重庆市渝西九校2020届高三(5月份)高考数学(理科)联考试题

合集下载

【联考命题】2020届高三5月联考数学(理科)试题 (解析版)

【联考命题】2020届高三5月联考数学(理科)试题 (解析版)

2020年高考数学模拟试卷(理科)(5月份)一、选择题(共12小题).1.设集合A={x|log2x<1},B={x|x2﹣x﹣2<0},则∁B A=()A.(﹣∞,2)B.(﹣1,0]C.(﹣1,2)D.(﹣1,0)2.已知z=5a2+i(a>0),若z⋅z=5,则a=()A.1B.√5C.√3D.53.已知a=30.3,b=(12)π,c=log5√6,则()A.a>b>c B.c>b>>a C.a>c>b D.b>a>c4.某公司对旗下的甲、乙两个门店在1至9月份的营业额(单位:万元)进行统计并得到如图折线图.下面关于两个门店营业额的分析中,错误的是()A.甲门店的营业额折线图具有较好的对称性,故而营业额的平均值约为32万元B.根据甲门店的营业额折线图可知,该门店营业额的平均值在[20,25]内C.根据乙门店的营业额折线图可知,其营业额总体是上升趋势D.乙门店在这9个月份中的营业额的极差为25万元5.若x ,y 满足约束条件{3x −y +3≥0x +y −3≤03x −5y −9≤0,则z =x ﹣2y 的最大值为( )A .5B .6C .3D .46.某几何体的三视图如图所示,则其体积是( )A .(45+9√2)πB .36πC .63πD .216+9π7.著名数学家华罗庚先生曾说过:“数缺形时少直观,形缺数时难入微数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,我们经常用函数的图象来研究函数的性质,也经常用函数的解析式来琢磨函数的图象的特征,如某体育品牌的LOGO 为,可抽象为如图所示的轴对称的优美曲线,下列函数中,其图象大致可“完美”局部表达这条曲线的函数是( )A .f(x)=sin5x2−x −2x B .f(x)=cosx2x−2−x C .f(x)=cos5x |2x −2−x |D .f(x)=sin5x |2x −2−x |8.已知函数f (x )=sin (ωx +φ)(ω>0)的图象与x 轴的两个相邻交点的距离等于π4,若∀x ∈R ,f(x)≤|f(π6)|,则正数φ的最小值为( )A .π6B .5π6C .π3D .π49.若(ax x )8的展开式中x 2的项的系数为358,则x 5的项的系数为( ) A .74B .78C .716D .73210.抛物线C :y 2=4x 的焦点为F ,过F 且斜率为√3的直线l 与抛物线C 交于M ,N 两点,点P 为抛物线C 上的动点,且点P 在l 的左侧,则△PMN 面积的最大值为( ) A .√3B .2√3C .2√33D .16√3911.在矩形ABCD 中,AB =4,BC =3,沿矩形对角线BD 将△BCD 折起形成四面体ABCD ,在这个过程中,现在下面四个结论:①在四面体ABCD 中,当DA ⊥BC 时,BC ⊥AC ; ②四面体ABCD 的体积的最大值为245;③在四面体ABCD 中,BC 与平面ABD 所成角可能为π3; ④四面体ABCD 的外接球的体积为定值. 其中所有正确结论的编号为( ) A .①④B .①②C .①②④D .②③④12.若对任意的x 1,x 2∈[﹣2,0),x 1<x 2,x 2e x 1−x 1e x 2x 1−x 2<a 恒成立,则a 的最小值为( ) A .−3e 2B .−2e 2C .−1e 2D .−1e二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.已知向量a →=(m ,1),b →=(4,m ),向量a →在b →方向上的投影为√5,则m = . 14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =2√7,b =4,A =120°,则△ABC 的面积为 .15.若sinα1−cosα=13,则2cosα+3sinα−2sin 2α2= .16.双曲线C 的渐近线方程为y =±√33x ,一个焦点为F (0,﹣8),则该双曲线的标准方程为 .已知点A (﹣6,0),若点P 为C 上一动点,且P 点在x 轴上方,当点P 的位置变化时,△PAF 的周长的最小值为 .三、解答题;共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设{a n }是一个首项为2,公比为q (q ≠1)的等比数列,且3a 1,2a 2,a 3成等差数列. (1)求{a n }的通项公式;(2)已知数列{b n }的前n 项和为S n ,b 1=1,且√S n −√S n−1=1(n ≥2),求数列{a n •b n }的前n 项和T n .18.如图,长方体ABCD ﹣A 1B 1C 1D 1的底面为正方形,AB =1,AA 1=3,BE →=2EB 1→,A 1M →=2MA →,N 是棱C 1D 1的中点,平面AEC 1与直线DD 1相交于点F . (1)证明:直线MN ∥平面AEC 1F . (2)求二面角E ﹣AC ﹣F 的正弦值.19.已知0<m <2,动点M 到两定点F 1(﹣m ,0),F 2(m ,0)的距离之和为4,设点M 的轨迹为曲线C ,若曲线C 过点N(√2,√22).(1)求m 的值以及曲线C 的方程;(2)过定点(65,0)且斜率不为零的直线l 与曲线C 交于A ,B 两点.证明:以AB 为直径的圆过曲线C 的右顶点. 20.已知函数f (x )=lnx ﹣tx +t . (1)讨论f (x )的单调性;(2)当t =2时,方程f (x )=m ﹣ax 恰有两个不相等的实数根x 1,x 2,证明:x 1+x 22x 1x 2>2−a .21.2020年4月8日零时正式解除离汉通道管控,这标志着封城76天的武汉打开城门了.在疫情防控常态下,武汉市有序复工复产复市,但是仍然不能麻痹大意仍然要保持警惕,严密防范、慎终如始.为科学合理地做好小区管理工作,结合复工复产复市的实际需要,某小区物业提供了A ,B 两种小区管理方案,为了决定选取哪种方案为小区的最终管理方案,随机选取了4名物业人员进行投票,物业人员投票的规则如下: ①单独投给A 方案,则A 方案得1分,B 方案得﹣1分; ②单独投给B 方案,则B 方案得1分,A 方案得﹣1分; ③弃权或同时投票给A ,B 方案,则两种方案均得0分.前1名物业人员的投票结束,再安排下1名物业人员投票,当其中一种方案比另一种方案多4分或4名物业人员均已投票时,就停止投票,最后选取得分多的方案为小区的最终管理方案.假设A ,B 两种方案获得每1名物业人员投票的概率分别为23和12.(1)在第1名物业人员投票结束后,A 方案的得分记为ξ,求ξ的分布列; (2)求最终选取A 方案为小区管理方案的概率.选考题:共10分请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,已知曲线C 1的参数方程为{x =−1+√14cosφy =1+√14sinφ(φ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4cosθ.曲线C3的极坐标方程为ρ=3√1+8sinθ,曲线C1与曲线C2的交线为直线l.(1)求直线l和曲线C3的直角坐标方程;(2)直线l与x轴交于点M,与曲线C3相交于A,B两点,求|1|MA|−1|MB||的值.[选修4-5:不等式选讲]23.设函数f(x)=2x﹣1﹣|x﹣1|.(1)求不等式f(x)<3的解集;(2)若方程f(x)=x2+ax有两个不等实数根,求a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|log2x<1},B={x|x2﹣x﹣2<0},则∁B A=()A.(﹣∞,2)B.(﹣1,0]C.(﹣1,2)D.(﹣1,0)【分析】先求出集合A,B,再利用补集的定义即可算出结果.解:∵集合A={x|log2x<1}={x|0<x<2},B={x|﹣1<x<2},∴∁B A={x|﹣1<x≤0},故选:B.【点评】本题主要考查了集合的基本运算,是基础题.2.已知z=5a2+i(a>0),若z⋅z=5,则a=()A.1B.√5C.√3D.5【分析】z=5a(2−i)(2+i)(2−i)=2a﹣ai,利用互为共轭复数的性质可得z•z=√(2a)2+(−a)2,a>0,解得a.解:z=5a(2−i)(2+i)(2−i)=2a﹣ai,∴5=z•z=√(2a)2+(−a)2,a>0,解得a=1.故选:A.【点评】本题考查了复数的运算法则、互为共轭复数的性质,考查了推理能力与计算能力,属于基础题.3.已知a=30.3,b=(12)π,c=log5√6,则()A .a >b >cB .c >b >>aC .a >c >bD .b >a >c【分析】利用对数函数和指数函数的性质求解. 解:∵30.3>30=1,∴a >1, ∵0<(12)π<(12)1=12,∴0<b <12,∵log 5√6>log 5√5=12,且log 5√6<log 55=1,∴12<c <1,∴a >c >b , 故选:C .【点评】本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意对数函数和指数函数的性质的合理运用.4.某公司对旗下的甲、乙两个门店在1至9月份的营业额(单位:万元)进行统计并得到如图折线图.下面关于两个门店营业额的分析中,错误的是( )A .甲门店的营业额折线图具有较好的对称性,故而营业额的平均值约为32万元B .根据甲门店的营业额折线图可知,该门店营业额的平均值在[20,25]内C .