平方差公式教案(优质课一等奖)
平方差公式【一等奖教学设计】

4.3公式法第1课时平方差公式1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a2-b2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解【类型一】判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是()A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9解析:A中a2+(-b)2符号相同,不能用平方差公式分解因式,错误;B中5m2-20mn两项都不是平方项,不能用平方差公式分解因式,错误;C中-x2-y2符号相同,不能用平方差公式分解因式,错误;D中-x2+9=-x2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】利用平方差公式分解因式分解因式:(1)a4-116b4;(2)x3y2-xy4.解析:(1)a4-116b4可以写成(a2)2-(14b2)2的形式,这样可以用平方差公式进行分解因式,而其中有一个因式a2-14b2仍可以继续用平方差公式分解因式;(2)x3y2-xy4有公因式xy2,应先提公因式再进一步分解因式.解:(1)原式=(a2+14b2)(a2-14b2)=(a2+14b2)(a-12b)(a+12b);(2)原式=xy2(x2-y2)=xy2(x+y)(x-y).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.【类型三】利用因式分解整体代换求值已知x2-y2=-1,x+y=12,求x -y的值.解析:已知第一个等式左边利用平方差公式化简,将x+y的值代入计算即可求出x -y的值.解:∵x2-y2=(x+y)(x-y)=-1,x+y =12,∴x-y=-2.方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】 利用平方差公式进行简便运算利用因式分解计算: (1)1012-992;(2)5722×14-4282×14.解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可.解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000.方法总结:一些比较复杂的计算,如果通过变形转化为平方差公式的形式,则可以使运算简便.【类型三】 因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S 阴影=(1002-992)+(982-972)+…+(32-22)+1=100+99+98+97+…+2+1=5050(cm 2).答:所有阴影部分的面积和是5050cm 2. 方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a 2-b 2=(a +b )(a -b ); 2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.第2课时平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究探究点一:对角线互相平分的四边形是平行四边形【类型一】利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD 中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC≌△BOD;(2)此题已知AO=BO,要证四边形AFBE是平行四边形,根据全等三角形,只需证OE=OF就可以了.证明:(1)∵AC∥BD,∴∠C=∠D.在△AOC和△BOD中,∵⎩⎪⎨⎪⎧AO=OB,∠AOC=∠BOD,∠C=∠D,∴△AOC≌△BOD(AAS);(2)∵△AOC≌△BOD,∴CO=DO.∵E、F分别是OC、OD的中点,∴OF =12OD,OE=12OC,∴EO=FO,又∵AO =BO,∴四边形AFBE是平行四边形.方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD中,AC交BD于点O,点E,F分别是OA,OC 的中点,请判断线段BE,DF的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF,BE∥DF.解:BE=DF,BE∥DF.因为四边形ABCD是平行四边形,所以OA=OC,OB =OD.因为E,F分别是OA,OC的中点,所以OE=OF,所以四边形BFDE是平行四边形,所以BE=DF,BE∥DF.方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l1∥l2,∴点E,F到l2之间的距离都相等,设为h.∴S△EGH =12GH ·h,S△FGH =12GH·h,∴S△EGH=S△FGH,∴S△EGH-S△GOH=S△FGH-S△GOH,∴S△EGO=S△FHO.方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD中,AD ∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)如果点G是BC的中点,且BC=12,DC=10,求四边形AGCD的面积.解析:(1)求出平行四边形AGCD,推出CD=AG,推出EG=DF,EG∥DF,根据平行四边形的判定推出即可;(2)由点G是BC的中点,BC=12,得到BG=CG=12BC =6,根据四边形AGCD是平行四边形可知AG=DC=10,根据勾股定理得AB=8,求出四边形AGCD的面积为6×8=48.解:(1)∵AG∥DC,AD∥BC,∴四边形AGCD是平行四边形,∴AG=DC.∵E、F分别为AG、DC的中点,∴GE=12AG,DF=12DC,即GE=DF,GE∥DF,∴四边形DEGF是平行四边形;(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。
平方差公式赛课一等奖学习教案

(a+b)(a-b)=a2-b2
平方差公式特征: (1)左边括号(kuòhào)中有两项完全相同,两
项互为相反数. (2)右边是相同项的平方减去相反项的平方. (3)公式中的a,b可以表示 一个单项式也可以
表示一个多项式.
