七年级下册示范教案一1.7.2平方差公式(二)

合集下载

《平方差公式》 (第2课时)示范公开课教学设计【北师大版七年级数学下册】

《平方差公式》 (第2课时)示范公开课教学设计【北师大版七年级数学下册】

第一章 整式的乘除1.5平方差公式(2) 教学设计一、教学目标1.探索平方差公式的几何背景,培养数形结合的数学思想;2.会运用平方差公式进行简单的简便运算,培养运算技能.二、教学重点及难点重点:利用平方差公式进行简便运算.难点:利用几何知识探索平房差公式,培养数形结合的思想.准确地运用平方差公式进行简单运算,培养基本的运算技能.三、教学准备多媒体课件四、相关资源相关图片五、教学过程【复习回顾】1.回顾上节课平方差公式:(a +b )(a -b )=a 2-b 22.公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积;右边是两数的平方差.3.应用平方差公式的注意事项:1)注意平方差公式的适用范围2)字母a 、b 可以是数,也可以是整式3)注意计算过程中的符号和括号【问题情境】在一次智力抢答赛中,主持人提供了两道题:1.2119?⨯= 2. 10397?⨯=主持人话音刚落,就立刻有一个学生刷地站起来抢答说:“第一题等于399,第二题等于9991.”其速度之快,简直就是脱口而出.同学们,你知道他是如何计算的吗?这其中的奥秘,其实我们已经接触过了,通过本节课的学习我们都能像速算王一样聪明,能够迅速得到结果,我们今天来探究原因.设计意图:通过“速算王的绝招”这一故事的情境创设,引发学生学习的兴趣,同时激发了学生的好奇心和求知欲,顺利引入新课.【探究新知】问题1:如图,边长为a 的大正方形中有一个边长为b 的小正方形.(1)请表示图中阴影部分的面积.提示:a 2-b 2 (2)如果将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗?提示:长是a +b ,宽是a -b ;面积是(a +b )﹒(a -b )比较(1)(2)的结果,你能验证平方差公式吗?(a +b )﹒(a -b )= a 2-b 2设计意图:会通过图形的拼接验证平方差公式,了解平方差公式的几何背景.问题2:相邻两个自然数的乘积(1)计算下列各组算式,并观察它们的特点⎩⎨⎧=⨯=⨯8897 ⎩⎨⎧=⨯=⨯12121311 ⎩⎨⎧=⨯=⨯80808179 (2)从以上的过程中,你发现了什么规律?(3)请你用字母表示这一规律,你能说明它的正确性吗?探究: (1)中算式算出来的结果如下⎩⎨⎧=⨯=⨯64886397 ⎩⎨⎧=⨯=⨯14412121431311 ⎩⎨⎧=⨯=⨯6400808063998179 从上面的算式可以发现,一个自然数的平方比它相邻两数的积大1. a b ab问题3.是不是大于1的所有自然数都有这个特点呢?再找几个例子:⎩⎨⎧=⨯=⨯422331 ⎩⎨⎧=⨯=⨯10000100100999910199 ⎩⎨⎧=⨯=⨯62525256242624 发现:对于所有的自然数都有上述规律.问题4:你能用字母表示这一规律吗?设这个自然数为a ,与它相邻的两个自然数为a -1,a +1,则有(a +1)(a -1)=a 2-1. 这个结论的正确性,用平方差公式可以说明.设计意图:通过具体数的运算、发现规律、建立猜想、符号表示、证明或说明,让学生经历数学的探究与发现过程.三、典例精讲例1. 用平方差公式进行计算:(1)103×97;(2)118×122.解:(1)∵103=100+3,97=100-3,∴103×97=(100+3)(100-3)=1002-32=9991.(2)118=120-2,122=120+2.118×122=(120-2)(120+2)=1202-4=14400-4=14396.设计意图:结合课本例题,让学生熟悉平房差公式,能进行简便运算.例2.计算:(1)a 2(a +b )(a-b )+a 2b 2;(2)(2x -5)(2x +5)-2x (2x -3).分析:上面两个小题,是整式的混合运算,平方差公式的应用,能使运算简便;还需注意的是运算顺序以及结果一定解:(1)a 2(a +b )(a -b )+a 2b 2=a 2(a 2-b 2)+a 2b 2=a 4-a 2b 2+a 2b 2=a 4.(2)(2x -5)(2x +5)-2x (2x -3)=(2x )2-52-(4x 2-6x )=4x 2-25-4x 2+6x=6x -25.设计意图:运用平方差公式,进行简单的混合运算,巩固平方差公式,体会平方差公式在解决计算类问题的简便作用.例3.计算(1)704×696(2)(x +2y )(x -2y )+(x +1)(x -1)(3)x (x -1)-(x -31)(x +31)解:(1)704×696=(700+4)(700-4)=490000-16=489984(2)(x +2y )(x -2y )+(x +1)(x -1)=(x 2-4y 2)+(x 2-1)=x 2-4y 2+x 2-1=2x 2-4y 2-1(3)x (x -1)-(x -31)(x +31)=(x 2-x )-[x 2-(31)2]=x 2-x -x 2+91=91-x设计意图:平方差公式的综合运用,要能正确辨析平方差公式.例4.(1)在下列多项式的乘法中,不能用平方差公式计算的是( )DA .(-a -b )(a -b )B .