空间几何体 综合问题
2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。
专题10第一章空间几何体知识点与综合提升题—(解析版)高一数学复习巩固练习(人教A版)

A.6B.32C.12D.62
【答案】C
【分析】
结合斜二测法的画法原理求出 , ,再结合面积公式求解即可.
【详解】
由斜二测画法特点得 ,
为直角三角形,
,
故选:C.
【点睛】
本题考查由直观图求平面图的面积,属于容易题.
3.如图所示的几何体是()
A.圆锥B.棱锥C.圆台D.棱柱
三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”
二.空间几何体的直观图
斜二测画法的基本步骤:①建立适当直角坐标系 (尽可能使更多的点在坐标轴上)
②建立斜坐标系 ,使 =450(或1350)
③画对应图形
在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;
在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;
(1)绳子的最短长度的平方f(x).
(2)绳子最短时,顶点到绳子的最短距离.
(3)f(x)的最大值.
【答案】(1) f(x)=AM2=x2+16(0≤x≤4). (2) SR= = (0≤x≤4),(3) f(4)=32.
【解析】试题分析:将圆锥的侧面沿SA展开在平面上,如图,则该展开图为扇形,且弧AA′的长度L就是⊙O的周长,
∴L=2πr=2π.∴∠ASA′= ×360°= ×360°=90°,
(1)由题意知,绳长的最小值为展开图中的AM,其值为AM= (0≤x≤4),
∴f(x)=AM2=x2+16(0≤x≤4).
故选:A
【点睛】
已知三棱锥的三条侧棱两两相互垂直,即可将三棱锥的外接球扩展为长方体的外接球是解题的关键.
【61】立体几何《空间几何体》解答题(90题)

1.【点击此处回目录】(2018•江苏)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【考点】平面与平面垂直.【分析】(1)由⇒AB∥平面A1B1C;(2)可得四边形ABB1A1是菱形,AB1⊥A1B,由AB1⊥B1C1⇒AB1⊥BC⇒AB1⊥面A1BC,⇒平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.【点评】本题考查了平行六面体的性质,及空间线面平行、面面垂直的判定,属于中档题.2.【点击此处回目录】(2018•上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM 与OB所成的角的大小.【考点】旋转体(圆柱、圆锥、圆台);棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.【点击此处回目录】(2018•新课标Ⅲ)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【考点】直线与平面平行;平面与平面垂直.【分析】(1)通过证明CD⊥AD,CD⊥DM,证明CM⊥平面AMD,然后证明平面AMD⊥平面BMC;(2)存在P是AM的中点,利用直线与平面培训的判断定理说明即可.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.【点评】本题考查直线与平面垂直的判断定理以及性质定理的应用,直线与平面培训的判断定理的应用,考查空间想象能力以及逻辑推理能力.4.【点击此处回目录】(2018•北京)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A =PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【考点】直线与平面平行;直线与平面垂直;平面与平面垂直.【分析】(Ⅰ)由等腰三角形的三线合一性质和矩形的对边平行性质,即可得证;(Ⅱ)作出平面P AB和平面PCD的交线,注意运用公理4,再由面面垂直的性质和两个平面所成角的定义,即可得证;(Ⅲ)取PC的中点H,连接DH,FH,运用中位线定理和平行四边形的判断和性质,结合线面平行的判定定理,即可得证.【解答】证明:(Ⅰ)P A=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面P AB和平面PCD有一个公共点P,且AB∥CD,在平面P AB内过P作直线PG∥AB,可得PG∥CD,即有平面P AB∩平面PCD=PG,由平面P AD⊥平面ABCD,又AB⊥AD,可得AB⊥平面P AD,即有AB⊥P A,P A⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面P AB和平面PCD的平面角,由P A⊥PD,可得平面P AB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.【点评】本题考查线面和面面的位置关系,考查线面平行、垂直的判定和性质,以及面面垂直的判断和性质,注意运用转化思想,考查推理能力和空间想象能力,属于中档题.5.【点击此处回目录】(2018•新课标Ⅰ)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直.【分析】(1)可得AB⊥AC,AB⊥DA.且AD∩AC=A,即可得AB⊥面ADC,平面ACD⊥平面ABC;(2)首先证明DC⊥面ABC,再根据BP=DQ=DA,可得三棱锥Q﹣ABP的高,求出三角形ABP的面积即可求得三棱锥Q﹣ABP的体积.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∵AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.【点评】本题考查面面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.6.【点击此处回目录】(2017•上海)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.【考点】棱柱、棱锥、棱台的体积;直线与平面所成的角.【分析】(1)三棱柱ABC﹣A1B1C1的体积V=S△ABC×AA1=,由此能求出结果.(2)连结AM,∠A1MA是直线A1M与平面ABC所成角,由此能求出直线A1M与平面ABC所成角的大小.【解答】解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA1===20.(2)连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,∴AA1⊥底面ABC,AM==,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA===,∴直线A1M与平面ABC所成角的大小为arctan.【点评】本题考查三棱柱的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.7.