根据乙门店的营业额折线图可知,其营业额总体是上升趋势D .乙门店在这9个月份中的营业额的极差为25万元【分析】据折线图分别判断ABCD 的正误即可.解:对于A ,甲门店的营业额折线图具有较好的对称性,最高营业额远低于32万元,A 错误.对于B ,甲门店的营业额的平均值为12+18+21+28+32+25+24+18+169=1949≈21.6,即该门店营业额的平均值在区间[20,25]内,B 正确.对于C ,根据乙门店的营业额折线图可知,其营业额总体是上升趋势,C 正确. 对于D ,乙门店在这9个月中的营业额最大值为30万元,最小值为5万元,则极差为25万元,D 正确. 故选:A .【点评】本题考查了频率分布折线图,考查数形结合,是一道基础题. 5.若x ,y 满足约束条件{3x −y +3≥0x +y −3≤03x −5y −9≤0,则z =x ﹣2y 的最大值为( )A .5B .6C .3D .4【分析】由约束条件作出可行域,化目标函数z =x ﹣2y 为直线方程的斜截式,可知当直线在y 轴上的截距最小时z 最大,结合图象找出满足条件的点,联立直线方程求出点的坐标,代入目标函数可求z 的最大值.解:由x ,y 满足约束条件{3x −y +3≥0x +y −3≤03x −5y −9≤0,作出可行域如图,由z =x ﹣2y ,得y =12x −12z ,由图可知,当直线y =12x −12z 过可行域内点A 时直线在y 轴上的截距最小,z 最大.联立{3x −y +3=03x −5y −9=0,解得A (﹣2,﹣3).∴目标函数z=x﹣2y的最大值为﹣2+2×3=4.故选:D.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,关键是正确作出可行域,是中档题.6.某几何体的三视图如图所示,则其体积是()A.(45+9√2)πB.36πC.63πD.216+9π【分析】由三视图知该几何体是圆柱与圆锥的组合体,结合图中数据求出它的体积.解:由三视图知,该几何体是圆柱与圆锥的组合体,如图所示;则该组合体的体积为V=V柱+V锥=π•32•6+13π•32•3=63π.故选:C.【点评】本题考查了利用三视图求简单组合体的体积问题,是基础题.7.著名数学家华罗庚先生曾说过:“数缺形时少直观,形缺数时难入微数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,我们经常用函数的图象来研究函数的性质,也经常用函数的解析式来琢磨函数的图象的特征,如某体育品牌的LOGO为,可抽象为如图所示的轴对称的优美曲线,下列函数中,其图象大致可“完美”局部表达这条曲线的函数是()A.f(x)=sin5x2−x−2xB.f(x)=cosx2x−2−xC.f(x)=cos5x|2x−2−x|D.f(x)=sin5x|2x−2−x|【分析】由函数的对称性及特殊点的函数值,利用排除法得解.解:观察图象可知,函数的图象关于y轴对称,而选项B,D为奇函数,其图象关于原点对称,不合题意;对选项A而言,当x∈(0,π5)时,f(x)<0,不合题意;故选:C .【点评】本题考查函数的图象及其性质,考查运算求解能力,属于基础题.8.已知函数f (x )=sin (ωx +φ)(ω>0)的图象与x 轴的两个相邻交点的距离等于π4,若∀x ∈R ,f(x)≤|f(π6)|,则正数φ的最小值为( ) A .π6B .5π6C .π3D .π4【分析】根据函数f (x )的性质可知,相邻的与x 轴的两个交点距离是半个周期,由此可求得ω,然后π6是最值点,求出φ的值.解:因为函数f (x )=sin (ωx +φ)(ω>0)的图象与x 轴的两个相邻交点的距离等于π4,所以12⋅2πω=π4,解得ω=4,故f (x )=sin (4x +φ),又因为∀x ∈R ,f(x)≤|f(π6)|,∴x =π6是f (x )的一条对称轴,所以4×π6+φ=π2+kπ,k ∈Z ,∴φ=kπ−π6,k ∈Z . 令k =1,得φ=5π6为最小值. 故选:B .【点评】本题考查据图求式问题的基本思路,注意抓住特殊点、特殊线去求周期、ω、φ的值等,属于中档题.9.若(ax √x )8的展开式中x 2的项的系数为358,则x 5的项的系数为( ) A .74B .78C .716D .732【分析】先写出展开式的通项并化简,然后根据x 2的系数为358求出a 的值,然后再求x 5的系数.解:由已知得Tk+1=C8k a8−k x8−32k,k=0,1,..,8,令8−3k2=2,解得k=4,∴C84a4=358,解得a=±12.令8−3k2=5,得k=2,故x5的系数为C82a6=716.故选:C.【点评】本题考查二项式展开式的通项以及系数的求法,还考查了学生的运算能力,属于基础题.10.抛物线C:y2=4x的焦点为F,过F且斜率为√3的直线l与抛物线C交于M,N两点,点P为抛物线C上的动点,且点P在l的左侧,则△PMN面积的最大值为()A.√3B.2√3C.2√33D.16√39【分析】由题意可得直线l的方程与抛物线联立求出两根之和,由抛物线的性质可得弦长MN的值,设与直线l平行的直线与抛物线相切时,平行线间的距离最大,即△PMN 的面积最大,求出面积的最大值.解:由题意可知直线l的方程为:y=√3(x﹣1),设M(x1,y1),N(x2,y2),代入抛物线的方程可得3x2﹣10x+3=0,x1+x2=10 3,由抛物线的性质可得|MN|=x1+x2+p=103+2=163;设与直线l平行的直线为:y=√3x+m,代入抛物线的方程可得3x2+(2√3m﹣4)x+m2=0,当直线:y=√3x+m与抛物线相切时,P到直线l的距离有最大值,所以△=(2√3m−4)2﹣4×3×m2=0,解得m=√33,直线l与直线y=√3x+√33的距离d=2√33,所以△PMN 面积的最大值为12×163×2√33=16√39, 故选:D .【点评】本题考查直线与抛物线的位置关系,考查运算求解能力,属于中档题. 11.在矩形ABCD 中,AB =4,BC =3,沿矩形对角线BD 将△BCD 折起形成四面体ABCD ,在这个过程中,现在下面四个结论:①在四面体ABCD 中,当DA ⊥BC 时,BC ⊥AC ; ②四面体ABCD 的体积的最大值为245;③在四面体ABCD 中,BC 与平面ABD 所成角可能为π3; ④四面体ABCD 的外接球的体积为定值. 其中所有正确结论的编号为( ) A .①④B .①②C .①②④D .②③④【分析】①由线面垂直的判定定理可证明BC ⊥平面DAC ,再由线面垂直的性质定理可知BC ⊥AC ;②当平面BCD ⊥平面ABD 时,四面体ABCD 的体积最大,再利用棱锥的体积公式进行运算即可得解;③当平面BCD ⊥平面ABD 时,BC 与平面ABD 所成的角最大,为∠CBD ,求出sin ∠CBD ,并与sin π3比较大小即可得解;④在翻折的过程中,△ABD 和△BCD 始终是直角三角形,外接球的直径为BD ,于是四面体ABCD 的体积不变.解:如图,当DA ⊥BC 时,∵BC ⊥DC ,∴BC ⊥平面DAC , ∵AC ⊂平面DAC ,∴BC ⊥AC ,即①正确;当平面BCD ⊥平面ABD 时,四面体ABCD 的体积最大,最大值为13×12×3×4×125=245,即②正确;当平面BCD ⊥平面ABD 时,BC 与平面ABD 所成的角最大,为∠CBD ,而sin ∠CBD =CD BD =45<√32=sin π3,∴BC 与平面ABD 所成角一定小于π3,即③错误;在翻折的过程中,△ABD 和△BCD 始终是直角三角形,斜边都是BD ,其外接球的球心永远是BD 的中点,外接球的直径为BD , ∴四面体ABCD 的外接球的体积不变,即④正确. ∴正确的有①②④, 故选:C .【点评】本题考查立体几何中的综合,涉及线面垂直的判定定理与性质定理、线面夹角、棱锥和球的体积公式等,考查学生的空间立体感和推理论证能力,属于中档题.12.若对任意的x 1,x 2∈[﹣2,0),x 1<x 2,x 2e x 1−x 1e x 2x 1−x 2<a 恒成立,则a 的最小值为( ) A .−3e 2B .−2e 2C .−1e 2D .−1e【分析】不等式恒成立转化为函数f (x )=e x +ax在[﹣2,0)为减函数,则f ′(x )=e x (x−1)−ax2≤0,即a ≥e x (x ﹣1),构造函数g (x )=e x (x ﹣1),利用导数和函数最值的关系即可求出.解:对任意的x 1,x 2∈[﹣2,0),x 1<x 2,可知x 1<x 2<0,则x 2e x 1−x 1e x 2x 1−x 2<a 恒成立等价于x 2e x 1−x 1ex 2>a (x 1﹣x 2),即e x 1+a x 1>e x 2+a x 2,∴函数f (x )=e x +ax在[﹣2,0)为减函数, ∴f ′(x )=e x (x−1)−ax 2≤0,∴a ≥e x (x ﹣1),设g (x )=e x (x ﹣1),x ∈[﹣2,0), ∴g ′(x )=xe x <0,∴g (x )在[﹣2,0)为减函数,∴g (x )max =g (﹣2)=−3e 2, ∴a ≥−3e 2, 故选:A .【点评】本题考查了导数和函数单调性和最值的关系,考查了运算能力和转化能力,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.已知向量a →=(m ,1),b →=(4,m ),向量a →在b →方向上的投影为√5,则m = 2 .【分析】本题根据向量a →在b →方向上的投影公式为a →⋅b →|b →|,然后代入进行计算可解出m 的值,注意将m 的值代入进行检验得到正确的m 的值. 