(c 2-d 2)(d 2+c 2)C .(x 3-y 3)(x 3+y 3)D .(m -n )(-m +n )(2)用平方差公式计算(x -1)(x +1)(x 2+1)结果正确的是( )AA .x 4-1B .x 4+1C .(x -1)4D .(x +1)4(3)下列各式中,结果是a 2-36b 2的是( )DA .(-6b +a )(-6b -a )B .(-6b +a )(6b -a )C .(a +4b )(a -4b )D .(-6b -a )(6b -a )例5.(1)(5x +3y )·( )=25x 2-9y 2 (5x -3y )(2)(-0.2x -0.4y )( )=0.16y 2-0.04x 2 (0.2x -0.4y )(3)(-23x -11y )( )=-49x 2+121y 2 (23x -11y )(4)若(-7m +A )(4n +B )=16n 2-49m 2,则A = ,B = .A =4n ,B =7m例6.公式的逆用(1)(x +y )2-(x -y )2 (2)252-242分析:逆用平方差公式可以使运算简便.解:(1)(x +y )2-(x -y )2=[(x +y )+(x -y )][(x +y )-(x -y )]=2x ·2y=4xy(2)252-242=(25+24)(25-24)=49【随堂练习】1.(1)对于任意整数n ,能整除代数式)2)(2()3)(3(-+--+n n n n 的整数是().C A .4 B .3 C .5 D .2(2)在))((b a y x b a y x ++--++的计算中,第一步正确的是( ).CA .22)()(a y b x --+B .))((2222b a y x --C .22)()(b y a x --+D .22)()(a y b x +--(3)22916)4)(3(a b n b m a -=++-,则._______,==n m a n b m 3,4==(4)____99.001.1=⨯.0.99992.计算:(1)1999199719982⨯-; (2))54)(2516)(54(2++-x x x ; 解:(1)1;(2)6252564-x ; 3.计算(1)(2x 2+3y )(3y -2x 2).(2)(p -5)(p -2)(p +2)(p +5).(3)(x 2y +4)(x 2y -4)-(x 2y +2)·(x 2y -3).解.(1)9y 2-4x 4 (2)p 4-29p 2+100 (3)x 2y -104.已知x 2-2x =2,将下式先化简,再求值(x -1)2+(x +3)(x -3)+(x -3)(x -1)解:原式=3(x 2-2x )-5=3×2-5=1设计意图:通过练习,提高学生灵活运用平方差公式的能力,体会公式在解决有些计算问题时的巧妙和简洁.5.解方程:(2x +1)(2x -1)+3(x +2)(x -2)=(7x +1)(x -1)解:(2x +1)(2x -1)+3(x +2)(x -2)=(7x +1)(x -1)(2x )2-1+3(x 2-4)=7x 2-6x -14x 2-1+3x 2-12=7x 2-6x -16x =12 x =2设计意图:平方差公式在解方程中的应用.6.利用平方差公式计算:(1)2013×1923; (2)13.2×12.8. 分析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.解:(1)2013×1923=(20+13)×(20-13)=202-(13)2=400-19=39989; (2)13.2×12.8=(13+0.2)×(13-0.2)=132-0.22=169-0.04=168.96.设计意图:运用平方差公式,进行简单的混合运算,巩固平方差公式,体会平方差公式在解决计算类问题的简便作用.7.计算:19902-19892+19882-19872+…+22-1.分析:先做乘方运算,再做减法,则计算繁琐,观察算式特点,考虑逆用平方差公式.解:原式=(19902-19892)+(19882-19872)+…+(22-1)=(1990+1989)(1990-1989)+(1988+1987)(1988-1987)+…+(2+1)(2-1)=1990+1989+1988+1987+…+2+1=2)11990(1990+⨯=1981045设计意图:平方差公式的灵活运用.8.王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?分析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.解:李大妈吃亏了.理由如下:原正方形的面积为a2,改变边长后面积为(a+4)(a-4)=a2-16.∵a2>a2-16,∴李大妈吃亏了.设计意图:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.六、课堂小结1.设这个自然数为a,与它相邻的两个自然数为a-1,a+1,则有(a+1)(a-1) =a2-1.2.应用平方差公式的注意事项:(1)注意平方差公式的适用范围(2)字母a、b可以是数,也可以是整式(3)注意计算过程中的符号和括号设计意图:通过归纳总结,使学生熟练掌握平方差公式,并能灵活地运用公式进行计算.七、板书设计。