【点击此处回目录】(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面P AD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行.【分析】(1)利用直线与平面平行的判定定理证明即可.(2)利用已知条件转化求解几何体的线段长,然后求解几何体的体积即可.【解答】(1)证明:四棱锥P﹣ABCD中,∵∠BAD=∠ABC=90°.∴BC∥AD,∵AD⊂平面P AD,BC⊄平面P AD,∴直线BC∥平面P AD;(2)解:四棱锥P﹣ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD =∠ABC=90°.设AD=2x,则AB=BC=x,CD=,O是AD的中点,连接PO,OC,CD的中点为:E,连接OE,则OE=,PO=,PE==,△PCD面积为2,可得:=2,即:,解得x=2,PO=2.则V P﹣ABCD=×(BC+AD)×AB×PO==4.【点评】本题考查直线与平面平行的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.8.【点击此处回目录】(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【考点】空间中直线与直线之间的位置关系;直线与平面平行.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊄平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.9.【点击此处回目录】(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.【考点】棱柱、棱锥、棱台的体积.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos∠EGM=﹣,根据正弦定理得:=,∴sin∠EMG=,cos∠EMG=,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGM cos∠EMG+cos∠EGM sin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.10.【点击此处回目录】(2017•北京)如图,在三棱锥P﹣ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB=BC=2,D为线段AC 的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E﹣BCD的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直;平面与平面垂直.【分析】(1)运用线面垂直的判定定理可得P A⊥平面ABC,再由性质定理即可得证;(2)要证平面BDE⊥平面P AC,可证BD⊥平面P AC,由(1)运用面面垂直的判定定理可得平面P AC ⊥平面ABC,再由等腰三角形的性质可得BD⊥AC,运用面面垂直的性质定理,即可得证;(3)由线面平行的性质定理可得P A∥DE,运用中位线定理,可得DE的长,以及DE⊥平面ABC,求得三角形BCD的面积,运用三棱锥的体积公式计算即可得到所求值.【解答】解:(1)证明:由P A⊥AB,P A⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得P A⊥平面ABC,由BD⊂平面ABC,可得P A⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由P A⊥平面ABC,P A⊂平面P AC,可得平面P AC⊥平面ABC,又平面P AC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面P AC,BD⊂平面BDE,可得平面BDE⊥平面P AC;(3)P A∥平面BDE,P A⊂平面P AC,且平面P AC∩平面BDE=DE,可得P A∥DE,又D为AC的中点,可得E为PC的中点,且DE=P A=1,由P A⊥平面ABC,可得DE⊥平面ABC,可得S△BDC=S△ABC=××2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC=×1×1=.【点评】本题考查空间的线线、线面和面面的位置关系的判断,主要是平行和垂直的关系,注意运用线面平行的性质定理以及线面垂直的判定定理和性质定理,面面垂直的判定定理和性质定理,同时考查三棱锥的体积的求法,考查空间想象能力和推理能力,属于中档题.11.【点击此处回目录】(2017•新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【考点】棱柱、棱锥、棱台的侧面积和表面积;平面与平面垂直.【分析】(1)推导出AB⊥P A,CD⊥PD,从而AB⊥PD,进而AB⊥平面P AD,由此能证明平面P AB⊥平面P AD.(2)设P A=PD=AB=DC=a,取AD中点O,连结PO,则PO⊥底面ABCD,且AD=,PO=,由四棱锥P﹣ABCD的体积为,求出a=2,由此能求出该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥P A,CD⊥PD,又AB∥CD,∴AB⊥PD,∵P A∩PD=P,∴AB⊥平面P AD,∵AB⊂平面P AB,∴平面P AB⊥平面P AD.解:(2)设P A=PD=AB=DC=a,取AD中点O,连结PO,∵P A=PD=AB=DC,∠APD=90°,平面P AB⊥平面P AD,∴PO⊥底面ABCD,且AD==,PO=,∵四棱锥P﹣ABCD的体积为,由AB⊥平面P AD,得AB⊥AD,∴V P﹣ABCD=====,解得a=2,∴P A=PD=AB=DC=2,AD=BC=2,PO=,∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△P AD+S△P AB+S△PDC+S△PBC=+++==6+2.【点评】本题考查面面垂直的证明,考查四棱锥的侧面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.12.【点击此处回目录】(2017•新课标Ⅲ)如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直.【分析】(1)取AC中点O,连结DO、BO,推导出DO⊥AC,BO⊥AC,从而AC⊥平面BDO,由此能证明AC⊥BD.(2)法一:连结OE,设AD=CD=,则OC=OA=1,由余弦定理求出BE=1,由BE=ED,四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,S△DCE=S△BCE,由此能求出四面体ABCE 与四面体ACDE的体积比.法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,BO=,推导出BO⊥DO,以O为原点,OA为x轴,OB为y轴,OD为z轴,建立空间直角坐标系,由AE⊥EC,求出DE=BE,由此能求出四面体ABCE与四面体ACDE的体积比.