解:由题意,可知向量a →在b →方向上的投影为a →⋅b →|b →|=√42+m 2=√16+m 2=√5,两边平方,可得25m216+m=5,整理,得m2=4,解得m=﹣2,或m=2,当m=﹣2时,√16+m2=−√5,不符合题意,∴m=2.故答案为:2.【点评】本题主要考查利用向量求投影的问题.考查了转化思想,方程思想,向量的运算,以及逻辑思维能力和数学运算能力.本题属基础题.14.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2√7,b=4,A=120°,则△ABC的面积为2√3.【分析】由已知利用余弦定理可得c2+4c﹣12=0,解得c=2,进而根据三角形的面积公式即可求解.解:∵a=2√7,b=4,A=120°,∴由余弦定理a2=b2+c2﹣2bc cos A,可得28=16+c2﹣2×4×c×(−12),可得c2+4c﹣12=0,解得c=2,∴S△ABC=12bc sin A=12×4×2×√32=2√3.故答案为:2√3.【点评】本题主要考查了余弦定理,三角形的面积公式在解三角形中的应用,考查了方程思想,属于基础题.15.若sinα1−cosα=13,则2cosα+3sinα−2sin2α2=﹣2.【分析】由已知可得3sinα=1﹣cosα,代入所求利用三角函数恒等变换的应用即可化简求解.解:∵sinα1−cosα=13,∴3sin α=1﹣cos α,∴2cosα+3sinα−2sin 2α2=2(2cosα+1−cosα−2)1−cosα=−2.故答案为:﹣2.【点评】本题主要考查了三角函数的恒等变换的应用,考查了运算求解能力,属于基础题.16.双曲线C 的渐近线方程为y =±√33x ,一个焦点为F (0,﹣8),则该双曲线的标准方程为y 216−x 248=1 .已知点A (﹣6,0),若点P 为C 上一动点,且P 点在x 轴上方,当点P 的位置变化时,△PAF 的周长的最小值为 28 .【分析】由双曲线的渐近线方程及焦点坐标得关于a ,b 的方程组,求解可得双曲线的标准方程;设双曲线的上焦点为F ′(0,8),则|PF |=|PF ′|+8,利用双曲线的定义转化,再由A ,P ,F ′共线时,|PF ′|+|PA |最小,从而求得△PAF 的周长的最小值解:∵双曲线C 的渐近线方程为y =±√33x ,一个焦点为F (0,﹣8),∴{a 2b 2=13√a 2+b 2=8,解得a =4,b =4√3.∴双曲线的标准方程为y 216−x 248=1;设双曲线的上焦点为F ′(0,8),则|PF |=|PF ′|+8, △PAF 的周长为|PF |+|PA |+|AF |=|PF ′|+|PA |+|AF |+8.当P 点在第二象限,且A ,P ,F ′共线时,|PF ′|+|PA |最小,最小值为|AF ′|=10. 而|AF |=10,故,△PAF 的周长的最小值为10+10+8=28.故答案为:y 216−x 248=1;28.【点评】本题考查双曲线标准方程的求法,考查双曲线的几何性质,考查数学转化思想方法,是中档题.三、解答题;共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设{a n }是一个首项为2,公比为q (q ≠1)的等比数列,且3a 1,2a 2,a 3成等差数列. (1)求{a n }的通项公式;(2)已知数列{b n }的前n 项和为S n ,b 1=1,且√S n −√S n−1=1(n ≥2),求数列{a n •b n }的前n 项和T n .【分析】(1)由等差数列的中项性质和等比数列的通项公式,解方程可得公比,进而得到所求通项公式;(2)运用等差数列的定义和通项公式可得S n ,再由数列的递推式可得a n ,则a n •b n =2(2n ﹣1)•3n ﹣1,结合数列的错位相减法求和,以及等比数列的求和公式,化简计算可得所求和.解:(1){a n }是一个首项为2,公比为q (q ≠1)的等比数列,且3a 1,2a 2,a 3成等差数列,可得4a 2=3a 1+a 3,即4×2q =3×2+2q 2,解得q =3(1舍去),则a n =2•3n ﹣1,n ∈N*;(2)由√S 1=√b 1=1,且√S n −√S n−1=1(n ≥2),可得{√S n }是首项和公差均为1的等差数列,可得√S n =1+n ﹣1=n ,即S n =n 2,可得n =1时,b 1=S 1=1;n ≥2时,b n =S n ﹣S n ﹣1=n 2﹣(n ﹣1)2=2n ﹣1,对n =1时,该式也成立,则b n =2n ﹣1,n ∈N*,可得a n •b n =2(2n ﹣1)•3n ﹣1,则T n =2[1•1+3•3+5•9+…+(2n ﹣1)•3n ﹣1],3T n =2[1•3+3•9+5•27+…+(2n ﹣1)•3n ],上面两式相减可得﹣2T n =2[1+2(3+9+…+3n ﹣1)﹣(2n ﹣1)•3n ] =2[1+2•3(1−3n−1)1−3−(2n ﹣1)•3n],化简可得T n =2+2(n ﹣1)•3n .【点评】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的递推式和数列的错位相减法求和,以及化简运算能力,属于中档题.18.如图,长方体ABCD ﹣A 1B 1C 1D 1的底面为正方形,AB =1,AA 1=3,BE →=2EB 1→,A 1M →=2MA →,N 是棱C 1D 1的中点,平面AEC 1与直线DD 1相交于点F . (1)证明:直线MN ∥平面AEC 1F . (2)求二面角E ﹣AC ﹣F 的正弦值.【分析】(1)推导出C 1E ∥AF ,D 1F =2FD ,设点G 为D 1F 的中点,连结GM ,GN ,推导出GN ∥平面AEC 1F ,GM ∥平面AEC 1F ,从而平面MNG ∥平面AEC 1F ,由此能证明MN ∥平面AEC 1F .(2)以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出二面角E ﹣AC ﹣F 的正弦值. 解:(1)证明:∵平面BB 1C 1C ∥平面AA 1D 1D ,平面AEC 1F ∩平面BB 1C 1C =EC 1,平面AEC 1F ∩平面AA 1D 1D =AF , ∴C 1E ∥AF ,由题意得D 1F =2FD , 设点G 为D 1F 的中点,连结GM ,GN , ∵N 是棱C 1D 1的中点,∴GN ∥FC 1,∵GN ⊄平面AEC 1F ,FC 1⊂平面AEC 1F ,∴GN ∥平面AEC 1F , ∵D 1F =2FD ,A 1M →=2MA →,∴GM ∥AF ,∵GM ⊄平面AEC 1F ,AF ⊂平面AEC 1F ,∴GM ∥平面AEC 1F , ∵GN ∩GM =G ,∴平面MNG ∥平面AEC 1F , ∵MN ⊂平面MNG ,∴MN ∥平面AEC 1F .(2)解:∵AB =1,DD 1=3,如图,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,A (1,0,0),C (0,1,0),F (0,0,1),E (1 1,2), ∴AC →=(﹣1,1,0),AE →=(0,1,2),AF →=(﹣1,0,1), 设平面ACE 的法向量m →=(x ,y ,z ),则{m →⋅AC →=−x +y =0m →⋅AE →=y +2z =0,取z =1,得m →=(﹣2,﹣2,1), 设平面ACF 的法向量n →=(a ,b ,c ),则{n →⋅AC →=−a +b =0n →⋅AF →=−a +c =0,取a =1,得n →=(1,1,1),设二面角E﹣AC﹣F的平面角为θ,由|cosθ|=|m→⋅n→||m→|⋅|n→|=3×3=√33,∴sinθ=1−(33)2=√63,∴二面角E﹣AC﹣F的正弦值为√6 3.【点评】本题考查线面平行的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力与运算求解能力,属于中档题.19.已知0<m<2,动点M到两定点F1(﹣m,0),F2(m,0)的距离之和为4,设点M的轨迹为曲线C,若曲线C过点N(√2,√22).(1)求m的值以及曲线C的方程;(2)过定点(65,0)且斜率不为零的直线l与曲线C交于A,B两点.证明:以AB为直径的圆过曲线C的右顶点.【分析】(1)先利用定义法判断出点M的轨迹为椭圆,再利用题设条件求出方程即可;(2)设直线l:x=ty+65,曲线C的右顶点为P,由直线l与曲线C的方程联立得到y1+y2与y1y2,再证PA→⊥PB→即可.解:(1)解:设M(x,y),因为|MF1|+|MF2|=4>2m,所以曲线C是以两定点F1,F2为焦点,长半轴长为2的椭圆,所以a=2.设椭圆C 的方程为x 24+y 2b =1(b >0),代入点N(√2,√22)得b 2=1,由c 2=a 2﹣b 2,得c 2=3,所以m =c =√3,故曲线C 的方程为x 24+y 2=1;(2)证明:设直线l :x =ty +65,A (x 1,y 1),B (x 2,y 2), 椭圆的右顶点为P (2,0),联立方程组{x =ty +65x24+y 2=1消去x 得(t 2+4)y 2+125ty −6425=0.△>0,y 1+y 2=−12t 5(t 2+4),y 1y 2=−6425(t 2+4), 所以PA →⋅PB →=(x 1﹣2)(x 2﹣2)+y 1y 2=(t 2+1)y 1y 2−45t (y 1+y 2)+1625=−64t 2−64+48t 2+16t 2+6425(t 2+4)=0,∴PA →⊥PB →,故点P 在以AB 为直径的圆上,即以AB 为直径的圆过曲线C 的右顶点.