北师大版数学七年级下册《平方差公式的认识》教案

北师大版数学七年级下册《平方差公式的认识》教案

北师大版数学七年级下册《平方差公式的认识》教案一. 教材分析《平方差公式》是北师大版数学七年级下册的教学内容,本节课是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。

平方差公式是代数中的一个重要公式,它不仅有助于解决一些实际问题,而且是学习更高阶数学的基础。

二. 学情分析学生在六、七年级时已经学习了有理数的乘法和完全平方公式,对于代数式的运算和公式的应用已经有了一定的基础。

但是,对于平方差公式的推导和理解可能还存在一定的困难,需要通过实例和练习来加深理解。

三. 教学目标1.知识与技能:使学生理解和掌握平方差公式的推导过程和应用。

2.过程与方法:培养学生的逻辑思维能力和运算能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:平方差公式的推导和应用。

2.难点:平方差公式的灵活运用和推导过程的理解。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究,提高学生的参与度和实践能力。

六. 教学准备1.准备相关的例题和练习题。

2.准备多媒体教学设备,如投影仪、电脑等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:“一块长方形的地毯,长是10米,宽是8米,如果将地毯对折,那么对折后的地毯面积是多少?”让学生思考并讨论,引发学生对平方差公式的兴趣。

2.呈现(15分钟)通过PPT展示平方差公式的推导过程,引导学生理解和记忆平方差公式的推导过程。

3.操练(20分钟)让学生通过PPT上的练习题进行自主学习和练习,教师进行个别辅导,帮助学生掌握平方差公式的应用。

4.巩固(15分钟)通过小组合作学习,让学生解决一些实际问题,巩固平方差公式的应用。

例如,让学生计算一个长方形对折后的面积,或者计算一个正方形旋转后的面积等。

5.拓展(10分钟)引导学生思考:平方差公式还可以用于解决哪些问题?让学生自由发挥,提出一些应用实例,拓展学生的思维。

冀教版数学七年级下册《平方差公式》教学设计2

冀教版数学七年级下册《平方差公式》教学设计2

冀教版数学七年级下册《平方差公式》教学设计2一. 教材分析冀教版数学七年级下册《平方差公式》是初中学段数学课程的一部分,主要让学生掌握平方差公式的概念、运用和拓展。

本节课通过平方差公式,引导学生运用完全平方公式解决实际问题,培养学生运用数学知识解决实际问题的能力。

教材内容安排合理,由浅入深,有利于学生掌握。

二. 学情分析学生在七年级上册已经学习了有理数的乘方,对乘方的概念和计算方法有一定的了解。

但学生在运用平方差公式解决实际问题方面还比较薄弱,需要通过本节课的学习,让学生在理解的基础上,熟练掌握平方差公式,提高解决问题的能力。

三. 教学目标1.理解平方差公式的概念,掌握平方差公式的运用。

2.能够运用平方差公式解决实际问题,提高运用数学知识解决实际问题的能力。

3.培养学生的逻辑思维能力,提高学生的学习兴趣。

四. 教学重难点1.重点:平方差公式的概念和运用。

2.难点:运用平方差公式解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解平方差公式的实际意义。

2.启发式教学法:通过提问,激发学生的思考,引导学生主动探索平方差公式的运用。

3.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.教学PPT:制作精美的PPT,展示平方差公式的概念、运用和实际问题。

2.学习素材:准备一些关于平方差公式的实际问题,用于巩固和拓展学生的知识。

3.板书设计:设计简洁明了的板书,突出平方差公式的关键信息。

七. 教学过程1.导入(5分钟)利用生活实例,如正方形的面积和边长的关系,引导学生思考平方差公式的实际意义。

2.呈现(10分钟)呈现平方差公式的概念和运用,让学生初步了解并掌握平方差公式。

3.操练(10分钟)学生分组讨论,解决一些关于平方差公式的实际问题,巩固所学知识。

4.巩固(10分钟)教师提问,检查学生对平方差公式的掌握程度,并对学生的回答进行点评和指导。

5.拓展(10分钟)引导学生运用平方差公式解决更复杂的实际问题,提高学生的运用能力。

《平方差公式》教案(精选15篇)

《平方差公式》教案(精选15篇)

《平方差公式》教案(精选15篇)《平方差公式》教案1教学目的进一步使学生理解把握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

教学重点和难点:公式的应用及推广。

教学过程:一、复习提问1.(1)用较简洁的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规章的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但肯定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.期望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点。

(1)公式详细,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。

但数学表达式中的a与b有概括性及抽象性,这样也就造成对详细问题存在一个判定a、b的问题,否则简单对公式产生各种主观上的误会。

依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,敏捷运用公式的'两种表达式,比如用文字公式推断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又敏捷.3.推断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1运用平方差公式计算:(1)102×98;(2)(y+2)(y-2)(y2+4).解:(1)102×98(2)(y+2)(y-2)(y2+4)=(100+2)(100-2)=(y2-4)(y2+4)=1002-22=10000-4=(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;(4)(x-)(x2+)(x+).3.请每位同学自编两道能运用平方差公式计算的题目.例2填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习填空:1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3计算:(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样推断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69×71;(2)53×47;(3)503×497;(4)40×39.《平方差公式》教案2平方差公式一、学习目标:1.经历探究平方差公式的过程.2.会推导平方差公式,并能运用公式进行简洁的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,敏捷应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?12001×19992998×1002导入新课:计算下列多项式的积.1x+1x-12m+2m-232x+12x-14x+5yx-5y结论:两个数的和与这两个数的差的`积,等于这两个数的平方差.即:a+ba-b=a2-b2四、精讲精练例1:运用平方差公式计算:13x+23x-22b+2a2a-b3-x+2y-x-2y例2:计算:1102×982y+2y-2-y-1y+5随堂练习计算:1a+b-b+a2-a-ba-b33a+2b3a-2b4a5-b2a5+b25a+2b+2ca+2b-2c6a-ba+ba2+b2五、小结:a+ba-b=a2-b2《平方差公式》教案3学习目标:1、经历探究完全平方公式的过程,发展学生观察、交流、归纳、猜想、验证等能力。