【解答】证明:(1)取AC中点O,连结DO、BO,∵△ABC是正三角形,AD=CD,∴DO⊥AC,BO⊥AC,∵DO∩BO=O,∴AC⊥平面BDO,∵BD⊂平面BDO,∴AC⊥BD.解:(2)法一:连结OE,由(1)知AC⊥平面OBD,∵OE⊂平面OBD,∴OE⊥AC,设AD=CD=,则OC=OA=1,EC=EA,∵AE⊥CE,AC=2,∴EC2+EA2=AC2,∴EC=EA==CD,∴E是线段AC垂直平分线上的点,∴EC=EA=CD=,由余弦定理得:cos∠CBD==,即,解得BE=1或BE=2,∵BE<<BD=2,∴BE=1,∴BE=ED,∵四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,∵BE=ED,∴S△DCE=S△BCE,∴四面体ABCE与四面体ACDE的体积比为1.法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,∴BO==,∴BO2+DO2=BD2,∴BO⊥DO,以O为原点,OA为x轴,OB为y轴,OD为z轴,建立空间直角坐标系,则C(﹣1,0,0),D(0,0,1),B(0,,0),A(1,0,0),设E(a,b,c),,(0≤λ≤1),则(a,b,c﹣1)=λ(0,,﹣1),解得E(0,,1﹣λ),∴=(1,),=(﹣1,),∵AE⊥EC,∴=﹣1+3λ2+(1﹣λ)2=0,由λ∈[0,1],解得,∴DE=BE,∵四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,∵DE=BE,∴S△DCE=S△BCE,∴四面体ABCE与四面体ACDE的体积比为1.【点评】本题考查线线垂直的证明,考查两个四面体的体积之比的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.13.【点击此处回目录】(2017•山东)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD 为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.【考点】直线与平面平行;平面与平面垂直.【分析】(Ⅰ)取B 1D1中点G,连结A1G、CG,推导出A1G OC,从而四边形OCGA1是平行四边形,进而A1O∥CG,由此能证明A1O∥平面B1CD1.(Ⅱ)推导出BD⊥A1E,AO⊥BD,EM⊥BD,从而BD⊥平面A1EM,再由BD∥B1D1,得B1D1⊥平面A1EM,由此能证明平面A1EM⊥平面B1CD1.【解答】证明:(Ⅰ)取B1D1中点G,连结A1G、CG,∵四边形ABCD为正方形,O为AC与BD的交点,∴四棱柱ABCD﹣A 1B1C1D1截去三棱锥C1﹣B1CD1后,A1G OC,∴四边形OCGA1是平行四边形,∴A1O∥CG,∵A1O⊄平面B1CD1,CG⊂平面B1CD1,∴A1O∥平面B1CD1.(Ⅱ)四棱柱ABCD﹣A 1B1C1D1截去三棱锥C1﹣B1CD1后,BD B1D1,∵M是OD的中点,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD,又BD⊂平面ABCD,∴BD⊥A1E,∵四边形ABCD为正方形,O为AC与BD的交点,∴AO⊥BD,∵M是OD的中点,E为AD的中点,∴EM⊥BD,∵A1E∩EM=E,∴BD⊥平面A1EM,∵BD∥B1D1,∴B1D1⊥平面A1EM,∵B1D1⊂平面B1CD1,∴平面A1EM⊥平面B1CD1.【点评】本题考查线面平行的证明,考查面面垂直的证明,涉及到空间中线线、线面、面面间的位置关系等知识点,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.14.【点击此处回目录】(2016•上海)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)直接利用圆柱的体积公式,侧面积公式求解即可.(2)设点B1在下底面圆周的射影为B,连结BB1,即可求解所求角的大小.【解答】解:(1)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,圆柱的体积为:π•12•1=π.侧面积为:2π•1=2π.(2)设点B1在下底面圆周的射影为B,连结BB1,OB,则OB∥O1B,∴∠AOB=,异面直线O1B1与OC所成的角的大小就是∠COB,大小为:﹣=.【点评】本题考查几何体的体积侧面积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.15.【点击此处回目录】(2016•新课标Ⅱ)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(Ⅰ)证明:AC⊥HD′;(Ⅱ)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′﹣ABCFE体积.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【分析】(1)根据直线平行的性质以菱形对角线垂直的性质进行证明即可.(2)根据条件求出底面五边形的面积,结合平行线段的性质证明OD′是五棱锥D′﹣ABCFE的高,即可得到结论.【解答】(Ⅰ)证明:∵菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,∴EF∥AC,且EF⊥BD将△DEF沿EF折到△D′EF的位置,则D′H⊥EF,∵EF∥AC,∴AC⊥HD′;(Ⅱ)若AB=5,AC=6,则AO=3,B0=OD=4,∵AE=,AD=AB=5,∴DE=5﹣=,∵EF∥AC,∴====,∴EH=,EF=2EH=,DH=3,OH=4﹣3=1,∵HD′=DH=3,OD′=2,∴满足HD′2=OD′2+OH2,则△OHD′为直角三角形,且OD′⊥OH,又OD′⊥AC,AC∩OH=O,即OD′⊥底面ABCD,即OD′是五棱锥D′﹣ABCFE的高.底面五边形的面积S=+=+=12+=,则五棱锥D′﹣ABCFE体积V=S•OD′=××2=.【点评】本题主要考查空间直线和平面的位置关系的判断,以及空间几何体的体积,根据线面垂直的判定定理以及五棱锥的体积公式是解决本题的关键.本题的难点在于证明OD′是五棱锥D′﹣ABCFE 的高.考查学生的运算和推理能力.16.【点击此处回目录】(2016•山东)在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.【考点】直线与平面平行;直线与平面垂直.【分析】(Ⅰ)由条件利用等腰三角形的性质,证得BD⊥AC,ED⊥AC,再利用直线和平面垂直的判定定理证得AC⊥平面EFBD,从而证得AC⊥FB.(Ⅱ)再取CF的中点O,利用直线和平面平行的判定定理证明OG∥平面ABC,OH∥平面ABC,可得平面OGH∥平面ABC,从而证得GH∥平面ABC.【解答】(Ⅰ)证明:如图所示,∵D是AC的中点,AB=BC,AE=EC,∴△BAC、△EAC都是等腰三角形,∴BD⊥AC,ED⊥AC.