【点评】本题主要考查轨迹方程的求法及动圆过定点的问题,属于中档题. 20.已知函数f (x )=lnx ﹣tx +t . (1)讨论f (x )的单调性;(2)当t =2时,方程f (x )=m ﹣ax 恰有两个不相等的实数根x 1,x 2,证明:x 1+x 22x 1x 2>2−a .【分析】(1)由已知求得f ′(x )=1x−t ,可得当t ≤0时,f (x )在(0,+∞)上单调递增,当t >0时,求出导函数的零点,由导函数的零点对定义域分段,再由导函数在不同区间内的符号可得原函数的单调性;(2)由f (x )=m ﹣ax ,得lnx +(a ﹣2)x +2﹣m =0.令g (x )=lnx +(a ﹣2)x +2,则g (x 1)=g (x 2)=m .得到a ﹣2=ln x2x 1x 1−x 2.不妨设0<x 1<x 2,把证x 1+x 22x 1x 2>2−a 转化为证x 1x 2−x 2x 1<−2lnx 2x 1.令x 2x 1=c (c >1),则g (c )=2lnc ﹣c +1c,利用导数证明g (c )<0,即可得到x 1+x 22x 1x 2>2−a 成立.【解答】(1)解:f (x )的定义域为(0,+∞),f ′(x )=1x−t , 当t ≤0时,f ′(x )>0恒成立,f (x )在(0,+∞)上单调递增,当t >0时,令f ′(x )>0,得0<x <1t,令f ′(x )<0,得x >1t.∴f (x )在(0,1t)上单调递增,在(1t,+∞)上单调递减.综上所述,当t ≤0时,f (x )在(0,+∞)上单调递增;当t >0时,f (x )在(0,1t)上单调递增,在(1t,+∞)上单调递减.(2)证明:由f (x )=m ﹣ax ,得lnx +(a ﹣2)x +2﹣m =0. 令g (x )=lnx +(a ﹣2)x +2,则g (x 1)=g (x 2)=m . 即lnx 1+(a ﹣2)x 1=lnx 2+(a ﹣2)x 2,∴a ﹣2=ln x2x 1x 1−x 2.不妨设0<x 1<x 2,要证x 1+x 22x 1x 2>2−a ,只需证x 1+x 2x 1x 2>2(2﹣a )=−2ln x2x 1x 1−x 2,即证x 1x 2−x 2x 1<−2lnx 2x 1.令x 2x 1=c (c >1),g (c )=2lnc ﹣c +1c,∵g ′(c )=2c −1−1c2=−(1c −1)2<0.∴g (c )在(1,+∞)上单调递减,则g (c )<g (1)=0.故x 1+x 22x 1x 2>2−a 成立.【点评】本题考查利用导数研究函数的单调性,训练了利用导数证明函数不等式,考查数学转化思想方法,属难题.21.2020年4月8日零时正式解除离汉通道管控,这标志着封城76天的武汉打开城门了.在疫情防控常态下,武汉市有序复工复产复市,但是仍然不能麻痹大意仍然要保持警惕,严密防范、慎终如始.为科学合理地做好小区管理工作,结合复工复产复市的实际需要,某小区物业提供了A ,B 两种小区管理方案,为了决定选取哪种方案为小区的最终管理方案,随机选取了4名物业人员进行投票,物业人员投票的规则如下: ①单独投给A 方案,则A 方案得1分,B 方案得﹣1分; ②单独投给B 方案,则B 方案得1分,A 方案得﹣1分; ③弃权或同时投票给A ,B 方案,则两种方案均得0分.前1名物业人员的投票结束,再安排下1名物业人员投票,当其中一种方案比另一种方案多4分或4名物业人员均已投票时,就停止投票,最后选取得分多的方案为小区的最终管理方案.假设A ,B 两种方案获得每1名物业人员投票的概率分别为23和12.(1)在第1名物业人员投票结束后,A 方案的得分记为ξ,求ξ的分布列; (2)求最终选取A 方案为小区管理方案的概率.【分析】(1)ξ的所有可能取值为﹣1,0,1,然后根据相互独立事件的概率逐一求出每个ξ的取值所对应的概率即可得分布列;(2)记M 1表示事件“前2名物业人员进行了投票,且最终选取A 方案为小区管理方案”,M 2表示事件“前3名物业人员进行了投票,且最终选取A 方案为小区管理方案”,M 3表示事件“共有4名物业人员进行了投票,且最终选取A 方案为小区管理方案”,然后根据独立重复事件的概率逐一求出每种事件对应的概率,最后将三种事件的概率相加即可得解.解:(1)由题意知,ξ的所有可能取值为﹣1,0,1,P(ξ=﹣1)=(1−23)×12=16,P(ξ=0)=23×12+13×12=12,P(ξ=1)=23×(1−12)=13,∴ξ的分布列为ξ﹣101P161213(2)记M1表示事件“前2名物业人员进行了投票,且最终选取A方案为小区管理方案”,由(1)知,P(M1)=[p(ξ=1)]2=(13)2=19,记M2表示事件“前3名物业人员进行了投票,且最终选取A方案为小区管理方案”,P(M2)=C21[P(ξ=1)]2⋅P(ξ=0)=2×(13)2×12=19,记M3表示事件“共有4名物业人员进行了投票,且最终选取A方案为小区管理方案”,①若A方案比B方案多4分,有两类:第一类,A方案前三次得了一次1分两次0分,最后一次得1分,其概率为C31⋅[P(ξ= 1)]2⋅[P(ξ=0)]2=112;第二类,A方案前两次得了一次1分一次﹣1分,后两次均得1分,其概率为C21⋅P(ξ=−1)⋅[P(ξ=1)]3=181,②若A方案比B方案多2分,有三类:第一类,A方案四次中得了一次1分,其他三次全0分,其概率为C41⋅[P(ξ=0)]3⋅P(ξ= 1)=16;第二类,A方案前三次得了一次1分,一次0分,一次﹣1分,最后一次得了1分,其概率为A33⋅[P(ξ=1)]2⋅P(ξ=0)⋅P(ξ=−1)=118;第三类,A方案前两次得了一次1分一次﹣1分,第三次得1分,第四次得0分,其概率为C21⋅[P(ξ=1)]2⋅P(ξ=0)⋅P(ξ=−1)=154.故P(M3)=112+181+16+118+154=109324,∴最终选取A方案为小区管理方案的概率为P=P(M1)+P(M2)+P(M3)=19+19+109 324=181 324.【点评】本题考查独立重复事件的概率、离散型随机变量的分布列,考查学生对数据的分析能力和处理能力,属于中档题.选考题:共10分请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,已知曲线C1的参数方程为{x=−1+√14cosφy=1+√14sinφ(φ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4cosθ.曲线C3的极坐标方程为ρ=√1+8sinθ,曲线C1与曲线C2的交线为直线l.(1)求直线l和曲线C3的直角坐标方程;(2)直线l与x轴交于点M,与曲线C3相交于A,B两点,求|1|MA|−1|MB||的值.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用一元二次方程根和系数关系式的应用求出结果.解:(1)已知曲线C1的参数方程为{x=−1+√14cosφy=1+√14sinφ(φ为参数),转换为直角坐标方程为(x+1)2+(y﹣1)2=14①.曲线C 2的极坐标方程为ρ=4cos θ.整理得ρ2=4ρcos θ,根据{x =ρcosθy =ρsinθρ2=x 2+y 2转换为直角坐标方程为:(x ﹣2)2+y 2=4②. 所以①②两个方程相减得:3x ﹣y ﹣6=0.曲线C 3的极坐标方程为ρ=√1+8sin θ,根据{x =ρcosθy =ρsinθρ2=x 2+y 2转换为直角坐标方程为x 29+y 2=1.(2)直线l 与x 轴交于M (2,0)所以直线l 的参数方程为{x =2+√1010ty =3√1010t (t 为参数),代入x 29+y 2=1,得到:41t 2−2√10t −25=0.所以t 1+t 2=2√1041,t 1t 2=−2541故|1|MA|−1|MB||=|t 1−t 2t 1t 2|=√(t1+t 2)2−4t 1t 2|t 1t 2|═(2√1041)+41004122541=√45004122541=30√525=6√55. 【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. [选修4-5:不等式选讲]23.设函数f (x )=2x ﹣1﹣|x ﹣1|. (1)求不等式f (x )<3的解集;(2)若方程f (x )=x 2+ax 有两个不等实数根,求a 的取值范围.【分析】(1)将f (x )写为分段函数的形式,然后由f (x )<3,利用零点分段法解不等式即可;(2)根据方程f (x )=x 2+ax ,可得a =−x 2+2x−|x−1|−1x,然后构造函数g (x )=−x 2+2x−|x−1|−1x,利用数形结合法求出a 的取值范围.解:(1)f (x )=2x ﹣1﹣|x ﹣1|={3x −2,x ≤1x ,x >1,∵f (x )<3,∴{3x −2<3x ≤1或{x <3x >1,∴x ≤1或1<x <3,∴x <3, ∴不等式的解集为(﹣∞,3);(2)方程f (x )=x 2+ax ,即2x ﹣1﹣|x ﹣1|=x 2+ax ,显然x =0不是方程的根,故a =−x 2+2x−|x−1|−1x,令g (x )=−x 2+2x−|x−1|−1x ={1−x ,x ∈[1,+∞)−x −2x +3,x ∈(−∞,0)∪(0,1), 当x <0时,−x −2x+3=(−x +2−x)+3>2√2+3, 作出g (x )的图象,如图所示:∵方程f (x )=x 2+ax 有两个不等实数根, ∴由图象可知a ∈(−∞,0)∪(2√2+3,+∞).【点评】本题考查了绝对值不等式的解法和函数的零点与方程根的关系,考查了分类讨论思想和数形结合思想,属中档题.。