北京版数学七年级下册《平方差公式》教学设计2

北京版数学七年级下册《平方差公式》教学设计2

北京版数学七年级下册《平方差公式》教学设计2一. 教材分析《平方差公式》是北京版数学七年级下册的一个重要内容,主要讲述了平方差公式的定义、特点及应用。

通过学习平方差公式,学生可以更好地理解和掌握代数运算规律,为后续的数学学习打下坚实的基础。

二. 学情分析学生在学习《平方差公式》之前,已经掌握了整数的乘法、除法、加法和减法运算,具备一定的代数基础。

但部分学生对于代数运算的规律和技巧还不够熟悉,需要在学习过程中进行有针对性的指导和训练。

三. 教学目标1.知识与技能:让学生掌握平方差公式的定义、特点及应用,能够熟练运用平方差公式进行代数运算。

2.过程与方法:通过自主学习、合作交流、探究发现等方法,培养学生分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.重点:平方差公式的定义、特点及应用。

2.难点:灵活运用平方差公式进行代数运算,解决实际问题。

五. 教学方法1.自主学习:引导学生独立思考,自主探究,发现平方差公式的规律。

2.合作交流:学生进行小组讨论,共同解决问题,提高学生的合作能力。

3.探究发现:鼓励学生通过实践、尝试、发现,培养学生的创新思维。

4.讲解示范:教师对重点、难点进行讲解,为学生提供清晰的解题思路。

六. 教学准备1.教学PPT:制作精美的教学PPT,展示平方差公式的定义、特点及应用。

2.练习题:准备一些有关平方差公式的练习题,用于巩固所学知识。

3.教学视频:寻找一些有关平方差公式的教学视频,供学生自主学习。

七. 教学过程1.导入(5分钟)利用教学视频或PPT,引导学生回顾整数的乘法、除法、加法和减法运算,为新课的学习做好铺垫。

2.呈现(10分钟)展示平方差公式的定义、特点及应用,让学生初步了解平方差公式。

3.操练(10分钟)让学生独立完成一些有关平方差公式的练习题,检验学生对平方差公式的掌握程度。

4.巩固(10分钟)针对学生的练习情况,进行有针对性的讲解和辅导,帮助学生巩固所学知识。

初中数学初一数学下册《完全平方公式与平方差公式》教案、教学设计

初中数学初一数学下册《完全平方公式与平方差公式》教案、教学设计
例题:计算以下各式的值:
(1)(x+3)^2
(2)(y-4)^2
(3)(2a+b)(2a-b)
(4)(3m-n)(3m+n)
2.变式练习题:通过一些变式题目,让学生学会将公式应用于不同场景,提高解决问题的能力。
例题:已知x+y=5,xy=6,求(x-y)^2的值。
3.综合应用题:设计一些综合应用题目,让学生将所学知识应用于解决实际问题,提高学生的综合运用能力。
5.生活实践题:让学生将所学知识联系到生活实际,感受数学在生活中的应用。
例题:某班组织一次郊游活动,共有45人参加。如果每组多安排1人,可以多分5组。请问原来每组有多少人?
在作业布置过程中,教师要关注以下几点:
1.作业难度要适中,既要保证学生对基础知识的掌握,又要适当提高学生的思维能力。
2.作业量要适当,避免给学生造成过重的负担,确保学生有足够的时间进行自主学习和休息。
讨论过程中,教师要关注以下几点:
1.激发学生的讨论热情,鼓励学生积极发表自己的观点。
2.引导学生互相交流解题方法,分享学习心得。
3.注意观察学生的讨论情况,适时给予指导和帮助。
(四)课堂练习,500字
在课堂练习阶段,教师设计不同难度的练习题,让学生进行巩固练习。练习题要涵盖完全平方公式和平方差公式的各种应用场景,包括基本题、变式题和综合应用题。
接着,教师可以引导学生回顾已学的平方运算知识,如(a+b)^2 = a^2 + 2ab + b^2,让学生尝试推导出完全平方公式:(a+b)^2 = a^2 + 2ab + b^2 = (a-b)^2 + 4ab。在此基础上,引出本节课将要学习的完全平方公式和平方差公式。

冀教版数学七年级下册《平方差公式》说课稿2

冀教版数学七年级下册《平方差公式》说课稿2

冀教版数学七年级下册《平方差公式》说课稿2一. 教材分析冀教版数学七年级下册《平方差公式》是初中数学的重要内容,平方差公式是代数学习中基本的公式之一,对于学生来说,理解和掌握平方差公式对于后续的学习有着重要的影响。

本节课的内容是在学生已经掌握了有理数的乘法、多项式的乘法的基础上进行学习的,通过学习平方差公式,让学生能够进一步理解和掌握有理数的运算规律,提高学生的数学素养。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法和多项式的乘法,但是对于平方差公式的理解和运用还存在一定的困难。

因此,在教学过程中,需要关注学生的学习情况,针对学生的实际情况进行教学设计和调整。

三. 说教学目标1.知识与技能目标:学生能够理解和掌握平方差公式的推导过程和应用方法。

2.过程与方法目标:通过小组合作、探究学习,培养学生的合作意识和问题解决能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。