∵EF∥DB,∴E、F、B、D四点共面,这样,AC垂直于平面EFBD内的两条相交直线ED、BD,∴AC⊥平面EFBD.显然,FB⊂平面EFBD,∴AC⊥FB.(Ⅱ)已知G,H分别是EC和FB的中点,再取CF的中点O,则OG∥EF,又∵EF∥DB,故有OG∥BD,而BD⊂平面ABC,∴OG∥平面ABC.同理,OH∥BC,而BC⊂平面ABC,∴OH∥平面ABC.∵OG∩OH=O,∴平面OGH∥平面ABC,∴GH∥平面ABC.【点评】本题主要考查直线和平面垂直的判定和性质,直线和平面平行的判定与性质,属于中档题.17.【点击此处回目录】(2016•上海)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为π,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.【考点】异面直线及其所成的角.【分析】(1)连结O 1B1,推导出△O1A1B1为正三角形,从而=,由此能求出三棱锥C ﹣O1A1B1的体积.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∠BB1C为直线B1C与AA1所成角(或补角),由此能求出直线B1C与AA1所成角大小.【解答】解:(1)连结O1B1,则∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴=,==.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∴∠BB1C为直线B1C与AA1所成角(或补角),BB1=AA1=1,连结BC、BO、OC,∠AOB=∠A1O1B1=,,∴∠BOC=,∴△BOC为正三角形,∴BC=BO=1,∴tan∠BB1C=1,∴直线B1C与AA1所成角大小为45°.【点评】本题考查三棱锥的体积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.【点击此处回目录】(2016•新课标Ⅲ)如图,四棱锥P﹣ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面P AB;(Ⅱ)求四面体N﹣BCM的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行.【分析】(Ⅰ)取BC中点E,连结EN,EM,得NE是△PBC的中位线,推导出四边形ABEM是平行四边形,由此能证明MN∥平面P AB.(Ⅱ)取AC中点F,连结NF,NF是△P AC的中位线,推导出NF⊥面ABCD,延长BC至G,使得CG=AM,连结GM,则四边形AGCM是平行四边形,由此能求出四面体N﹣BCM的体积.【解答】证明:(Ⅰ)取BC中点E,连结EN,EM,∵N为PC的中点,∴NE是△PBC的中位线∴NE∥PB,又∵AD∥BC,∴BE∥AD,∵AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,∴BE=BC=AM=2,∴四边形ABEM是平行四边形,∴EM∥AB,∴平面NEM∥平面P AB,∵MN⊂平面NEM,∴MN∥平面P AB.解:(Ⅱ)取AC中点F,连结NF,∵NF是△P AC的中位线,∴NF∥P A,NF==2,又∵P A⊥面ABCD,∴NF⊥面ABCD,如图,延长BC至G,使得CG=AM,连结GM,∵AM CG,∴四边形AGCM是平行四边形,∴AC=MG=3,又∵ME=3,EC=CG=2,∴△MEG的高h=,∴S△BCM===2,∴四面体N﹣BCM的体积V N﹣BCM===.【点评】本题考查线面平行的证明,考查四面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.19.【点击此处回目录】(2016•新课标Ⅰ)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,P A=6,顶点P在平面ABC内的正投影为点D,D在平面P AB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面P AC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】棱柱、棱锥、棱台的体积;点、线、面间的距离计算.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由P A=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面P AC,可得F为E在平面P AC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面P AB内的正投影,∴DE⊥面P AB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又P A=PB,∴G是AB的中点;(Ⅱ)在平面P AB内,过点E作PB的平行线交P A于点F,F即为E在平面P AC内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥P A,PB⊥PC,又EF∥PB,所以EF⊥P A,EF⊥PC,因此EF⊥平面P AC,即点F为E在平面P AC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面P AB,DE⊥平面P AB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且P A=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S△PEF=×2××2×2=.【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.20.【点击此处回目录】(2016•江苏)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【考点】直线与平面平行;平面与平面垂直.【分析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.【解答】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)在ABC﹣A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.。
八年级数学上册综合算式专项练习题空间几何体的计算

八年级数学上册综合算式专项练习题空间几何体的计算空间几何体的计算是数学中的一项基本技能,它涉及到对立体图形的表面积和体积的计算。
对于八年级的学生来说,熟练掌握空间几何体的计算,对于理解和解决实际问题具有重要意义。
本文将介绍一些八年级数学上册综合算式专项练习题,帮助学生进一步掌握空间几何体的计算方法。
一、长方体的计算长方体是最常见的几何体之一,计算其表面积和体积的方法相对简单。
以长方体的边长为已知条件,我们可以求解其表面积和体积。
【例题1】已知一个长方体的长为10cm,宽为6cm,高为8cm,求其表面积和体积。