重庆市2020届高三5月调研(二诊)考试数学(理)试题

重庆市2020届高三5月调研(二诊)考试数学(理)试题

2020年普通高等学校招生全国统一考试5月调研测试卷 理科数学理科数学测试卷共4页.满分150分.考试时间120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知集合{}2,3,5,7A =,{}2|log (2)1B x x =-<,则A B =I ( ) A.{}2B.{}3C.{}2,3D.{}3,52.若复数z 满足()2z i i i +=-,则z =( )B.2D.103.下列说法正确的是( )A.“若2a >,则24a>”的否命题为“若2a >,则24a≤” B.命题p q ∨与()p q ⌝∨至少有一个为真命题C.“0x ∀>,2220x x -+≥”的否定为“0x ∀>,2220x x -+<”D.“这次数学考试的题目真难”是一个命题4.为了判断英语词汇量与阅读水平是否相互独立,某语言培训机构随机抽取了100位英语学习者进行调查,经过计算2K 的观测值为7,根据这一数据分析,下列说法正确的是( ) 附:A.有99%以上的把握认为英语词汇量与阅读水平无关B.有99.5%以上的把握认为英语词汇量与阅读水平有关C.有99.9%以上的把握认为英语词汇量与阅读水平有关D.在犯错误的概率不超过1%的前提下,可以认为英语词汇量与阅读水平有关5.斐波那契数列,指的是这样一个数列:1,1,2,3,5,8,13,21,…,在数学上,斐波那契数列{}n a 定义如下:121a a ==,()123,n n n a a a n n Z --=+≥∈ .随着n 的增大,1nn a a +越来越逼近黄金分割10.6182≈,故此数列也称黄金分割数列,而以1n a +、n a 为长和宽的长方形称为“最美长方形”,已知某“最美长方形”的面积约为336平方分米,则该长方形的长应该是( ) A.144厘米B.233厘米C.250厘米D.377厘米6.在103x 的展开式中,常数项为( ) A.-252B.-45C.45D.2527.已知,0a b >,22a b +=,则1b a b+的取值范围是( ) A.()0,+∞ B.[)2,+∞C.)1,+∞D.)⎡+∞⎣8.函数x xy e=的部分图象是( ) A. B.C. D.9.定义在R 上的奇函数()f x 满足:3344f x f x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,且当30,4x ⎛⎫∈ ⎪⎝⎭时,()2log (1)f x x m =++,若()2100log 3f =,则实数m 的值为( ) A.2B.1C.0D.-110.已知抛物线2:2(0)E y px p =>的焦点为F ,以F 为圆心、3p 为半径的圆交抛物线E 于P ,Q 两点,以线段PF 为直径的圆经过点()0,1-,则点F 到直线PQ 的距离为( )A.5B.3C.5D.11.已知ABC △的面积为1,角,,A B C 的对边分别为,,a b c ,若sin sin sin sin a A b B B c C -=+,cos cos 5B C =,则a =( )A.2B.212.已知,,,A B C D 四点均在球O 的球面上,ABC △是边长为6的等边三角形,点D 在平面ABC 上的射影为ABC △的中心,E 为线段AD 的中点,若BD CE ⊥,则球O 的表面积为( )A.36πB.42πC.54πD.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()2,a m =r ,()1,2a b +=r r,若()//3a a b +r r r ,则实数m =______________.14.已知某几何体的三视图如右图所示,网格中的每个小方格是边长为1的正方形,则该几何体的体积为_______________.15.已知公差不为0的等差数列{}n a 中,2a ,4a ,8a 依次成等比数列,若3a ,6a ,1b a ,2b a ,…,n b a ,…成等比数列,则n b =_____________.16.若曲线2cos y ax x =+上存在两条切线相互垂直,则实数a 的取值范围是__________.三、解答题:共70分.解答应写岀文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)已知函数()2cos 22f x x x π⎛⎫=--⎪⎝⎭. (1)求函数()f x 的单调性;(2)在ABC △中,角,,A B C 的对边分别为,,a b c ,且2A f ⎛⎫= ⎪⎝⎭a =1c =,求ABC △的面积. 18.(12分)国庆70周年阅兵式上的女兵们是一道靓丽的风景线,每一名女兵都是经过层层筛选才最终入选受阅方队,筛选标准非常严格,例如要求女兵身高(单位:cm )在区间[]165,175内.现从全体受阅女兵中随机抽取200人,对她们的身高进行统计,将所得数据分为[)165,167,[)167,169,[)169,171,[)171,173,[]173,175五组,得到如图所示的频率分布直方图,其中第三组的频数为75,最后三组的频率之和为0.7.(1)请根据频率分布直方图估计样本的平均数x 和方差2s (同一组中的数据用该组区间的中点值代表); (2)根据样本数据,可认为受阅女兵的身高X (cm )近似服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . (i )求()167.86174.28P X <<;(ii )若从全体受阅女兵中随机抽取10人,求这10人中至少有1人的身高在174.28cm 以上的概率. 参考数据:若()2~,X N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,10.7≈,100.95440.63≈,90.97720.81≈,100.97720.79≈.19.(12分)如图,在四棱锥P ABCD -中,//AB CD ,AB AP ⊥,3AB =,4AD =,5BC =,6CD =.过直线AB 的平面分别交棱PD ,PC 于E ,F 两点. (1)求证:PD EF ⊥;(2)若直线PC 与平面PAD 所成角为3π,且PA PD =,EF AB =,求二面角A BD F --的余弦值.20.(12分)已知椭圆2222:1(0)x y C a b a b +=>>⎛ ⎝⎭在椭圆C 上. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点F 作斜率为l 的直线与椭圆C 交于M ,N 两点,点P 满足2OP OM =u u u r u u u u r(O 为坐标原点),直线NP 与椭圆C 的另一个交点为Q ,若NQ NP λ=u u u r u u u r,求λ的值.21.(12分)已知函数()21ln 2f x x ax =+,a R ∈. (1)讨论()f x 的单调性; (2)若不等式()12x f x e e a <-+对()1,x ∀∈+∞恒成立,求a 的取值范围. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】(10分) 在直角坐标系xOy 中,曲线C 的参数方程为22cos 32sin x y θθ=+⎧⎨=+⎩(θ为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为(4sin 3cos )a ρθθ+=,且直线l 与曲线C 有两个不同的交点.(1)求实数a 的取值范围;(2)已知M 为曲线C 上一点,且曲线C 在点M 处的切线与直线l 垂直,求点M 的直角坐标. 23.【选修4-5:不等式选讲】(10分) 已知函数()22f x x x =+-的最小值为m . (1)求m 的值;(2)若实数a ,b 满足22a b m +=,求221112a b+++的最小值. 2020年普通高等学校招生全国统一考试5月调研测试卷 理科数学参考答案一、选择题 1-6 BCBDBC7-12 CABCDC第7题提示:由题知,211122ba b b a a b a b ++=++≥=,当且仅当2b aa b=,即2a =,2b =- C.第8题提示:由xx y e=为奇函数可排除C 选项,当0x >时,1x x y e -'=,故x xy e =在()0,1上单增,()1,+∞上单减,故选A.第9题提示:由()f x 为奇函数知3344f x f x ⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭,∴3344f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,即()32f x f x ⎛⎫+=- ⎪⎝⎭,∴()()332f x fx f x ⎛⎫+=-+= ⎪⎝⎭,∴()f x 是周期为3的周期函数,故()()2131001log 22f f f m ⎛⎫===+⎪⎝⎭,即223log log 32m +=,∴1m =,故选B. 第10题提示:由题知32p p FP x p =+=,∴52p x p =,设点()0,1A -,由题知AP AF ⊥,即111522p y p p +⋅=-,p y =,∴p =522p p -=,故选C.第11题提示:由sin sin sin sin a A b B B c C -=+得222a b c -=+,则222cos 2b c a A bc +-==,故34A π=,由cos cos()sin sin cos cos A B C B C B C =-+=-得sin sin B C =sin sin b cB C==,即sin b B =,sin c C =,∴22111sin 2sin sin 22210S bc A a B C a ==⋅⋅=,所以a =,故选D.第12题提示:设ABC △的中心为G ,延长BG 交AC 于F ,则F 为AC 中点,连接DF .由题知DG ⊥平面ABC ,AC GB ⊥,由三垂线定理得AC BD ⊥,又BD CE ⊥,∴BD ⊥平面ACD ,又D ABC -为正三棱锥, ∴DA ,DB ,DC 两两垂直,故三棱锥D ABC -可看作以DA ,DB ,DC 为棱的正方体的一部分,二者有共同的外接球,由6AB =得DA =故正方体外接球直径为= 所以球O 的表面积为2454R ππ=,故选C.二、填空题13. 414.9452π-15.132n +⋅ 16.⎡⎣第14题提示:由三视图可知该几何体是一个长方体中挖去一个18球, 如图所示,∴3149335345832V ππ=⨯⨯-⋅⋅=-.第15题提示:设公差为d ,由题知()()244424a a d a d =-+,即44a d =,故1a d =,∴n a nd =,33a d =,66a d =, 故此等比数列首项为3d 、公比为2, 因此132n n b a d +=⋅,故132n n b +=⋅.第16题提示:[]2sin 2,2y a x a a '=-∈-+,由题知在区间[]2,2a a -+内存在两数之积为-1,故只需()()221a a -+≤-,即a ≤≤ 三、解答题17.(12分)解:(1)())sin 21cos 22sin 23f x x x x π⎛⎫=-+=- ⎪⎝⎭,………………2分 由222232k x k πππππ-≤-≤+得51212k x k ππππ-≤≤+,………………4分 故()f x 在5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦上单增,在511,1212k k ππππ⎡⎤++⎢⎥⎣⎦上单减,k Z ∈;………6分(2)2sin 23A f A π⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,则sin 32A π⎛⎫-= ⎪⎝⎭,∵()0,A π∈,∴33A ππ-=,即23A π=,……………………………………………………8分由正弦定理得1sin C=1sin 2C =,∴6C π=,故6B π=,∴1sin 24ABC S ac B ==△.…………………………12分 18.(12分)解:(1)由题知五组频率依次为0.1,0.2,0.375,0.25,0.075,故0.11660.21680.3751700.251720.075174170x =⨯+⨯+⨯+⨯+⨯=,…………2分22222(170166)0.1(170168)0.2(170172)0.25(170174)0.075 4.6s =-⨯+-⨯+-⨯+-⨯=;……4分(2)由题知170μ=, 2.145σ==≈,………………5分 (i )()()0.95440.6826167.86174.2820.68260.81852P X P X μσμσ-<<=-<<+=+=,……8分 (ii )()10.9544174.280.02282P X ->==,故10人中至少有1人的身高在174.28cm 以上的概率10101(10.0228)10.977210.790.21P =--=-≈-=………………12分19.(12分)解:(1)∵//AB DC ,AB ⊄平面PDC ,∴//AB 平面PDC ,又面ABFE I 面PDC EF =,∴//AB EF , 取DC 中点G ,连接BG ,则ABGD 为平行四边形, ∴4BG =,又3GC =,5BC =,故90BGC ∠=︒, ∴AD DC ⊥,∴AB AD ⊥,又AB AP ⊥, ∴AB ⊥平面PAD ,∴EF ⊥平面PAD ,∴EF PD ⊥;………………6分(2)由(1)知CD ⊥平面PAD ,∴CPD ∠即为直线PC 与平面PAD 所成角, ∴3CPD π∠=,∴6PD =,即PD =12EF AB DC ==, ∴E ,F 分别为PD ,PC 的中点,取AD 中点O ,连接PO ,则PO AD ⊥, 由CD ⊥平面PAD 可得CD PO ⊥,故PO ⊥平面ABCD ,………………7分以O 为原点,OA u u u r ,AB u u u r ,OP uuur 分别为,,x y z 轴的正方向建立空间直角坐标系,则()2,0,0A ,()2,0,0D -,()2,3,0B ,()2,6,0C -,(P ,故(F -,()4,3,0DB =u u u r,(DF =u u u r ,设平面DBF 的法向量为(),,m x y z =u r,则43030x y x y +=⎧⎪⎨++=⎪⎩,令3x =得3,m ⎛=- ⎝⎭r ,…………9分 显然()0,0,1n =r 是平面ABD的一个法向量,∴cos ,m n ==r r,…………11分由题知二面角A BD F --的余弦值为………………12分 20.(12分)解(1)由题知3c a =,故2223b a =,又221413a b+=,∴23a =,22b =,所以椭圆C 的方程为22132x y +=;…………4分 (2)设()11,M x y ,()22,N x y ,由2OP OM =u u u r u u u u r得()112,2P x y ,由NQ NP λ=u u u r u u u r得()()221212,2,2Q Q x x y y x x y y λ--=--,∴122(1)Q x x x λλ=+-,122(1)Q y y y λλ=+-,又点Q 在椭圆C 上,故[][]2212122(1)2(1)132x x y y λλλλ+-+-+=即222222112212124(1)4(1)1323232x y x y x x y y λλλλ⎛⎫⎛⎫⎛⎫++-++-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴2212124(1)4(1)132x x y y λλλλ⎛⎫+-+-+=⎪⎝⎭,………………8分 由题知直线:1MN y x =-,与椭圆C 的方程联立得25630x x --=,则1265x x +=,1235x x =-, ∴()()()121212123641111555y y x x x x x x =--=-++=--+=-,…………10分 ∴212524(1)055λλλλ⎛⎫-+---= ⎪⎝⎭,解得2237λ=或0, 又N ,Q 不重合,∴0λ≠,故2237λ=………………12分 21.(12分)解:(1)()211(0)ax f x ax x x x+'=+=>,当0a ≥时()0f x '>,()f x 在()0,+∞上单增, 当0a <时()00f x x'>⇔<<,()f x 在⎛ ⎝上单增,在⎫+∞⎪⎭上单减;…4分 (2)221111ln ln 02222x x x ax e e a e ax x e a +<-+⇔---+>,令()211ln 22x g x e ax x e a =---+,()10g =,()1x g x e ax x'=--,若()10g '<,即1a e >-,则存在01x >使得当(]01,x x ∈时()0g x '<,()g x 单减,∴()()010g x g <=,与题意矛盾,故1a e ≤-,………………7分当1a e ≤-时,∵()1,x ∈+∞,∴()2112x g x e a e a x''=-+>+-≥,∴()g x '单增, ∴()()10g x g ''>≥,∴()g x 单增,∴()()10g x g >=,符合题意,∴1a e ≤-.………12分 22.(10分)解:(1)曲线C 的普通方程为()()22234x y -+-=,直线l 的直角坐标方程为43y x a +=,由直线l 与圆C 有两个交点知61225a+-<,解得828a <<;…………5分(2)设圆C 的圆心为1O ,由圆C 的参数方程可设点()0022cos ,32sin M θθ++,由题知1//O M l , ∴04cos 5θ=-,03sin 5θ=,或04cos 5θ=,03sin 5θ=-,故点221,55M ⎛⎫ ⎪⎝⎭,或189,55⎛⎫ ⎪⎝⎭……10分 23.(10分)解:(1)()()2222f x x x x x x x x =++-≥+--=+≥,当且仅当0x =时等号成立, 故2m =;……………………5分(2)222a b +=,由柯西不等式得()222221112(11)12a b a b ⎛⎫++++≥+⎪++⎝⎭,当且仅当232a =,212b =时,等号成立,∴222211441235a b a b +≥=++++,故221112a b +++的最小值为45…………10分。