四. 说教学重难点1.教学重点:平方差公式的推导过程和应用方法。

2.教学难点:平方差公式的灵活运用和解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、小组合作法、案例教学法等,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过复习有理数的乘法和多项式的乘法,引导学生回顾已学知识,为新课的学习做好铺垫。

2.探究新知:引导学生通过小组合作、探究学习,共同推导出平方差公式。

3.例题讲解:通过讲解典型例题,让学生理解并掌握平方差公式的应用方法。

4.练习巩固:学生独立完成练习题,检验对平方差公式的理解和掌握程度。

5.拓展提高:引导学生运用平方差公式解决实际问题,提高学生的知识运用能力。

6.课堂小结:总结本节课的学习内容,强调平方差公式的关键点。

7.布置作业:布置适量作业,巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,能够突出平方差公式的关键信息。

七年级下册示范教案一1.7.2 平方差公式(二)

七年级下册示范教案一1.7.2  平方差公式(二)

第十二课时●课题§1.7.2 平方差公式(二)●教学目标(一)教学知识点1.了解平方差公式的几何背景.2.会用面积法推导平方差公式,并能运用公式进行简单的运算.3.体会符号运算对证明猜想的作用.(二)能力训练要求1.用符号运算证明猜想,提高解决问题的能力.2.培养学生观察、归纳、概括等能力.(三)情感与价值观要求1.在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的乐趣.2.体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美.●教学重点平方差公式的几何解释和广泛的应用.●教学难点准确地运用平方差公式进行简单运算,培养基本的运算技能.●教学方法启发——探究相结合●教具准备一块大正方形纸板,剪刀.投影片四张第一张:想一想,记作(§1.7.2 A)第二张:例3,记作(§1.7.2 B)第三张:例4,记作(§1.7.2 C)第四张:补充练习,记作(§1.7.2 D)●教学过程Ⅰ.创设问题情景,引入新课[师]同学们,请把自己准备好的正方形纸板拿出来,设它的边长为a.这个正方形的面积是多少?[生]a2.[师]请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图1-23).现在我们就有了一个新的图形(如上图阴影部分),你能表示出阴影部分的面积吗?图1-23[生]剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为(a2-b2).[师]你能用阴影部分的图形拼成一个长方形吗?同学们可在小组内交流讨论.(教师可巡视同学们拼图的情况,了解同学们拼图的想法)[生]老师,我们拼出来啦.[师]讲给大伙听一听.[生]我是把剩下的图形(即上图阴影部分)先剪成两个长方形(沿上图虚线剪开),我们可以注意到,上面的大长方形宽是(a-b),长是a;下面的小长方形长是(a-b),宽是b.我们可以将两个长方形拼成一个更大长方形,是由于大长方形的宽和小长方形的长都是(a-b),我们可以将这两个边重合,这样就拼成了一个如图1-24所示的图形(阴影部分),它的长和宽分别为(a +b ),(a -b ),面积为(a +b )(a -b ).图1-24[师]比较上面两个图形中阴影部分的面积,你发现了什么?[生]这两部分面积应该是相等的,即(a +b )(a -b )=a 2-b 2.[生]这恰好是我们上节课学过的平方差公式.[生]我明白了.上一节课,我们用多项式与多项式相乘的法则验证了平方差公式.今天,我们又通过拼图游戏给出平方差公式的一个几何解释,太妙了.[生]用拼图来验证平方差公式很直观,一剪一拼,利用面积相等就可推证.[师]由此我们对平方差公式有了更多的认识.这节课我们来继续学习平方差公式,也许你会发现它更“神奇”的作用.Ⅱ.讲授新课[师]出示投影片(§1.7.2 A)想一想:(1)计算下列各组算式,并观察它们的特点⎩⎨⎧=⨯=⨯8897 ⎩⎨⎧=⨯=⨯12121311 ⎩⎨⎧=⨯=⨯80808179 (2)从以上的过程中,你发现了什么规律?(3)请你用字母表示这一规律,你能说明它的正确性吗?[生](1)中算式算出来的结果如下⎩⎨⎧=⨯=⨯64886397 ⎩⎨⎧=⨯=⨯14412121431311 ⎩⎨⎧=⨯=⨯6400808063998179 [生]从上面的算式可以发现,一个自然数的平方比它相邻两数的积大1.[师]是不是大于1的所有自然数都有这个特点呢?[生]我猜想是.我又找了几个例子如:⎩⎨⎧=⨯=⨯422331 ⎩⎨⎧=⨯=⨯10000100100999910199 ⎩⎨⎧=⨯=⨯62525256242624 [师]你能用字母表示这一规律吗?[生]设这个自然数为a ,与它相邻的两个自然数为a -1,a +1,则有(a +1)(a -1)=a 2-1. [生]这个结论是正确的,用平方差公式即可说明.[生]可是,我有一个疑问,a 必须是一个自然数,还必须大于2吗?(同学们惊讶,然后讨论)[生]a 可以代表任意一个数.[师]很好!同学们能大胆提出问题,又勇于解决问题,值得提倡.[生]老师,我还有个问题,这个结论反映了数字之间的一种关系.在平时有什么用途呢?(陷入沉思)[生]例如:计算29×31很麻烦,我们就可以转化为(30-1)(30+1)=302-1=900-1=899.