解析:长方体的表面积计算公式为:$S = 2lw + 2lh + 2wh$,长方体的体积计算公式为:$V = lwh$。
代入已知条件,计算得:$S = 2(10\times 6) + 2(10\times 8) +2(6\times 8) = 216cm^2$,$V = 10\times 6\times 8 = 480cm^3$。
所以,该长方体的表面积为216平方厘米,体积为480立方厘米。
二、正方体的计算正方体是一种特殊的长方体,其边长相等,计算其表面积和体积更加简化。
【例题2】已知一个正方体的边长为5cm,求其表面积和体积。
解析:正方体的表面积计算公式仍然为:$S = 6a^2$,正方体的体积计算公式为:$V = a^3$。
代入已知条件,计算得:$S = 6\times (5)^2 = 150cm^2$,$V = (5)^3 = 125cm^3$。
所以,该正方体的表面积为150平方厘米,体积为125立方厘米。
三、圆柱的计算圆柱是一个有圆底的几何体,计算其表面积和体积要结合圆和矩形的计算。
【例题3】已知一个圆柱的底面半径为3cm,高为8cm,求其表面积和体积。
解析:圆柱的侧面积计算公式为:$S_{\text{侧}} = 2\pi rh$,圆柱的底面面积计算公式为:$S_{\text{底}} = \pi r^2$,圆柱的总表面积计算公式为:$S = 2\pi r(h + r)$,圆柱的体积计算公式为:$V = \pi r^2h$。
(完整版)教师版空间几何体知识点及题型精选总结

一、空间几何体题型精选讲解题型一空间几何体的基本概念的考察1、下列命题中正确的是()A.以直角三角形的一直角边所在的直线为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰所在的直线为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆D.圆锥的侧面展开图为扇形,这个扇形的半径等于圆锥底面圆的半径解析:A符合圆锥的定义.B不符合圆台的定义.C中圆柱、圆锥、圆台的底面是圆面,不是圆.D中圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长.所以选A.答案:A题型二三视图的考察1、(2009·海南、宁夏)一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为()A.48+122B.48+242C.36+122D.36+242解析:根据三视图可知,这个三棱锥的一个底面为等腰直角三角形、一个侧面垂直于底面.其直观图如图所示,其中PD⊥平面ABC,D为BC中点,AB⊥AC,ED⊥AB.连结PE,由于AB⊥PD,AB⊥DE,故AB⊥PE,即PE为△PAB的底边AB上的高.在直角三角形PDE中,PE=5,侧111面PAB,PAC的面积相等,故这个三棱锥的全面积是2××6×5+×6×6+×62×4=48+12 2.222故选A.答案:A2、(2011·辽宁)一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如下图所示,左视图是一个矩形,则这个矩形的面积是()A.4B.23C.2 D.3解析:设正三棱柱底面边长为a,利用体积为23,容易求出这个正三棱柱的底面边长和侧棱长都是2,所以底面正三角形的高为3,故所求矩形的面积为2 3.答案:B题型三平面图的直观图(斜二测面法)1、如图所示的直观图,其平面图形的面积为()32A.3 B.C.6D.322解析:由斜二测作图法,水平放置的△OAB为直角三角形,且OB=2O′B′=4,OA=O′A′=3,1则S=×4×3=6.2答案:C2、如图所示为一平面图形的直观图,则这个平面图形可能是()解析:由平行于x、y轴的直线仍然平行知C正确.答案:C题型四其他类型:展开、投影、截面、旋转体等1、面积为3的等边三角形绕其一边中线旋转所得圆锥的侧面积是________.l解析:设等边三角形的边长为l,则旋转所得的圆锥的母线长为l,底面圆的半径为,如图a,231图b.因为S正三角形=3,所以l2=3,即l=2.所以圆锥侧面积为S侧=πl2=2π.42答案:2π2、如图,长方体ABCD-A1B1C1D1中,交于顶点A的三条棱长分别为AD=3,AA1=4,AB=5,则从A点沿表面到C1的最短距离为()A.52 B.74C.45D.310解析:长方体可分别沿三条边B1B、A1B1、BC展开,展开后为三个不同矩形,对角线为最短距离,分别为45,74,310,因此,此题选B.3、已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行截面间的距离为()A.1B.2C.1或7D.2或6解析:由截面周长为6π和8π,知两截面圆半径分别为3和4,所以两截面可在某条直径的同侧或异侧.同侧时,所求距离为52-32-52-42=1;异侧时,所求距离为52-32+52-42=7.二、简单几何体的表面积与体积题型精选讲解题型一与三视图相结合1、(2010·天津)一个几何体的三视图如图所示,则这个几何体的体积为________解析:由俯视图可知该几何体的底面为直角梯形,由正视图和俯视图可知该几何体的高为1,1结合三个视图可知该几何体是底面为直角梯形的直四棱柱,所以该几何体的体积为(1+2)×2×12=3.2、已知一个几何体是由上下两部分构成的组合体,其三视图如下,若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是:4πA.B .2π38π10πC. D.33解析:这个几何体是一个底面半径为1,高为2的圆锥和一个半径为1的半球组成的组合体,1144π故其体积为π×12×2+×π×13=.故选A 3233题型二内接与外接的知识1、(2008·福建)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是________.解析:考查空间想象能力和创新能力.以已知三棱锥的三个侧面为侧面,可作一个棱长为3的正方体.已知三棱锥的外接球即为正方体的外接球,易求半径和表面积.(2R )2=()()()32+32+3,R 2=294S =4πR 2=9π2、(2011·全国新课标)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球3面上.若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者16的高的比值为________.解析:本题考查球内接圆锥问题,属于较难的题目.πr 33r 3R R =由圆锥底面面积是这个球面面积的,得所以=,则小圆锥的高为R -=,16R 2224πR 21613R 1大圆锥的高为R +R =,所以比值为.223题型三表面积与体积综合问题1、(2010·全国)已知正四棱锥S -ABCD 中,SA =23,那么当该棱锥的体积最大时,它的高为()A .1 B.3C .2D .32解析:设底面边长为a,则高h=11所以体积V=a2h=33112a4-a6.2SA2-⎛2a⎫2=⎝2⎭a212-.21设y=12a4-a6,则y′=48a3-3a5,2当y取最值时,y′=48a3-3a5=0,a2解得a=0(舍去)或a=4时,体积最大,此时h=12-=2.22、如图,一个几何体的正视图和侧视图是腰长为1的等腰三角形,俯视图是一个圆及其圆心,当这个几何体的体积最大时,圆的半径是()3162A. B. C. D.3333解析:本题考查三视图及锥体的体积计算.