第9第九页页,/共共161页6。页
判断下列(xiàliè)各式能否用平方差公式运算
第第3三页页,/共共161页6。页
(a+b)(a-b) = a2-b2
(a+b)(a-b) = a2-abb++aabb-b2 = a2-b2
第4第页四页,/共共161页。6页
平方差公式(gōngshì)
(a+b)(a-b)=a2-b2
两个(liǎnɡ ɡè)数的和与这两个(liǎnɡ ɡè)数的差的积, 等于这两个(liǎnɡ ɡè)数的平方差。
1.(b-8)(b+8)
2.(-x-1)(x+1)
3.(x+3)(x-2) 4.(mn-4k)(-mn-4k)
第1第0十页页,/共共16页1。6页
例1 运用平方差公式(gōngshì)计算:
⑴ (3x+2)(3x-2) ; (2) (-x+2y)(-x-2y).
第第1十1一页页,/共共161页6。页
(4)( x 1)( x 1) (2 x 1)(2 x 1)
注意(zhù yì):(1)(2)任 选一题
(3)(4)任选一题 第第1十3三页页,/共共161页6。页
一、了解平方差公式的特点(tèdiǎn): (1)左边括号中有两项完全相同,两项互为相反 数. (2)右边是相同项的平方减去相反项的平方.
2023最新-《平方差公式》教学设计优秀10篇

《平方差公式》教学设计优秀10篇《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。
以下是人见人爱的小编分享的10篇《平方差公式》教学设计,在大家参考的同时,也可以分享一下牛牛范文给您的好友哦。
初中数学平方差公式教案篇一一、学习目标:1、使学生了解运用公式法分解因式的意义;2、使学生掌握用平方差公式分解因式二、重点难点重点:掌握运用平方差公式分解因式。
难点:将单项式化为平方形式,再用平方差公式分解因式;学习方法:归纳、概括、总结三、合作学习创设问题情境,引入新课在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。
1、请看乘法公式(a+b)(a-b)=a2-b2 (1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2-b2=(a+b)(a-b) (2)左边是一个多项式,右边是整式的乘积。
大家判断一下,第二个式子从左边到右边是否是因式分解?利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2-b2=(a+b)(a-b)2、公式讲解如x2-16=(x)2-42=(x+4)(x-4)。
9 m 2-4n2=(3 m )2-(2n)2=(3 m +2n)(3 m -2n)四、精讲精练例1、把下列各式分解因式:(1)25-16x2; (2)9a2- b2.例2、把下列各式分解因式:(1)9(m+n)2-(m-n)2; (2)2x3-8x.补充例题:判断下列分解因式是否正确。
平方差公式-优秀教案

平方差公式-优秀教案【教学目标】1. 理解平方差公式的含义和应用2. 学会运用平方差公式化简一元二次方程3. 培养学生运用公式解决实际问题的能力【教学重点】理解平方差公式的含义和应用,学会运用公式化简一元二次方程【教学难点】运用平方差公式化简一元二次方程【教学内容】1. 平方差公式的含义和应用2. 运用平方差公式化简一元二次方程3. 实际问题解析【教学过程】一、引入1. 教师通过提示,让学生回忆二次方程的解法以及解法的局限性,引出平方差公式。
2. 展示平方差公式的公式表达式,让学生观察该公式的形式和含义。
3. 将一个简单的二次方程转化为标准形式,使用平方差公式求解,让学生理解和掌握该公式的具体应用。
二、知识讲解1. 平方差公式的含义和应用(1)平方差公式的定义:在代数学中,平方差公式用于将二次多项式写成一个平方项和一个差项的和的形式。
(2)平方差公式的公式表达式:(a+b)² = a²+2ab+b²和(a-b)² = a²-2ab+b²。
(3)平方差公式的应用:主要用于化简一元二次方程和求解两个数的平方之差等问题。
2. 运用平方差公式化简一元二次方程(1)将一元二次方程转化为标准形式:ax²+bx+c=0;(2)将公式中的a、b、c代入平方差公式;(3)化简得二次方程的解。
(4)特别地,当二次方程中有平方项且系数a=1时,可以直接使用平方差公式。
三、练习与实际问题解析1. 练习题:练习一元二次方程的化简和求解2. 实际问题解析:通过实际问题的分析与计算,激发学生的兴趣,帮助学生理解和掌握平方差公式的应用。
【教学总结】通过本节课的学习,学生可以理解平方差公式的含义和应用,掌握平方差公式化简一元二次方程的方法,并能够通过实际问题的解析,运用所学知识解决实际问题。
同时,本节课旨在培养学生的问题解决能力,提高学生的数学素养与实际应用能力。
初中八年级数学教案-平方差公式【全国一等奖】

人教版八年级数学上册第十四章
乘法公式
平方差公式
一、教学目标:
1、经历探索平方差公式的过程。
2、会推导平方差公式,并能运用公式进行简单的运。
二、教学重难点
1、重点:平方差公式的推导和应。
2、难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、教学过程设计
(一)、推导与计算:a +ba -b .
