+c2a(c-a)≥0,并说明等号何时成立.【题说】第二十四届(1983年)国际数学奥林匹克题6.本题由美国提供.【证】设a是最大边,原式左边=a(b-c)2(b+c-a)+b(a-b)(a-c)(a+b-c)显然上式是非负的,从而原式成立,当且仅当a=b=c,即这三角形为正三角形时等号成立.B3-043 设x1,x2,…,xn都是正整,求证:【题说】1984年全国联赛二试题5.本题可用柯西不等式、数学归纳法等多种方法证明.将以上各式相加,即得所要证的不等式.B3-044 设P(x)=a0+a1x+…+akxk为整系数多项式,其中奇系数的个数由W(P)来表示,设Qi(x)=(1+x)i,i=0,1,…,n.如果i1,i2,…,in是整数,且0≤i1<i2<…<in,证明:【题说】第二十六届(1985年)国际数学奥林匹克题3.本题由荷兰提供.当in=1时,命题显然成立.设in>1并且命题在in换为较小的数时成立.令k=2m<in<2m+1,(1)i1<k.设ir<k,ir+1>k,Q=R+(1+x)kS,其中的次数均小于K,由(1)(1+x)k≡1+xk(mod2),故W(Q)=W(R+S+xkS)=W(R+S)+W(S)≥W(R)的次数均小于K.W(Q)=W(S+xkS)=2W(S)≥2W(R)=W(R+xkR)=W((1+xk)R)045 证明:对于任意的正数a1,a2,…,an不等式成立.【题说】第二十届(1986年)全苏数学奥林匹克十年级题2.【证】不妨设a1≤a2≤…≤an.因为当2≤k≤(n+1)/2时【注】原不等式可加强为B3-046 正数a,b,c,A,B,C满足条件a+A=b+B=c+C=k证明: aB+bC+cA<k2【题说】第二十一届(1987年)全苏数学奥林匹克八年级题5.【证】由题设k3=(a+A)(b+B)(c+C)=abc+ABC+aB(c+C)+bC(a+A)+cA(b+B)=abc+ABC+k(aB+bC+cA)>k(aB+bC+cA)即aB+bC+cA<k2B3-048 证明:对于任意的正整数n,不等式(2n+1)n≥(2n)n+(2n-1)n成立.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题8.【证】只须证明由恒等式所以(1)式成立.B3-049 已知a、b为正实数,且1/a+1/b=1.试证:对每一个n∈N,有(a+b)n-an-bn≥22n-2n+1 【题说】1988年全国联赛一试题5.【证】用数学归纳法证.(1)当n=1时,左边=0=右边,命题成立.(2)假设n=k时,不等式成立,即(a+b)k-ak-bk≥22k-2k+1当n=k+1时,左边=(a+b)k+1-ak+l-bk+1=(a+b)[(a+b)k-ak-bk]+akb+abk从而有≥2·2k+1=2k+2所以,左边≥4(22k-2k+1)+2k+2=22(k+1)-2k+2=右边由(1)及(2),对一切n∈N,不等式成立.B3-050 已知a5-a3+a=2.证明:3<a6<4.【题说】第十四届(1988年)全俄数学奥林匹克八年级题3.【证】由a5-a3+a=2,变形为(1)a[(a2-1)2+a2]=2 (2)由(2)知 a>0且a≠1(1)÷a 得a4-a2+1=2/a(3)(1)×a得a6-a4+a2=2a (4)(3)+(4)得a6+1=2(a+1/a)>4 (5)又由(1)知 2=(a5+a)-a3>2a3-a3=a3 故a3<2(6)由(5)和(6)得3<a6<4.B3-051 已知a、b、c、d是任意正数,求证:【题说】1989年四川省赛二试题1.由平均值不等式,(2)≤2ab+2ac+2ad+2bc+2bd+2cd+2a2+c2+b2+d2=(a+b+c+d)2(3)(2)÷(3)即得结论.B3-052 已知xi∈R(i=1,2,…,n,n≥2),满足【题说】1989年全国联赛二试题2.因为 A/n≤a≤A,B≤b≤B/nB3-053 已知a1,a2,…,an是n个正数,满足a1·a2…an=1,求证(2+a1)(2+a2)…(2+an)≥3n【题说】1989年全国联赛一试题3.B3-054 对于任何实数x1,x2,x3,如果x1+x2+x3=0,那么x1x2+x2x3+x3x1≤0,请证明之.又对于什么样的n(n≥4),如果x1+x2+…+xn=0,那么x1x2+x2x3+…+xn-1xn+xnx1≤0?【题说】1989年瑞典数学奥林匹克题3.【证】如果x1+x2+x3=0,则有当n=4时,若x1+x2+x3+x4=0,则即n=4时,命题成立.当n≥5时,令x1=x2=1,x4=-2,x3=x5=x6=…=xn=0,则x1+x2+x3+x4+…+xn=0而 x1x2+x2x3+x3x4+…+xn-1xn+xnx1=l>0 所以n≥5时,命题不成立.B3-055 证明:对于任意的x、y、z∈(0,1),不等式x(1-y)+y(1-z)+z(1-x)<1成立.