设底面半径为r,高为h,又r2+h2=1,111则V=Sh=πr2h=π(1-h2)h,333当h=36,即r=时,体积最大,故选C.33补充知识:1.平行于棱锥底面的截面的性质棱锥与平行于底面的截面所构成的小棱锥,有如下比例性质:S小锥底S小锥全面积S小锥侧===对应线段(如高、斜高、底面边长等)的平方S大锥底S大锥全面积S大锥侧之比.注:这个比例关系很重要,在求锥体的侧面积、底面积的比时,会大大简化计算过程;在求台体的侧面积、底面积的比时,将台体补成锥体,也可应用这个关系式.2.有关棱柱直截面的补充知识在棱柱中,与各侧棱均垂直的截面叫做棱柱的直截面,正棱柱的上、下底面就是直截面.棱柱的侧面积与截面周长有如下关系:S棱柱侧=c直截l(其中c直截、l分别为棱柱的直截面周长与侧棱长).3.圆柱、圆锥、圆台、球的表面积和体积的计算(1)圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形状及侧面展开图中各线段与原几何体的关系是掌握它们的面积公式及解决相关问题的关键.(2)计算柱体、锥体、台体的体积关键是根据条件求出相应的底面面积和高,要充分利用多面体的截面及旋转体的轴截面,将空间问题转化为平面问题.。
专题二十一 立体几何综合问题

主干知识整合立体几何的综合问题主要包含以下几个方面:1.空间几何体的体积和点到平面的距离空间几何体的体积和点到平面的距离是密不可分的,柱体和锥体的高等同于点到平面的距离,在传统证明位置关系的立体几何问题中增加了对线段长度和多边形面积的计算要求.2.图形翻折问题将平面图形翻折成空间几何体,提高了对空间想象能力的要求,以及对线段和角度的计算能力的要求.3.存在性问题存在性问题将传统意义上指定线线、线面、面面位置关系的证明,变成开放性和探究性问题,需要先找到相应的点、线、面再进行证明,但也可能不存在对应的点、线、面. 要点热点探究► 探究点一 空间几何体中点到平面距离的问题空间几何体中点到平面的距离问题,首先考虑直接法即直接找出点在平面上的射影,如果找不到再考虑转化.例1 如图21-1,直四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,∠ADC =120°,AA1=AB =1,点O 1、O 分别是上、下底面菱形的对角线的交点.(1)求证:A 1O ∥平面CB 1D 1;(2)求点O 到平面CB 1D 1的距离217.. 图21-1► 探究点二 图形翻折问题将平面几何图形翻折成空间几何体,会带来线段的长度和角度的变化,从而影响线面位置关系,解这类问题关键是需要分清楚翻折前后的变化,需要一定的空间想象能力.例2 在直角梯形ABCD 中,AB ∥CD ,AB =2BC =4,CD =3,E 为AB 中点,过E 作EF ⊥CD ,垂足为F (如图21-2(1)),将此梯形沿EF 折成一个直二面角A -EF -C (如图21-2(2)).(1)求证:BF ∥平面ACD ;(2)求多面体ADFCBE 的体积.图21-2 ► 探究点三 存在性问题空间几何体常研究的存在性问题包括,是否存在线面平行;是否存在线面垂直. 例3 如图21-3所示,在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,AB =2BC ,AC =AA 1=3BC .(1)证明:A 1C ⊥平面AB 1C 1;(2)若D 是棱CC 1的中点,在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由.已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+3,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(1)求证:BC⊥平面CDE;(2)求证:FG∥平面BCD;(3)在线段AE上找一点R,使得平面BDR⊥平面BDC,并说明理由.图21-4规律技巧提炼1.点到平面距离的常见求解方法有以下几个方法:(1)直接法:过点作直线垂直平面,点与垂足间的距离即为点到平面的距离.(2)转化法:如果点到平面的射影不易找到,可以寻找过已知点的且平行于已知平面的直线上的点来求解;或者用等体积法求解.2.在研究图形翻折问题时,应该先研究位于折痕两侧的线段长度和角度的值,以及翻折后发生的变化,不过这类问题在研究时,翻折前后的图形已经给出,降低了对图形想象的要求.3.在研究存在性问题时,如果直接可以判断点或线所在的位置,可以直接写出并证明;如果不能够判断,可采取分析法即假设有这样的位置关系,根据性质定理得到点或线所在位置,再进行证明.如图21-6,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA =AB=4,G为PD中点,E点在AB上,平面PEC⊥平面PDC.(1)求证:AG⊥平面PCD;(2)求证:AG∥平面PEC;(3)求点G到平面PEC的距离. 2.图21-6。
立体几何中组合问题的几种解法

立体几何中组合问题的几种解法解决几何组合问题时,应准确灵活使用加法原理和乘法原理,要分类分步进行,做到不重复不遗漏。
1 直接求解法例1:四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法有多少种?分析:正面考虑本题各步骤的方法比较复杂,计算困难,应运用逆向思维,即先考虑从10个点任意取出4个点的方法,再减去从10个点中取出4点共面的的方法即可。
解:从10个点中找出4个点的方法有C410=210种,其中在四面体的四个面内各有6个点,取出共面的4个点的方法有4C4■=60种;相邻面各棱的中点4点共C410面的有3种;一条棱上三点与其相对棱中点也共面,共6种。
∴所求方法N=210-60-3-6=141(种)本题应注意“哪些点共面?”共有几种情况?[1]例2:从平面Ⅱ上取6个点,再从平面B上取4个点,这10个点最多可确定多少个三棱锥?解法①:分三种情况考虑:第一种情况从平面a上的6个点中任取一个再与从平面β上的4个点中任取3个点构成的三棱锥有C1■C■■个;第二种情况,从平面a上的6个点中任取2个与平面13上的4个点中任取2个点构成的三棱锥有C2■C2■个;第三种情况,从平面a上的6个点中任取3个点与平面β上的4个点中任取1个点构成的三棱锥有C■■C1■个。
根据加法原理共有C1■C■■+C2■C2■ +C■■C1■ =24+90+80=194(个)。
解法②:逆向思维:从10个点中任取4个点的组合数C410中,去掉4个点共面的两种情况即4点在平面a上的C4■个,4点在平面β上的C4■个。
其余的任4点都能构成一个三棱锥。
因此,可构成三棱锥C410-C4■-C4■=210-15-1=194(个)。
2 从几何概念上求解[2]例3:空间10个点,无三点共线,其中有六个点共面,其余无四个点共面,则这些可以组成四棱锥的个数有多少个?此题易错解,仿上例。