【2020年数学高考】(理科)重庆市2020年普通高等学校5月调研(理数).docx

【2020年数学高考】(理科)重庆市2020年普通高等学校5月调研(理数).docx

2020年普通高等学校招生全国统一考试5月调研测试卷 理科数学文科数学测试卷共4页。

满分150分。

考试时间120分钟。

第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项上,只有一项是符合题目要求的。

1、设集合{|},(,2)A x x a B =≤=-∞,若A B ⊆,则实数a 的取值范围是( )A 、a ≥2B 、a >2C 、a ≤2D 、a <2 2、已知i 为虚数单位,复数z 满足iz =21z +,则z =( )A 、2155i --B 、21i+ C 、2+i D 、2-i 3、设命题:,212x P x Q nx ∃∈-〈 ) A 、,212x x Q nx ∃∈-≥ B 、,212x x Q nx ∀∈-〈 C 、,212x x Q nx ∀∈-≥D 、,212x x Q nx ∀∈-= 4、已知随机变量2~(2,)X N σ,若(1)(12)1P X a P X a ≤-+≤+=,则实数a =( )A 、0B 、1C 、2D 、45、山城麦学研究所将5种不同型号的种子分别试种在5块并成一排的试验田里,其中A B ,两型号的种子要求试种在相邻的两块试验田里,且均不能试种在两端的试验田里,则不同的试种方法数为( )A 、12B 、24C 、36D 、486、已知抛物线24y x =的焦点为F ,以F 为圆心的圆与抛物线交于M 、N 两点,与抛物线的准线交于P Q 、两点,若四边形MNPQ 为矩形,则矩形MNPQ 的面积是( )A 、B 、C 、D 、37、已知实数,x y 满足不等式组20x y x a x y +-≤⎧⎪≥⎨⎪≤⎩,且2z x y =-的最大值是最小值的2倍,则a =( )A 、34B 、56C 、65D 、43 8、《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,根据该问题设计程序框图如下,当输入103,97a b ==,则输出n 的值是( )A 、8B 、9C 、12D 、169、一个正三棱柱的三视图如图所示,若该三棱柱的外接球的表面积为32π,则侧视图中的x 的值为( )A 、6B 、4C 、3D 、210、已知圆O 的方程为221x y +=,过第一象限内的点(,)P a b 作圆O 的两条切线PA PB ,,切点分别为,A B ,若8PO PA ⋅=,则a b +的最大值为( )A 、3B 、C 、D 、611、已知双曲线2222:1(0,0)x y C a b a b-=〉〉的左右焦点分别为12,F F ,以2OF 为直径的圆M 与双曲线C 相交于A ,B 两点,其中O 为坐标原点,若1AF 与圆M 相切,则双曲线C 的离心率为( )A B C D12、已知函数32413()327f x x x x =+++,等差数列{}n a 满足:1299()()...()11f a f a f a +++=,则下列可以作为 {}n a 的通项公式的是( )A 、173n -B 、2333n -C 、452n -D 、49n -第II 卷本卷包括必考题和选考题两部分。

2020届高三联考数学理科试题(含答案)

2020届高三联考数学理科试题(含答案)

2020年高三联考理科数学试题本试卷共6页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用黑色字迹钢笔或签字笔将答案填写在答题卡上对应题目的序号下面,如需改动,用橡皮擦干净后,再选填其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{/|1|1}A x x =-<, 1{0}xB xx-=≤,则A ∩(∁U B )=( ) A .(0,1) B .[0,1) C .(1, 2) D . (0,2)2. 已知x ,y ∈R ,i 为虚数单位,且(x ﹣2)i ﹣y=1,则(1)x yi -+的值为( ) A .4 B . ﹣4C . ﹣2iD . ﹣2+2i3、已知),2(ππα∈,53sin =α,则)4tan(πα-的值等于( )A .7-B .71-C .7D .714. 等比数列{}n a 中,39a =,前3项和为32303S x dx =⎰,则公q 的值是( )A. 1B.-12 C. 1或-12 D. - 1或-125.定义在R 上的偶函数f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式()0xf x >的解集是( )A .(0,13)B .(13 ,+∞)C .(- 13,0)∪(13,+∞)D .(-∞,-13)∪(0,13)6.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积...为 A .π12 B . π3 C .π34 D .π3127.已知双曲线22221x y a b-=(0a >,0b >),过其右焦点且垂直于实轴的直线与双曲线交于,M N 两点,O 为坐标原点,若OM ON ⊥,则双曲线的离心率为( )A .132-+ B .132+ C .152-+ D .152+ 8. 已知集合M={(x,y )|y f (x )=},若对于任意11(x ,y )M ∈,存在22(x ,y )M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M={1(x,y )|y x=}; ②M={1(x,y )|y sin x =+};③M={2(x,y )|y log x =}; ④M={2x(x,y )|y e =-}.其中是“垂直对点集”的序号是( ) A.①② B .②④ C .①④ D .②③二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(8~13题)9.下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的 概率为10. 设31(5)nx x-的展开式的各项系数之和为M ,二项式系数之和为N ,若240M N -=,则展开式中的常数项_________.11. 下列说法:①“x ∃∈R ,23x >”的否定是“x ∀∈R ,23x ≤”;②函数sin(2)sin(2)36y x x ππ=+- 的最小正周期是π;③命题“函数()f x 在0x x =处有极值,则0()0f x '=”的否命题是真命题;④()f x 是(,0)(0,)-∞+∞上的奇函数,0x >的解析式是()2xf x =,则0x <时的解析式为()2xf x -=-.其中正确的说法是__________.12. 已知向量a =(2,1),b =(x ,y ).若x ∈[-1,2],y ∈[-1,1],则向量a ,b 的夹角是钝角的概率是 .13.右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起, 每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,______(3)mn a m =≥.( ) ▲ 14.在极坐标系中,过点(3,)3π且垂直于极轴的直线方程的极坐标方程是 (请选择正确标号填空) (1)3sin 2=ρθ (2)3cos 2=ρθ (3)3sin 2=ρθ (4)3cos 2=ρθ 15. 如图,在△ABC 和△ACD 中,∠ACB =∠ADC =90°,∠BAC =∠CAD ,⊙O 是以AB 为直径的圆,DC 的延长线与AB 的延长线交于点E . 若EB =6,EC =62,则BC 的长为 .三、解答题:本大题共6小题,共80分。