【题说】第十五届(1989年)全俄数学奥林匹克九年级题6.【证】设f(x)=(1-y-z)x+y(1-z)+z,它是x的一次函数,因此关于x是单调的.因为f(0)=y-yz+z=(y-1)(1-z)+1<1f(1)=1-yz<1所以当x∈(0,1)时,f(x)的最大值小于1,即x(1-y)+y(1-z)+z(1-x)<1B3-056 证明:若a、b、c为三角形三边的长,且a+b+c=1,则【题说】第二十三届(1989年)全苏数学奥林匹克九年级题2.1990年意大利数学奥林匹克题4.所以B3-057 已知二次函数f(x)=ax2+bx+c,当-1≤x≤1时,有-1≤f(x)≤1求证:当-2≤x≤2时,有-7≤f(x)≤7.【题说】1990年南昌市赛二试题1【证】由已知-1≤f(1)=a+b+c≤1 (1)-1≤f(0)=c≤1 (2)-1≤f(-1)=a-b+c≤1 (3)(1)+(3)得-1≤a+c≤1 (4)由(4)、(2)得 -2≤a≤2从而|4a±2b+c|=|2(a±b+c)+2a-c|≤2|a±b+c|+2|a|+|c|≤7即|f (±2)|≤7|f(x)|≤7所以,当|x|≤2时B3-058 证明:对于和为1的正数a1,a2,…,an,不等式成立.【题说】第二十四届(1990年)全苏数学奥林匹克十年级题2.当a1=a2=…=an=时,上式取等号.B3-059 设a、b、c、d是满足ab+bc+cd+da=1的非负数.试证:【题说】第三十一届(1990年)IMO预选题88.本题由泰国提供.【证】设则由柯西不等式熟知所以B3-060 设a1≤a2≤…≤a7≤a8是8个给定的实数,且x=(a1+a2+…+a7+a8)/8【题说】1991年中国国家教委数学试验班招生数学题3.【证】≥0并且由柯西不等式,y≥x2,所以B3-061 已知0<a<1,x2+y=0,求证【题说】1991年全国联赛一试题5.B3-063 已知a1,a2,…,an>1(n≥2),且|ak+1-ak|<1,k=1,2,…,n-1.证明:a1/a2+a2/a3+…+an-1/an+an/a1<2n-1【题说】第十七届(1991年)全俄数学奥林匹克九年级题8.【证】若ak≤ak+1(k=1,2,…,n-1),则ak/ak+1≤1,故a1/a2+a2/a3+…+an-1/an+an/a1<(n-1)+na1/a1=2n-1(n≥2)若有ak>ak+1,则由|ak+1-ak|<1知ak/ak+1<1+1/ak+1<2设有p个k值使ak≤ak+1,(n-1-p)个k值使ak>ak+1,则a1/a2+a2/a3+…+an-1/an≤p+2(n-1-p)同时an/a1=[(an-an-1)+…+(a2-a1)+a1]/a1<p+1因此a1/a2+a2/a3+…+an-1/an+an/a1<p+2(n-1-p)+p+1=2n-1B3-064 令其中m,n∈N,证明am+an≥mm+nn【题说】第二十届(1991年)美国数学奥林匹克题4.【证】不妨设m≥n,则故n≤a≤m,而有mm-am=(m-a)(mm-1+mm-2a+…+am-1)≤(m-a)(mm-1+mm-1+…+am-1)=(m-a)mm(2)an-nn=(a-n)(an-1+an-2+…+nn-1)≥(a-n)nn由(1)有(m-a)mm=(a-n)nn(3)将(2)、(3)代入,即得an-nn≥mm-am或am+an≥mm+nn此即所求证之式.B3-065 设a、b、c是非负数,证明:【题说】第二十五届(1991年)全苏数学奥林匹克十年级题1.【证】(a+b+c)2=(a2+bc)+(b2+ca)+(c2+ab)所以原不等式成立.B3-066 设ai≥0(i=1,2,…,n),a=min{a1,a2,…,an},试证式中an+1=a1.【题说】1992年第七届数学冬令营题2.B3-067 设n(≥2)是整数,证明【题说】1992年日本数学奥林匹克题3.B3-068 n是正整数,证明【题说】1992年澳大利亚数学奥林匹克题8.【证】因为B3-069 对x、y、z≥0,证明不等式x(x-z)2+y(y-z)2≥(x-z)(y-z)(x+y-z)等号何时成立?【题说】第二十四届(1992年)加拿大数学奥林匹克题2.【解】原不等式即x3+y3+z3+3xyz≥x2y+xy2+y2z+yz2+z2x+zx2由对称性,可设x≥z≥y,于是x(x-z)2+y(y-z)2≥0≥(x-z)(y-z)(x+y+z)B3-070 设实数x、y、z满足条件yz+zx+xy=-1,求x2+5y2+8z2的最小值和最大值.【题说】1992年英国数学奥林匹克题4.【解】由于(y-2z)2+(x+2y十2z)2≥0所以x2+5y2+8z2≥-4(xy+yz+zx)=4的最小值为4.x2+5y2+8z2>x2当y→0时,函数x2+5y2+8z2的值可趋于无穷大.B3-071 设A是一个有n个元素的集合,A的m个子集A1,A2,…,An两两互不包含,证明:其中ai为Ai中元素个数.