让学生计算,归纳算式的特征,说明结果的形式。
然后,教师系统总结平方差公式。
(二)、平方差公式的表述:a +ba -b =a 2-b 2
语言叙述:两个数的和与这两个数的差的积,等于这两个数的平方差。
(三)、平方差公式的特征:
引导学生归纳这个公式的一些特点:如公式左、右两边的结构。
1、两个二项式的乘积,有一项完全相同,另一项互为相反数;
2、结果为相同的项的平方减去相反项的平方。
(四)
(五)
、应用新知
简单例题应用:运用平方差公式计算:
1、(3y )3-y
2、-m-3n3n-m
填表可以从下面表格分析:
对本例的前个小题可以采用学生独立完成,然后抢答的形式;第二小题可采用小组讨论的形式,运用平方差公式计算。
(六)、小结:
谈一谈:平方差公式的记忆
四、教学反思:
平方差公式是特殊的整式的乘法,运用这一公式可以迅速而简捷地计算出符合公式的特征的多项式乘法的结果,运用公式计算一定要看是否符合公式的特征,这两个数分别是什么,公式中的字母a、b不仅可以代表具体的数字,字母,单项式,也可以代表多项式。
平方差公式 获奖优秀教学设计

Ⅰ.创设情景,引入新课 做一做:计算下列各题:(1)(x +2)(x -2);(2)(1+3a )(1-3a );(3)(x +5y )(x -5y );(4)(y +3z )(y -3z ).观察以上算式,你发现什么规律?运算出结果,你又发现什么规律?再举两例验证你的发现?Ⅱ.探究新知1、平方差公式两个数的和与差的积,等于它们的平方差.上述规律用符号表示为:(a +b )(a -b )=a 2-b 2其中a ,b 可以表示任意的数,也可以表示代表数的单项式、多项式.利用多项式与多项式相乘的运算法则可以对规律进行验证,即 ( a +b )(a -b )=a 2-ab +ab -b 2=a 2-b 2我们可以把(a +b )(a -b )=a 2-b 2叫做平方差公式.平方差公式是多项式乘法运算中一个重要的公式.用它直接运算会很简单,但要注意必须符合公式的结构特点才能利用它进行运算.2、例题精讲[例1]1、下列多项式乘法中,能用平方差公式计算的是( )A.(x +1)(1+x )B.(21a +b )(b -21a )C.(-a +b )(a -b )D.(x 2-y )(x +y 2)E.(-a -b )(a -b )F.(c 2-d 2)(d 2+c 2)2、利用平方差公式计算:(1)(5+6x )(5-6x ); (2)(x -2y )(x +2y ); (3)(-m +n )(-m -n ). [例2]利用平方差公式计算:(1)(-41x -y )(-41x +y ); (2)(ab +8)(ab -8); (3)(m +n )(m -n )+3n 2. 设计意图:体会平方差公式的应用,感受平方差公式给多项式乘法运算带来的方便,进一步熟悉平方差公式.利用平方差公式计算必须注意以下几点:(1)公式中的字母a 、b 可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.(4)还需注意最后的结果必须最简.Ⅲ、练习巩固1.计算:(1)(a +2)(a -2); (2)(3a +2b )(3a -2b );(3)(-x +1)(-x -1); (4)(-4k +3)(-4k -3).2.把下图左框里的整式分别乘(a +b ),所得的积写在右框相应的位置上.Ⅳ.反思小结同学们有何体会和收获呢?1、今天我们学习了多项式乘法运算中的一个重要公式——平方差公式即(a +b )(a -b )=a 2-b 2.2、应用这个公式要明白公式的特征:(1)左边为两个数的和与差的积;(2)右边为两个数的平方差.3、公式中的a 、b 可以是数,也可以是代表数的整式.4、有些式子表面上不能用公式,但通过适当变形实质上能用公式. Ⅴ.作业习题补充练习1、用简便方法计算:(1)79×81 (2)99×101×100012、计算:(1)(b -2)(b 2+4)(b +2)(2)[2a 2-(a +b )(a -b )][(c -a )(a +c )+(-c +b )(c +b )]3、计算:(1)(4x +32y )(-4x +32y ) (2)(a +b -c )(a -b +c。