重庆市2020届高三5月调研(二诊)考试数学(理)试题(含答案0

重庆市2020届高三5月调研(二诊)考试数学(理)试题(含答案0

2020年普通高等学校招生全国统一考试5月调研测试卷 理科数学理科数学测试卷共4页.满分150分.考试时间120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知集合{}2,3,5,7A =,{}2|log (2)1B x x =-<,则A B =I ( ) A.{}2B.{}3C.{}2,3D.{}3,52.若复数z 满足()2z i i i +=-,则z =( )B.2D.103.下列说法正确的是( )A.“若2a >,则24a>”的否命题为“若2a >,则24a≤” B.命题p q ∨与()p q ⌝∨至少有一个为真命题C.“0x ∀>,2220x x -+≥”的否定为“0x ∀>,2220x x -+<”D.“这次数学考试的题目真难”是一个命题4.为了判断英语词汇量与阅读水平是否相互独立,某语言培训机构随机抽取了100位英语学习者进行调查,经过计算2K 的观测值为7,根据这一数据分析,下列说法正确的是( ) 附:A.有99%以上的把握认为英语词汇量与阅读水平无关B.有99.5%以上的把握认为英语词汇量与阅读水平有关C.有99.9%以上的把握认为英语词汇量与阅读水平有关D.在犯错误的概率不超过1%的前提下,可以认为英语词汇量与阅读水平有关5.斐波那契数列,指的是这样一个数列:1,1,2,3,5,8,13,21,…,在数学上,斐波那契数列{}n a 定义如下:121a a ==,()123,n n n a a a n n Z --=+≥∈ .随着n 的增大,1nn a a +越来越逼近黄金分割10.6182≈,故此数列也称黄金分割数列,而以1n a +、n a 为长和宽的长方形称为“最美长方形”,已知某“最美长方形”的面积约为336平方分米,则该长方形的长应该是( ) A.144厘米B.233厘米C.250厘米D.377厘米6.在103x 的展开式中,常数项为( ) A.-252B.-45C.45D.2527.已知,0a b >,22a b +=,则1b a b+的取值范围是( ) A.()0,+∞ B.[)2,+∞C.)1,+∞D.)⎡+∞⎣8.函数x xy e=的部分图象是( ) A. B.C. D.9.定义在R 上的奇函数()f x 满足:3344f x f x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,且当30,4x ⎛⎫∈ ⎪⎝⎭时,()2log (1)f x x m =++,若()2100log 3f =,则实数m 的值为( ) A.2B.1C.0D.-110.已知抛物线2:2(0)E y px p =>的焦点为F ,以F 为圆心、3p 为半径的圆交抛物线E 于P ,Q 两点,以线段PF 为直径的圆经过点()0,1-,则点F 到直线PQ 的距离为( )A.5B.3C.5D.11.已知ABC △的面积为1,角,,A B C 的对边分别为,,a b c ,若sin sin sin sin a A b B B c C -=+,cos cos 5B C =,则a =( )A.2B.212.已知,,,A B C D 四点均在球O 的球面上,ABC △是边长为6的等边三角形,点D 在平面ABC 上的射影为ABC △的中心,E 为线段AD 的中点,若BD CE ⊥,则球O 的表面积为( )A.36πB.42πC.54πD.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()2,a m =r ,()1,2a b +=r r,若()//3a a b +r r r ,则实数m =______________.14.已知某几何体的三视图如右图所示,网格中的每个小方格是边长为1的正方形,则该几何体的体积为_______________.15.已知公差不为0的等差数列{}n a 中,2a ,4a ,8a 依次成等比数列,若3a ,6a ,1b a ,2b a ,…,n b a ,…成等比数列,则n b =_____________.16.若曲线2cos y ax x =+上存在两条切线相互垂直,则实数a 的取值范围是__________.三、解答题:共70分.解答应写岀文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)已知函数()2cos 22f x x x π⎛⎫=--⎪⎝⎭. (1)求函数()f x 的单调性;(2)在ABC △中,角,,A B C 的对边分别为,,a b c ,且2A f ⎛⎫= ⎪⎝⎭a =1c =,求ABC △的面积. 18.(12分)国庆70周年阅兵式上的女兵们是一道靓丽的风景线,每一名女兵都是经过层层筛选才最终入选受阅方队,筛选标准非常严格,例如要求女兵身高(单位:cm )在区间[]165,175内.现从全体受阅女兵中随机抽取200人,对她们的身高进行统计,将所得数据分为[)165,167,[)167,169,[)169,171,[)171,173,[]173,175五组,得到如图所示的频率分布直方图,其中第三组的频数为75,最后三组的频率之和为0.7.(1)请根据频率分布直方图估计样本的平均数x 和方差2s (同一组中的数据用该组区间的中点值代表); (2)根据样本数据,可认为受阅女兵的身高X (cm )近似服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . (i )求()167.86174.28P X <<;(ii )若从全体受阅女兵中随机抽取10人,求这10人中至少有1人的身高在174.28cm 以上的概率. 参考数据:若()2~,X N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,10.7≈,100.95440.63≈,90.97720.81≈,100.97720.79≈.19.(12分)如图,在四棱锥P ABCD -中,//AB CD ,AB AP ⊥,3AB =,4AD =,5BC =,6CD =.过直线AB 的平面分别交棱PD ,PC 于E ,F 两点. (1)求证:PD EF ⊥;(2)若直线PC 与平面PAD 所成角为3π,且PA PD =,EF AB =,求二面角A BD F --的余弦值.20.(12分)已知椭圆2222:1(0)x y C a b a b +=>>⎛ ⎝⎭在椭圆C 上. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点F 作斜率为l 的直线与椭圆C 交于M ,N 两点,点P 满足2OP OM =u u u r u u u u r(O 为坐标原点),直线NP 与椭圆C 的另一个交点为Q ,若NQ NP λ=u u u r u u u r,求λ的值.21.(12分)已知函数()21ln 2f x x ax =+,a R ∈. (1)讨论()f x 的单调性; (2)若不等式()12x f x e e a <-+对()1,x ∀∈+∞恒成立,求a 的取值范围. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】(10分) 在直角坐标系xOy 中,曲线C 的参数方程为22cos 32sin x y θθ=+⎧⎨=+⎩(θ为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为(4sin 3cos )a ρθθ+=,且直线l 与曲线C 有两个不同的交点.(1)求实数a 的取值范围;(2)已知M 为曲线C 上一点,且曲线C 在点M 处的切线与直线l 垂直,求点M 的直角坐标. 23.【选修4-5:不等式选讲】(10分) 已知函数()22f x x x =+-的最小值为m . (1)求m 的值;(2)若实数a ,b 满足22a b m +=,求221112a b+++的最小值. 2020年普通高等学校招生全国统一考试5月调研测试卷 理科数学参考答案一、选择题 1-6 BCBDBC7-12 CABCDC第7题提示:由题知,211122ba b b a a b a b ++=++≥=,当且仅当2b aa b=,即2a =,2b =- C.第8题提示:由xx y e=为奇函数可排除C 选项,当0x >时,1x x y e -'=,故x xy e =在()0,1上单增,()1,+∞上单减,故选A.第9题提示:由()f x 为奇函数知3344f x f x ⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭,∴3344f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,即()32f x f x ⎛⎫+=- ⎪⎝⎭,∴()()332f x fx f x ⎛⎫+=-+= ⎪⎝⎭,∴()f x 是周期为3的周期函数,故()()2131001log 22f f f m ⎛⎫===+⎪⎝⎭,即223log log 32m +=,∴1m =,故选B. 第10题提示:由题知32p p FP x p =+=,∴52p x p =,设点()0,1A -,由题知AP AF ⊥,即111522p y p p +⋅=-,p y =,∴p =522p p -=,故选C.第11题提示:由sin sin sin sin a A b B B c C -=+得222a b c -=+,则222cos 2b c a A bc +-==,故34A π=,由cos cos()sin sin cos cos A B C B C B C =-+=-得sin sin B C =sin sin b cB C==,即sin b B =,sin c C =,∴22111sin 2sin sin 22210S bc A a B C a ==⋅⋅=,所以a =,故选D.第12题提示:设ABC △的中心为G ,延长BG 交AC 于F ,则F 为AC 中点,连接DF .由题知DG ⊥平面ABC ,AC GB ⊥,由三垂线定理得AC BD ⊥,又BD CE ⊥,∴BD ⊥平面ACD ,又D ABC -为正三棱锥, ∴DA ,DB ,DC 两两垂直,故三棱锥D ABC -可看作以DA ,DB ,DC 为棱的正方体的一部分,二者有共同的外接球,由6AB =得DA =故正方体外接球直径为= 所以球O 的表面积为2454R ππ=,故选C.二、填空题13. 414.9452π-15.132n +⋅ 16.⎡⎣第14题提示:由三视图可知该几何体是一个长方体中挖去一个18球, 如图所示,∴3149335345832V ππ=⨯⨯-⋅⋅=-.第15题提示:设公差为d ,由题知()()244424a a d a d =-+,即44a d =,故1a d =,∴n a nd =,33a d =,66a d =, 故此等比数列首项为3d 、公比为2, 因此132n n b a d +=⋅,故132n n b +=⋅.第16题提示:[]2sin 2,2y a x a a '=-∈-+,由题知在区间[]2,2a a -+内存在两数之积为-1,故只需()()221a a -+≤-,即a ≤≤ 三、解答题17.(12分)解:(1)())sin 21cos 22sin 23f x x x x π⎛⎫=-+=- ⎪⎝⎭,………………2分 由222232k x k πππππ-≤-≤+得51212k x k ππππ-≤≤+,………………4分 故()f x 在5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦上单增,在511,1212k k ππππ⎡⎤++⎢⎥⎣⎦上单减,k Z ∈;………6分(2)2sin 23A f A π⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,则sin 32A π⎛⎫-= ⎪⎝⎭,∵()0,A π∈,∴33A ππ-=,即23A π=,……………………………………………………8分由正弦定理得1sin C=1sin 2C =,∴6C π=,故6B π=,∴1sin 24ABC S ac B ==△.…………………………12分 18.(12分)解:(1)由题知五组频率依次为0.1,0.2,0.375,0.25,0.075,故0.11660.21680.3751700.251720.075174170x =⨯+⨯+⨯+⨯+⨯=,…………2分22222(170166)0.1(170168)0.2(170172)0.25(170174)0.075 4.6s =-⨯+-⨯+-⨯+-⨯=;……4分(2)由题知170μ=, 2.145σ==≈,………………5分 (i )()()0.95440.6826167.86174.2820.68260.81852P X P X μσμσ-<<=-<<+=+=,……8分 (ii )()10.9544174.280.02282P X ->==,故10人中至少有1人的身高在174.28cm 以上的概率10101(10.0228)10.977210.790.21P =--=-≈-=………………12分19.(12分)解:(1)∵//AB DC ,AB ⊄平面PDC ,∴//AB 平面PDC ,又面ABFE I 面PDC EF =,∴//AB EF , 取DC 中点G ,连接BG ,则ABGD 为平行四边形, ∴4BG =,又3GC =,5BC =,故90BGC ∠=︒, ∴AD DC ⊥,∴AB AD ⊥,又AB AP ⊥, ∴AB ⊥平面PAD ,∴EF ⊥平面PAD ,∴EF PD ⊥;………………6分(2)由(1)知CD ⊥平面PAD ,∴CPD ∠即为直线PC 与平面PAD 所成角, ∴3CPD π∠=,∴6PD =,即PD =12EF AB DC ==, ∴E ,F 分别为PD ,PC 的中点,取AD 中点O ,连接PO ,则PO AD ⊥, 由CD ⊥平面PAD 可得CD PO ⊥,故PO ⊥平面ABCD ,………………7分以O 为原点,OA u u u r ,AB u u u r ,OP uuur 分别为,,x y z 轴的正方向建立空间直角坐标系,则()2,0,0A ,()2,0,0D -,()2,3,0B ,()2,6,0C -,(P ,故(F -,()4,3,0DB =u u u r,(DF =u u u r ,设平面DBF 的法向量为(),,m x y z =u r,则43030x y x y +=⎧⎪⎨++=⎪⎩,令3x =得3,m ⎛=- ⎝⎭r ,…………9分 显然()0,0,1n =r 是平面ABD的一个法向量,∴cos ,m n ==r r,…………11分由题知二面角A BD F --的余弦值为………………12分 20.(12分)解(1)由题知3c a =,故2223b a =,又221413a b+=,∴23a =,22b =,所以椭圆C 的方程为22132x y +=;…………4分 (2)设()11,M x y ,()22,N x y ,由2OP OM =u u u r u u u u r得()112,2P x y ,由NQ NP λ=u u u r u u u r得()()221212,2,2Q Q x x y y x x y y λ--=--,∴122(1)Q x x x λλ=+-,122(1)Q y y y λλ=+-,又点Q 在椭圆C 上,故[][]2212122(1)2(1)132x x y y λλλλ+-+-+=即222222112212124(1)4(1)1323232x y x y x x y y λλλλ⎛⎫⎛⎫⎛⎫++-++-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴2212124(1)4(1)132x x y y λλλλ⎛⎫+-+-+=⎪⎝⎭,………………8分 由题知直线:1MN y x =-,与椭圆C 的方程联立得25630x x --=,则1265x x +=,1235x x =-, ∴()()()121212123641111555y y x x x x x x =--=-++=--+=-,…………10分 ∴212524(1)055λλλλ⎛⎫-+---= ⎪⎝⎭,解得2237λ=或0, 又N ,Q 不重合,∴0λ≠,故2237λ=………………12分 21.(12分)解:(1)()211(0)ax f x ax x x x+'=+=>,当0a ≥时()0f x '>,()f x 在()0,+∞上单增, 当0a <时()00f x x'>⇔<<,()f x 在⎛ ⎝上单增,在⎫+∞⎪⎭上单减;…4分 (2)221111ln ln 02222x x x ax e e a e ax x e a +<-+⇔---+>,令()211ln 22x g x e ax x e a =---+,()10g =,()1x g x e ax x'=--,若()10g '<,即1a e >-,则存在01x >使得当(]01,x x ∈时()0g x '<,()g x 单减,∴()()010g x g <=,与题意矛盾,故1a e ≤-,………………7分当1a e ≤-时,∵()1,x ∈+∞,∴()2112x g x e a e a x''=-+>+-≥,∴()g x '单增, ∴()()10g x g ''>≥,∴()g x 单增,∴()()10g x g >=,符合题意,∴1a e ≤-.………12分 22.(10分)解:(1)曲线C 的普通方程为()()22234x y -+-=,直线l 的直角坐标方程为43y x a +=,由直线l 与圆C 有两个交点知61225a+-<,解得828a <<;…………5分(2)设圆C 的圆心为1O ,由圆C 的参数方程可设点()0022cos ,32sin M θθ++,由题知1//O M l , ∴04cos 5θ=-,03sin 5θ=,或04cos 5θ=,03sin 5θ=-,故点221,55M ⎛⎫ ⎪⎝⎭,或189,55⎛⎫ ⎪⎝⎭……10分 23.(10分)解:(1)()()2222f x x x x x x x x =++-≥+--=+≥,当且仅当0x =时等号成立, 故2m =;……………………5分(2)222a b +=,由柯西不等式得()222221112(11)12a b a b ⎛⎫++++≥+⎪++⎝⎭,当且仅当232a =,212b =时,等号成立,∴222211441235a b a b +≥=++++,故221112a b +++的最小值为45…………10分。