[师]的确如此.我们在做一些数的运算时,如果能一直有这样“巧夺天工”的方法,太好了.我们不妨再做几个类似的练习.出示投影片(§1.7.2 B)[例3]用平方差公式计算:(1)103×97 (2)118×122[师]我们可以发现,直接运算上面的算式很麻烦.但注意观察就会发现新的奥妙. [生]我发现了,103=100+3,97=100-3,因此103×97=(100+3)(100-3)=10000-9=9991.太简便了![生]我观察也发现了第(2)题的“奥妙”.118=120-2,122=120+2118×122=(120-2)(120+2)=1202-4=14400-4=14396.[生]遇到类似这样的题,我们就不用笔算,口算就能得出.[师]我们再来看一个例题(出示投影片§1.7.2 C).[例4]计算:(1)a 2(a +b )(a -b )+a 2b 2;(2)(2x -5)(2x +5)-2x (2x -3).分析:上面两个小题,是整式的混合运算,平方差公式的应用,能使运算简便;还需注意的是运算顺序以及结果一定要化简.解:(1)a 2(a +b )(a -b )+a 2b 2=a 2(a 2-b 2)+a 2b 2=a 4-a 2b 2+a 2b 2=a 4(2)(2x -5)(2x +5)-2x (2x -3)=(2x )2-52-(4x 2-6x )=4x 2-25-4x 2+6x=6x -25注意:在(2)小题中,2x 与2x -3的积算出来后,要放到括号里,因为它们是一个整体. [例5]公式的逆用(1)(x +y )2-(x -y )2 (2)252-242分析:逆用平方差公式可以使运算简便.解:(1)(x +y )2-(x -y )2=[(x +y )+(x -y )][(x +y )-(x -y )]=2x ·2y=4xy(2)252-242=(25+24)(25-24)=49Ⅲ.随堂练习1.(课本P 32)计算(1)704×696(2)(x +2y )(x -2y )+(x +1)(x -1)(3)x (x -1)-(x -31)(x +31)(可让学生先在练习本上完成,教师巡视作业中的错误,或同桌互查互纠)解:(1)704×696=(700+4)(700-4)=490000-16=489984(2)(x +2y )(x -2y )+(x +1)(x -1)=(x 2-4y 2)+(x 2-1)=x 2-4y 2+x 2-1=2x 2-4y 2-1(3)x (x -1)-(x -31)(x +31)=(x 2-x )-[x 2-(31)2]=x 2-x -x 2+91=91-x2.(补充练习)出示投影片(§1.7.2 D)解方程:(2x+1)(2x-1)+3(x+2)(x-2)=(7x+1)(x-1)(先由学生试着完成)解:(2x+1)(2x-1)+3(x+2)(x-2)=(7x+1)(x-1)(2x)2-1+3(x2-4)=7x2-6x-14x2-1+3x2-12=7x2-6x-16x=12x=2Ⅳ.课时小结[师]同学们这节课一定有不少体会和收获.[生]我能用拼图对平方差公式进行几何解释.也就是说对平方差公式的理解又多了一个层面.[生]平方差公式不仅在计算整式时,可以使运算简便,而且数的运算如果也能恰当地用了平方差公式,也非常神奇.[生]我觉得这节课我印象最深的是犯错误的地方.例如a(a+1)-(a+b)(a-b)一定要先算乘法,同时减号后面的积(a+b)(a-b),算出来一定先放在括号里,然后再去括号.就不容易犯错误了.……Ⅴ.课后作业课本P32、习题1.12.Ⅵ.活动与探究计算:19902-19892+19882-19872+…+22-1.[过程]先做乘方运算,再做减法,则计算繁琐,观察算式特点,考虑逆用平方差公式.[结果]原式=(19902-19892)+(19882-19872)+…+(22-1)=(1990+1989)(1990-1989)+(1988+1987)(1988-1987)+…+(2+1)(2-1)=1990+1989+1988+1987+…+2+1=2)11990(1990+⨯=1981045●板书设计§1.7.2 平方差公式(二)一、平方差公式的几何解释:二、想一想特例——归纳——建立猜想——用符号表示——给出证明即(a+1)(a-1)=a2-1三、例题讲解:例3 例4四、练习●备课资料参考练习1.选择题(1)在下列多项式的乘法中,不能用平方差公式计算的是( )A.(-a-b)(a-b)B.(c2-d2)(d2+c2)C.(x3-y3)(x3+y3)D.(m-n)(-m+n)(2)用平方差公式计算(x-1)(x+1)(x2+1)结果正确的是( )A.x 4-1B.x 4+1C.(x -1)4D.(x +1)4(3)下列各式中,结果是a 2-36b 2的是( )A.(-6b +a )(-6b -a )B.(-6b +a )(6b -a )C.(a +4b )(a -4b )D.(-6b -a )(6b -a )2.填空题(4)(5x +3y )·( )=25x 2-9y 2(5)(-0.2x -0.4y )( )=0.16y 2-0.04x 2(6)(-23x -11y )( )=-49x 2+121y 2 (7)若(-7m +A )(4n +B )=16n 2-49m 2,则A = ,B = .3.计算(8)(2x 2+3y )(3y -2x 2).(9)(p -5)(p -2)(p +2)(p +5).(10)(x 2y +4)(x 2y -4)-(x 2y +2)·(x 2y -3).4.