平方差公式教学设计(优秀10篇)

平方差公式教学设计(优秀10篇)平方差公式说课课件篇一平方差公式教学反思本节课采用情景—探究的方式,以猜想、实验、论证为主要探究方式,得出平方差公式,应用逆向思维的方向,演绎出平方差公式,对公式的应用首先提醒学生要注意其特征,其次要做好式子的变形,把问题转化成能够应用公式的方面上来,应用公式法因式分解的过程,实际上就是转化和化归的过程。
在解决认识平方差公式的`结构时候,重点突出学生自我思想的形成,能够充分地不公式用自己的语言来叙述,在整个教学设计中,教师只作为了一个点拨者和引路人。
然后应用有梯度的典型例题加以巩固,在学生头脑中形成一个清晰完整的数学模型,使学生在今后的练习中游刃有余。
不足之处:教学中时间把握还是不足,在设计的题目中不怎么合理,应按题目的难度从易到难。
有些题目的归纳可放手给学生讨论后由学生说出,而不是教师代替。
小组评价做的不够,没有足够的小组的活动,没有小组的竞赛。
教学语言还太随意,数学的语言应该严谨。
在语调上应该有所变化。
平方差公式篇二2.运用公式要注意什么?(1)要符合公式特征才能运用平方差公式;(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.四、作业1.运用平方差公式计算:(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);(5)(2x3+壹五)(2x3-壹五);(6)(0.3x-0.l)(0.3x+l);2.计算:(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).热门文章青少年思想道德建设当前我国作文教学改革的新趋势古诗三首(墨梅竹石石灰吟)一场雪Unit2Look at me第五课时植物妈妈有办法威尼斯的小艇等比数列的前n项和相关文章・多项式的乘法・单项式与多项式相乘・单项式的乘法・幂的乘方与积的乘方(二)・幂的乘方与积的乘方・同底数幂的乘法(二)・同底数幂的乘法・一元一次不等式组和它的解法平方差公式教学课件篇三平方差公式教学课件教学目的:1、使学生会推导平方差公式,并掌握公式特征。
平方差公式教案(优质课一等奖)

八年级数学《 15.2.1平方差公式》教学设计桂平市西山一中覃娟娟教学目标:1.经历探索平方差公式的过程 , 会推导平方差公式 , 并运用公式进行简单的运算 .2.在数学活动中建立平方差公式模型,感受数学公式的意义和作用。
3.在计算的过程中发现规律 , 并能用符号表达 , 从而体会数学语言的简洁美 . 教学重点、难点:重点:平方差公式的推导及应用.难点:平方差公式的应用.教具准备:多媒体课件教学过程:一、创设情景,复习导入回顾思考:1、多项式乘法法则:( m + a )( n + b ) = m n + m b + a n + a b2、如果 m=n,且都用 x表示,那么上式就成为:(x+a)(x+b)=x 2+(a+b)x+ab二、新课引入1、计算下列各题 , 看谁做的又快又准确 :(1)(x+y)(x-y)(2)(2a +b)(2a -b)2、教师提问: 1)上述式中都有什么样的规律?2)能不能用字母来表现它呢?