【题说】1993年全国联赛二试题2.【证】A中元素的全排列共n!个.其中开头ai个元素取自Ai中的,有ai!(n-ai)!个.由于Ai与Aj(i≠j)互不包含,故这些排列与开头aj个元素取自Aj中的不同.由柯西不等式,结合(1)便得(2).B3-073 设函数f:R+→R+满足条件:对任意x、y∈R+,f(xy)≤f(x)f(y).试证:对任总x>0,n∈N,有【题说】1993年中国数学奥林匹克(第八届数学冬令营)题6.【证】f(x2)≤f2(x),所以f(x2)≤f(x)f1/2(x2).假设有则≥fn-1(xn)所以(1)对所有的自然数n成立.B3-075 设a、b、c、d都是正实数,求证不等式【题说】第三十四届(1993年)IMO预选题本题由美国提供.【证】由柯西不等式即又(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2≥0结合(1)、(2)即得结论.B3-076 设a1,a2,…,an为n个非负实数,且a1+a2+…an=n.证明:【题说】1994年合肥市赛题4.一方面由柯西不等式知B3-077 已知f(z)=c0zn+c1zn-1+…+cn(1)是z的n次复系数多项式.求证:存在一个复数z0,|z0|=1,使|f(z0)|≥|c0|+|cn| (2)【题说】1994年中国数学奥林匹克(第九届数学冬令营)题4.【证】取复数β,使|β|=1且βn·c0与cn辐角相同,从而|βnc0+cn|=|βnc0|+|cn|=|c0|+|cn|再令ω=e2πi/n,ak=β·ωk(0≤k≤n-1)故必有一个k,使|f(αk)|≥|c0|+|cn|显然,|αk|=1,于是αk就是所求的z0。
数学奥林匹克竞赛初试二试试题

数学奥林匹克竞赛初试二试试题1. 线性代数1.1 行列式的定义、性质及计算方法。
1.2 矩阵的逆、秩、特征值与特征向量及其应用。
1.3 向量组的线性相关性、线性空间、基、维数、坐标与坐标变换。
1.4 线性变换的概念、矩阵表达式及其特征值与特征向量。
2. 解析几何2.1 空间直线、平面及其位置关系。
2.2 曲面方程的参数化与一般式,对称性与坐标面的交线,降阶法及其应用。
2.3 空间直线、平面、曲面及其交线、交面的方程式。
2.4 球面、柱面、圆锥面及其方程。
3. 数学分析3.1 极限的概念,性质及掌握极限的方法。
3.2 连续的概念,性质及其应用。
3.3 导数和微分的定义,性质及其计算方法。
3.4 函数的极值,最大值和最小值的求法。
4. 数学推理与证明4.1 命题、命题联结词、命题逻辑运算与真值表。
4.2 证明方法、基本结论及其应用。
4.3 数学归纳法、反证法、直接证明法,素数定理及其推论。
4.4 解不等式及求极限的证明。
5. 组合数学5.1 排列与组合的定义,性质及公式。
5.2 常见的组合数学问题,鸽巢原理,容斥原理。
5.3 二项式定理及其欧拉公式,二项式系数的性质,斯特林数定理及其应用。
5.4 组合问题的应用。
6. 数论6.1 基本性质和公式,辗转相除法及其应用。
6.2 质数的性质和证明,数的质因数分解及其应用。
6.3 同余式的概念、性质和定理。
6.4 素数定理及其应用。
以上为数学奥林匹克竞赛初试二试可能出现的题目范围及参考内容。
【精品】数学奥林匹克竞赛高中训练题集【共36份】

奥林匹克数学竞赛高中训练题集
目 录
数学奥林匹克高中训练题(01) ........................................................................................................................... 1 数学奥林匹克高中训练题(02) ........................................................................................................................... 3 数学奥林匹克高中训练题(03) .............................................................................................. 4 数学奥林匹克高中训练题(04) ........................................................................................................................... 6 数学奥林匹克高中训练题(05) ...................................................................................................