求值(11)(2003年上海市中考题)已知x 2-2x =2,将下式先化简,再求值 (x -1)2+(x +3)(x -3)+(x -3)(x -1)5.探索规律(12)(2003年北京市中考)观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41……猜想:第n 个等式(n 为正整数)应为 .答案:1.(1)D (2)A (3)D2.(4)(5x -3y ) (5)(0.2x -0.4y ) (6)(23x -11y ) (7)A =4n ,B =7m3.(8)9y 2-4x 4 (9)p 4-29p 2+100(10)x 2y -104.(11)原式=3(x 2-2x )-5=3×2-5=15.(12)9×(n -1)+n =(n -1)×10+1(n 为正整数).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二课时●课题§1.7.2 平方差公式(二)●教学目标(一)教学知识点1.了解平方差公式的几何背景.2.会用面积法推导平方差公式,并能运用公式进行简单的运算.3.体会符号运算对证明猜想的作用.(二)能力训练要求1.用符号运算证明猜想,提高解决问题的能力.2.培养学生观察、归纳、概括等能力.(三)情感与价值观要求1.在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的乐趣.2.体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美.●教学重点平方差公式的几何解释和广泛的应用.●教学难点准确地运用平方差公式进行简单运算,培养基本的运算技能.●教学方法启发——探究相结合●教具准备一块大正方形纸板,剪刀.投影片四张第一张:想一想,记作(§1.7.2 A)第二张:例3,记作(§1.7.2 B)第三张:例4,记作(§1.7.2 C)第四张:补充练习,记作(§1.7.2 D)●教学过程Ⅰ.创设问题情景,引入新课[师]同学们,请把自己准备好的正方形纸板拿出来,设它的边长为a.这个正方形的面积是多少?[生]a2.[师]请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图1-23).现在我们就有了一个新的图形(如上图阴影部分),你能表示出阴影部分的面积吗?图1-23[生]剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为(a2-b2).[师]你能用阴影部分的图形拼成一个长方形吗?同学们可在小组内交流讨论.(教师可巡视同学们拼图的情况,了解同学们拼图的想法)[生]老师,我们拼出来啦.[师]讲给大伙听一听.[生]我是把剩下的图形(即上图阴影部分)先剪成两个长方形(沿上图虚线剪开),我们可以注意到,上面的大长方形宽是(a-b),长是a;下面的小长方形长是(a-b),宽是b.我们可以将两个长方形拼成一个更大长方形,是由于大长方形的宽和小长方形的长都是(a-b),我们可以将这两个边重合,这样就拼成了一个如图1-24所示的图形(阴影部分),它的长和宽分别为(a+b),(a-b),面积为(a+b)(a-b).图1-24[师]比较上面两个图形中阴影部分的面积,你发现了什么?[生]这两部分面积应该是相等的,即(a+b)(a-b)=a2-b2.[生]这恰好是我们上节课学过的平方差公式.[生]我明白了.上一节课,我们用多项式与多项式相乘的法则验证了平方差公式.今天,我们又通过拼图游戏给出平方差公式的一个几何解释,太妙了.[生]用拼图来验证平方差公式很直观,一剪一拼,利用面积相等就可推证.[师]由此我们对平方差公式有了更多的认识.这节课我们来继续学习平方差公式,也许你会发现它更“神奇”的作用.Ⅱ.讲授新课[师]出示投影片(§1.7.2 A)想一想:(1)计算下列各组算式,并观察它们的特点(2)从以上的过程中,你发现了什么规律?(3)请你用字母表示这一规律,你能说明它的正确性吗?[生](1)中算式算出来的结果如下[生]从上面的算式可以发现,一个自然数的平方比它相邻两数的积大1.[师]是不是大于1的所有自然数都有这个特点呢?[生]我猜想是.我又找了几个例子如:[师]你能用字母表示这一规律吗?[生]设这个自然数为a,与它相邻的两个自然数为a-1,a+1,则有(a+1)(a-1)=a2-1.[生]这个结论是正确的,用平方差公式即可说明.[生]可是,我有一个疑问,a必须是一个自然数,还必须大于2吗?(同学们惊讶,然后讨论)[生]a可以代表任意一个数.[师]很好!同学们能大胆提出问题,又勇于解决问题,值得提倡.[生]老师,我还有个问题,这个结论反映了数字之间的一种关系.在平时有什么用途呢?(陷入沉思)[生]例如:计算29×31很麻烦,我们就可以转化为(30-1)(30+1)=302-1=900-1=899.[师]的确如此.我们在做一些数的运算时,如果能一直有这样“巧夺天工”的方法,太好了.我们不妨再做几个类似的练习.出示投影片(§1.7.2 B)[例3]用平方差公式计算:(1)103×97 (2)118×122[师]我们可以发现,直接运算上面的算式很麻烦.但注意观察就会发现新的奥妙.[生]我发现了,103=100+3,97=100-3,因此103×97=(100+3)(100-3)=10000-9=9991.太简便了![生]我观察也发现了第(2)题的“奥妙”.118=120-2,122=120+2118×122=(120-2)(120+2)=1202-4=14400-4=14396.[生]遇到类似这样的题,我们就不用笔算,口算就能得出.[师]我们再来看一个例题(出示投影片§1.7.2 C).