学生活动:讨论,并回答出教师提问.224、师生共同探讨用面积说明平方差公式(课件演示图形).5、师生共同分析平方差公式的结构特征.6、练习:判断下列式子可用平方差公式计算吗?①(a - b)(b - a) ;② (a+2b)(2b+a) ;③(a - b)(a+b) ;④ ( 2x+y)(y - 2x).三、例题讲解例 1 运用平方差公式计算:(1) (5+6x)(5 - 6x) ; (2) (b+2a)(2a - b) ; (3) (-x+2y)(-x- 2y).评析 :1 )认清结构,找准a、b2)运用平方差公式时,要紧扣公式的特征,找出相同的“项”和符号相反的“项”,然后应用公式;例 2:计算:(1)102 × 98 ;(2)(y+2)(y-2)-(y-1)(y+5).评析: 1)巧妙的化为公式形式;2)只有符合公式才能应用公式,否则,只能应用多项式与多项式乘法法则进行运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学《15.2.1平方差公式》教学设计
桂平市西山一中覃娟娟
教学目标:
1.经历探索平方差公式的过程,会推导平方差公式,并运用公式进行简单的
运算.
2.在数学活动中建立平方差公式模型,感受数学公式的意义和作用。
3.在计算的过程中发现规律,并能用符号表达,从而体会数学语言的简洁美.
教学重点、难点:
重点:平方差公式的推导及应用.
难点:平方差公式的应用.
教具准备:
多媒体课件
教学过程:
一、创设情景,复习导入
回顾思考:
1、多项式乘法法则:( m + a )( n + b ) = m n + m b + a n + a b
x+(a+b)x+ab 2、如果m=n,且都用 x 表示,那么上式就成为:(x+a)(x+b)=2
二、新课引入
1、计算下列各题,看谁做的又快又准确:
(1)(x+y)(x-y)
(2)(2a+b)(2a-b)
2、教师提问:1)上述式中都有什么样的规律?
2)能不能用字母来表现它呢?学生活动:讨论,并回答出教师提问.
3、师生共同归纳出平方差公式
2
2
)
)(
(b
a
b
a
b
a-
=
-
+
4、师生共同探讨用面积说明平方差公式(课件演示图形).
5、师生共同分析平方差公式的结构特征.
6、练习:
判断下列式子可用平方差公式计算吗?
①(a−b)(b−a) ;② (a+2b)(2b+a);
③-(a−b)(a+b) ;④ (-2x+y)(y−2x).
三、例题讲解
例1 运用平方差公式计算:
(1) (5+6x)(5−6x); (2) (b+2a)(2a−b); (3) (-x+2y)(-x−2y).
评析:1)认清结构,找准a、b
2)运用平方差公式时,要紧扣公式的特征,找出相同的“项”和符号相反的“项”,然后应用公式;
例2:计算:
(1)102 × 98 ;(2)(y+2)(y-2)-(y-1)(y+5).
评析:1)巧妙的化为公式形式;
2)只有符合公式才能应用公式,否则,只能应用多项式与多项式乘
法法则进行运算。
四、随堂练习,巩固新知
1、指出下列计算中的错误:
(1)
2
2
1
)
2
1
)(
2
1(x
x
x-
=
-
+
(2) 4422222)2)(2(b a b a b a -=-+
(3) 2223)23)(23(n m n m n m -=-+
学生先独立思考,然后抢答,师生共评.
2、运用平方差公式计算:
(1)(a+3b)(a −3b); (2)(3+2a)(-3+2a); (3)51×49;
学生独立完成,代表到黑板上板演,再让其他学生充当老师评改,接着再师生共评.
五、课堂总结,发展潜能
1、平方差公式22))((b a b a b a -=-+
2、应用平方差公式时要注意些什么?
六、布置作业.
课本p.156
习题15.2 第1题(1)(3)(5).。