错解一:从共面的6个点中任取1个、2个、3个、4个点,与从另外4个不共面的点中任取4个、3个、2个、1个点可构成的四棱锥有C1■C4■+C2■C■■+C■■C2■=6+60=120+60=246(个)。
利用 空间向量解立体几何(含综合题

利用空间向量解立体几何问题一、基础知识(一)刻画直线与平面方向的向量1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =--2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线(2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组:1112220x y z x y x y z x y z z ++=⎧⎨++=⎩ 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量解:设(),,n x y z =,则有20230x y x y z +=⎧⎨++=⎩ ,解得:2x yz y =-⎧⎨=⎩::2:1:1x y z ∴=- ()2,1,1n ∴=-(二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面,αβ的法向量)1、判定类(1)线面平行:a b a b ⇔∥∥ (2)线面垂直:a b a b ⊥⇔⊥ (3)面面平行:m n αβ⇔∥∥ (4)面面垂直:m n αβ⊥⇔⊥ 2、计算类:(1)两直线所成角:cos cos ,a b a b a bθ⋅==(2)线面角:cos ,sin a m a m a m θ⋅==(3)二面角:cos cos ,m n m n m nθ⋅==或cos cos ,m n m n m nθ⋅=-=-(视平面角与法向量夹角关系而定)(4)点到平面距离:设A 为平面α外一点,P 为平面α上任意一点,则A 到平面α的距离为A AP n d nα-⋅=,即AP 在法向量n 上投影的绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合体【例1】 (2003京春)一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则Rr= .【例2】 已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则TS等于( ) A .19B .49 C .14D .13【例3】 有一个轴截面是边长为4的正方形的圆柱,将它的内部挖去一个与它同底等高的圆锥,求余下来的几何体的表面积与体积.【例4】 棱长为1的正方体1111ABCD A B C D -被以A 为球心,AB 为半径的球相截,则被截形体的表面积为( ) A .5π4B .7π8C .πD .7π4【例5】 已知正三棱锥S ABC -,一个正三棱柱的上底面三顶点在棱锥的三条侧棱上,下底面在正三棱锥的底面上,若正三棱锥的高为15,底面边长为12,内接正三棱柱的侧面积为120. ⑴求正三棱柱的高; ⑵求正三棱柱的体积;典例分析板块四.综合问题⑶求棱柱上底面所截棱锥与原棱锥的侧面积之比.【例6】 (2008福建15)的表面积是 .ABCD【例7】 正方体全面积为24,求它的外接球和内切球的表面积.【例8】半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体棱长为,则球的表面积和体积的比为______.【例9】 棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______.【例10】 (2007年天津理12)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为1,2,3则此球的表面积__________.【例11】 (2008浙江卷14)如图,已知球O 的球面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB BC ⊥,DA AB BC ===O 点体积等于__________DCBA【例12】 (2007全国文15)正四棱锥S ABCD -点S 、A 、B 、C 、D 都在同一球面上,则该球的体积为_______.O'OH DCBAS【例13】 求球与它的外切圆柱、外切等边圆锥的体积之比.(等边圆锥是指轴截面是等边三角形的圆锥)【例14】 设圆锥的底面半径为2,高为3,求:⑴内接正方体的棱长; ⑵内切球的表面积.【例15】 圆台的内切球半径为R ,且圆台的全面积和球面积之比为218,求圆台的上,下底面半径12,r r (12r r <).【例16】 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?【例17】 (2009全国卷I )直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120°BAC ∠=,则此球的表面积等于 .【例18】 (06四川卷文9)如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是( ) A .4π B .8π C .12π D .16πOD CBAP【例19】 正四面体棱长为a ,求其外接球和内切球的表面积.【例20】 如图所示,正四面体ABCD的外接球的体积为,求四面体的体积.【例21】 (2008新课标海南宁夏文理)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,那么这个球的体积为_________.【例22】 如图,在等腰梯形ABCD 中,22,60AB DC DAB ︒==∠=,E 为AB 的中点,将ADE ∆ 与BEC ∆分别沿,ED EC 向上折起,使,A B 重合于点P ,则三棱锥P DCE -的外接球的体积( )D ECBAABCD【例23】 (2008重庆理9)如图,体积为V 的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.1V 为小球相交部分(图中阴影部分)的体积,2V 为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是( )A .12VV >B .22V V <C .12V V >D .12V V <【例24】(2005全国Ⅱ,理12)将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( ) AB.2+C.4+D综合问题与三视图、直观图综合【例1】 若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为( )A.B. C.24+D.24+左视图俯视图主视图232【例25】 若一个正三棱柱的三视图如图所示,则这个正三棱柱的体积为_______.左视图俯视图主视图232【例26】 (2009宁夏海南卷理)一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为( )66A .48+B .48+C .36+D .36+【例27】 (2010年丰台一模)若一个正三棱柱的三视图及其尺寸如下图所示(单位:cm ),侧视图俯视图主视图326则该几何体的体积是3cm.