[例4]计算:(1)a2(a+b)(a-b)+a2b2;(2)(2x-5)(2x+5)-2x(2x-3).分析:上面两个小题,是整式的混合运算,平方差公式的应用,能使运算简便;还需注意的是运算顺序以及结果一定要化简.解:(1)a2(a+b)(a-b)+a2b2=a2(a2-b2)+a2b2=a4-a2b2+a2b2=a4(2)(2x-5)(2x+5)-2x(2x-3)=(2x)2-52-(4x2-6x)=4x2-25-4x2+6x=6x -25注意:在(2)小题中,2x 与2x -3的积算出来后,要放到括号里,因为它们是一个整体. [例5]公式的逆用(1)(x +y )2-(x -y )2 (2)252-242分析:逆用平方差公式可以使运算简便.解:(1)(x +y )2-(x -y )2=[(x +y )+(x -y )][(x +y )-(x -y )]=2x ·2y=4xy(2)252-242=(25+24)(25-24)=49Ⅲ.随堂练习1.(课本P 32)计算(1)704×696(2)(x +2y )(x -2y )+(x +1)(x -1)(3)x (x -1)-(x -31)(x +31)(可让学生先在练习本上完成,教师巡视作业中的错误,或同桌互查互纠)解:(1)704×696=(700+4)(700-4)=490000-16=489984(2)(x +2y )(x -2y )+(x +1)(x -1)=(x 2-4y 2)+(x 2-1)=x 2-4y 2+x 2-1=2x 2-4y 2-1(3)x (x -1)-(x -31)(x +31)=(x 2-x )-[x 2-(31)2]=x 2-x -x 2+91 =91-x2.(补充练习)出示投影片(§1.7.2 D)解方程:(2x +1)(2x -1)+3(x +2)(x -2)=(7x +1)(x -1)(先由学生试着完成)解:(2x +1)(2x -1)+3(x +2)(x -2)=(7x +1)(x -1)(2x )2-1+3(x 2-4)=7x 2-6x -14x 2-1+3x 2-12=7x 2-6x -16x =12x =2Ⅳ.课时小结[师]同学们这节课一定有不少体会和收获.[生]我能用拼图对平方差公式进行几何解释.也就是说对平方差公式的理解又多了一个层面.[生]平方差公式不仅在计算整式时,可以使运算简便,而且数的运算如果也能恰当地用了平方差公式,也非常神奇.[生]我觉得这节课我印象最深的是犯错误的地方.例如a (a +1)-(a +b )(a -b )一定要先算乘法,同时减号后面的积(a +b )(a -b ),算出来一定先放在括号里,然后再去括号.就不容易犯错误了.……Ⅴ.课后作业课本P 32、习题1.12.Ⅵ.活动与探究计算:19902-19892+19882-19872+…+22-1.[过程]先做乘方运算,再做减法,则计算繁琐,观察算式特点,考虑逆用平方差公式.[结果]原式=(19902-19892)+(19882-19872)+…+(22-1)=(1990+1989)(1990-1989)+(1988+1987)(1988-1987)+…+(2+1)(2-1)=1990+1989+1988+1987+…+2+1 =2)11990(1990+⨯=1981045●板书设计§1.7.2 平方差公式(二)一、平方差公式的几何解释:二、想一想特例——归纳——建立猜想——用符号表示——给出证明即(a +1)(a -1)=a 2-1三、例题讲解:例3 例4四、练习●备课资料参考练习1.选择题(1)在下列多项式的乘法中,不能用平方差公式计算的是( )A.(-a -b )(a -b )B.(c 2-d 2)(d 2+c 2)C.(x 3-y 3)(x 3+y 3)D.(m -n )(-m +n )(2)用平方差公式计算(x -1)(x +1)(x 2+1)结果正确的是( )A.x 4-1B.x 4+1C.(x -1)4D.(x +1)4(3)下列各式中,结果是a 2-36b 2的是( )A.(-6b +a )(-6b -a )B.(-6b +a )(6b -a )C.(a +4b )(a -4b )D.(-6b -a )(6b -a )2.填空题(4)(5x +3y )·( )=25x 2-9y 2(5)(-0.2x -0.4y )( )=0.16y 2-0.04x 2(6)(-23x -11y )( )=-49x 2+121y 2(7)若(-7m +A )(4n +B )=16n 2-49m 2,则A = ,B = .3.计算(8)(2x 2+3y )(3y -2x 2).(9)(p -5)(p -2)(p +2)(p +5).(10)(x 2y +4)(x 2y -4)-(x 2y +2)·(x 2y -3).4.求值(11)(2003年上海市中考题)已知x 2-2x =2,将下式先化简,再求值(x -1)2+(x +3)(x -3)+(x -3)(x -1)5.探索规律(12)(2003年北京市中考)观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41……猜想:第n个等式(n为正整数)应为 .答案:1.(1)D (2)A (3)D2.(4)(5x-3y) (5)(0.2x-0.4y)3x-11y) (7)A=4n,B=7m(6)(23.(8)9y2-4x4 (9)p4-29p2+100(10)x2y-104.(11)原式=3(x2-2x)-5=3×2-5=15.(12)9×(n-1)+n=(n-1)×10+1(n为正整数).。

相关文档
最新文档