【例28】(2010石景山一模)一个几何体的三视图如图所示,那么此几何体的侧面积(单位:2cm)为()A.80B.60C.40D.20【例29】(2010年东城一模)下图是一个几何体的三视图,则该几何体的体积为.侧(左)视图正(主)视图222211【例30】(2010年东城一模)已知某几何体的三视图如下图所示,则该几何体的表面积是()A .622+B .62+C .522+D .52+俯视图侧视图主视图122111【例31】 (2010年宣武一模)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .1112210题图俯视图左视图正视图【例32】 右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是________.左视图主视图俯视图424【例33】 (2010年崇文一模)有一个几何体的三视图及其尺寸如图(单位:cm ),该几何体的表面积和体积为( )A .2324πcm ,12πcmB .2315πcm ,12πcmC .2324πcm ,36πcmD .以上都不正确俯视图侧(左)视图正(主)视图【例34】 (朝阳·文·题12)如下图所示,一个空间几何体的正视图和侧视图是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为 .俯视图侧视图正视图【例35】 (2010天津高考)一个几何体的三视图如图所示,则这个几何体的体积为俯视图侧视图正视图【例36】 (2010浙江高考)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .(第12题)俯视图侧视图正视图【例37】 (2010年崇文二模)一个几何体的三视图如图所示,则这个几何体的体积等于( )侧(左)视图俯视图A .12B C .563D .4【例38】 (2010年朝阳二模)一个几何体的三视图如图所示,则此几何体的体积是 ( )A .112B .80C .72D .64俯视图侧视图正视图3444【例39】 已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.⑴求该几何体的体积V ; ⑵求该几何体的侧面积S .【例40】 已知某个几何体的三视图如下,根据图中标出的尺寸,201010202020主视图左视图俯视图可得这个几何体的体积是_______.【例41】 (2009扬州中学高三期末)一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为 .243【例42】 (2008山东文理6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )俯视图侧(左)视图正(主)视图A .9πB .10πC .11πD .12π【例43】 已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,如图,则此几何体的外接球的表面积为 .俯视图左视图主视图【例44】 (2008新课标海南宁夏)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).⑴在正视图下面,按照画三视图的要求画出该多面体的俯视图; ⑵按照给出的尺寸,求该多面体的体积;⑶在所给直观图中连结BC ',证明:BC '∥面EFG .侧视图正视图D'C'B'GFE DC BA【例45】 一个多面体的直观图及三视图如图所示:(其中M 、N 分别是AF 、BC 的中点).直观图三视图22222222NMFEDCBA⑴求证:MN ∥平面CDEF ; ⑵求多面体A —CDEF 的体积.其他问题【例46】 已知一个全面积为24的正方体,有一个与每条棱都相切的球,此球的体积为 .【例47】 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(包括上下底面面积)超过39,则该塔形中正方体的个数至少是( ) A .4B .5C .6D .7【例48】 (2001年全国高考)一间民房的屋顶有如下图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为1P 、2P 、3P .若屋顶斜面与水平面所成的角都是a ,则( )A .321P P P =>B .321P P P >=C .321P P P >>D .321P P P ==杂题【例49】 (2008江西)如图1,一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图2).有下列四个命题:A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好经过点PD .若往容器内再注入a 升水,则容器恰好能装满其中真命题的代号是: (写出所有真命题的代号).【例50】 (2002年全国文最后一题)⑴给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图12图图2中,并作简要说明;⑵试比较你剪拼的正三棱锥与正三棱柱的体积的大小;⑶如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱,使它的全面积与给出的三角形的面积相等.请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.图3图2图1【例51】 (2006江苏)两相同的正四棱锥组成如图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有( )A .1个B .2个C .3个D .无穷多个【例52】 (06江西卷)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A BEFD -与三棱锥A EFC -的表面积分别是1S ,2S ,则必有( )BA .12S S <B .12S S >C .12S S =D .1S ,2S 的大小关系不能确定【例53】 (2004福建,16)如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器(如图). 当这个正六棱柱容器的底面边长为 时,其容积最大.【例54】 (2005全国Ⅱ,理12)将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( )A B .2+C .4+D【例55】 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m ,高4m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4m (高不变);二是高度增加4m (底面直径不变).⑴分别计算按这两种方案所建的仓库的体积; ⑵分别计算按这两种方案所建的仓库的表面积; ⑶哪个方案更经济些?。