重庆市渝中区、九龙坡区等主城区2020届高三学业质量调研抽测(第二次)数学(理科)试题 (解析版)

重庆市渝中区、九龙坡区等主城区2020届高三学业质量调研抽测(第二次)数学(理科)试题 (解析版)

2020年高考数学二诊试卷(理科)(5月份)一、选择题(共12个小题)1.已知集合A ={x |x 2﹣2x ﹣3≤0},B ={x |log 2x >1},则A ∪B =( ) A .(2,+∞)B .(2,3]C .[﹣1,3]D .[﹣1,+∞)2.已知复数z 在复平面内对应点的坐标是(﹣3,4),i 为虚数单位,则z1−i =( )A .−12+12i B .−12+72i C .−72+12i D .72+12i3.某公司生产了一批新产品,这种产品的综合质量指标值x 服从正态分布N (100,σ2)且P (x <80)=0.2.现从中随机抽取该产品1000件,估计其综合质量指标值在[100,120]内的产品件数为( ) A .200B .300C .400D .6004.已知sin(α2−π4)=√33,则cos2α=( )A .79B .−79C .2√23D .−2√235.已知p :﹣2≤x ﹣y ≤2且﹣2≤x +y ≤2,q :x 2+y 2≤2,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.已知函数f (x )的定义域为R 且满足f (﹣x )=﹣f (x ),f (x )=f (2﹣x ),若f (1)=4,则f (6)+f (7)=( ) A .﹣8B .﹣4C .0D .47.已知函数f(x)=√3sinωx −cosωx(ω>0),f (x 1)=2,f (x 2)=﹣2,且|x 1﹣x 2|最小值为π2,若将y =f (x )的图象沿x 轴向左平移φ(φ>0)个单位,所得图象关于原点对称,则实数φ的最小值为( )A .π12B .π6C .π3D .7π128.2020年2月,在新型冠状病毒感染的肺炎疫情防控工作期间,某单位有4名党员报名参加该地四个社区的疫情防控服务工作,假设每名党员均从这四个社区中任意选取一个社区参加疫情防控服务工作,则恰有一个社区未被这4名党员选取的概率为( )A .81256B .2764C .964D .9169.已知f(x)={(3a −4)x −2a ,x <1log a x ,x ≥1对任意x 1,x 2∈(﹣∞,+∞)且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,那么实数a 的取值范围是( )A .(1,+∞)B .(0,1)C .(43,2] D .(43,4]10.在三棱锥P ﹣ABC 中,∠BAC =60°,∠PBA =∠PCA =90°,PB =PC =√6,点P 到底面ABC 的距离为2,则三棱锥P ﹣ABC 的外接球的体积为( ) A .4πB .3√3πC .4√3πD .36π11.已知双曲线C :x 2a −y 2b =1(a >0,b >0)的左、右焦点分别为F 1,F 2,一条渐近线为l ,过点F 2且与l 平行的直线交双曲线C 于点M ,若|MF 1|=2|MF 2|,则双曲线C 的离心率为( ) A .√2B .√3C .√5D .√612.已知函数f (x )=(lnx +1﹣ax )(e x ﹣2m ﹣ax ),若存在实数a 使得f (x )<0恒成立,则实数m 的取值范围是( )A .(12,+∞) B .(−∞,12)C .(12,1)D .(−1,12)二、填空题:本题共4个小题,每小题5分,共20分.把答案填写在答题卡相应的位置上.13.设非零向量a →,b →满足a →⊥(a →−b →),且|b →|=2|a →|,则向量a →与b →的夹角为 .14.过抛物线y 2=8x 焦点的直线PC 与该抛物线相交于A ,B 两点,点P (4,y 0)是AB 的中点,则|AB |的值为 .15.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的外接圆面积为16π,且cos 2C ﹣cos 2B =sin 2A +sin A sin C ,则a +c 的最大值为 .16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AC ∩BD =O ,E 是B 1C (不含端点)上一动点,则下列正确结论的序号是 . ①D 1O ⊥平面A 1C 1D ; ②OE ∥平面A 1C 1D ;③三棱锥A 1﹣BDE 体积为定值; ④二面角B 1﹣AC ﹣B 的平面角的正弦值为√66.三、解答题:共70分.解答时应写出必要的文字说明、演算步骤或推理过程.并答在答题卡相应的位置上.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.(一)必考题:共60分 17.已知数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n +1. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =log 3(a n •a n +1),数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+⋯+1T n<2.18.某工厂通过改进生产工艺来提高产品的合格率,现从改进工艺前和改进工艺后所生产的产品中用随机抽样的方法各抽取了容量为100的样本,得到如表的2×2列联表:改进工艺前改进工艺后合计合格品8595180次品15520合计100100200(Ⅰ)是否有99%的把握认为“提高产品的合格率与改进生产工艺有关”?(Ⅱ)该工厂有甲、乙两名工人均使用改进工艺后的新技术进行生产,每天各生产50件产品,如果每生产1件合格品可获利30元,生产1件次品损失50元.甲、乙两名工人30天中每天出现次品的件数和对应的天数统计如表:甲一天生产的次品数(件)01234对应的天数(天)281073乙一天生产的次品数(件)01234对应的天数(天)369102将统计的30天中产生不同次品数的天数的频率作为概率,记X表示甲、乙两名工人一天中各自日利润不少于1340元的人数之和,求随机变量X的分布列和数学期望.附:P(K2≥k0)0.150.100.050.0250.0100.0050.001 k0 2.072 2.706 3.841 5.024 6.6357.87910.828K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.19.如图,在正三棱柱ABC﹣A1B1C1中,点M,N分别是AB,CC1的中点,D为AB1与A1B的交点.(Ⅰ)求证:CM∥平面AB1N;(Ⅱ)已知AB=2,AA1=4,求A1B1与平面AB1N所成角的正弦值.20.已知圆C:(x+2)2+y2=24与定点M(2,0),动圆I过M点且与圆C相切,记动圆圆心I的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)斜率为k的直线l过点M,且与曲线E交于A,B两点,P为直线x=3上的一点,若△ABP为等边三角形,求直线l的方程.21.设函数f(x)=e xx,g(x)=lnx+1x.(Ⅰ)若直线x=m(m>0)与曲线f(x)和g(x)分别交于点P和Q,求|PQ|的最小值;(Ⅱ)设函数F(x)=xf(x)[a+g(x)],当a∈(0,ln2)时,证明:F(x)存在极小值点x0,且e x0(a+lnx0)<0.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为{x=2+√22ty=√22t(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=8cosθ.(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点M的直角坐标为(2,0),直线l和曲线C交于A、B两点,求1|MA|+1 |MB|的值.[选修4-5:不等式选讲]23.已知f(x)=|2x+a2|.(Ⅰ)当a=2时,求不等式f(x)+|x﹣1|≥5的解集;(Ⅱ)若对于任意实数x,不等式|2x+3|﹣f(x)<2a成立,求实数a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的代号填涂在答题卡上.1.已知集合A={x|x2﹣2x﹣3≤0},B={x|log2x>1},则A∪B=()A.(2,+∞)B.(2,3]C.[﹣1,3]D.[﹣1,+∞)【分析】求出A,B中不等式的解集确定出A,B,找出A与B的并集即可.解:由A中不等式变形得:(x﹣3)(x+1)≤0,解得:﹣1≤x≤3,即A=[﹣1,3],∵B={x|log2x>1}=[2,+∞),∴A∪B=[﹣1,+∞),故选:D.【点评】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.已知复数z在复平面内对应点的坐标是(﹣3,4),i为虚数单位,则z1−i=()A.−12+12i B.−12+72i C.−72+12i D.72+12i【分析】复数z在复平面内对应点的坐标是(﹣3,4),可得z=﹣3+4i,代入再利用复数运算法则即可得出.解:复数z在复平面内对应点的坐标是(﹣3,4),∴z=﹣3+4i,则z1−i =−3+4i1−i=(−3+4i)(1+i)(1−i)(1+i)=−72+12i,故选:C.【点评】本题考查了复数运算法则、几何意义,考查了推理能力与计算能力,属于基础题.3.某公司生产了一批新产品,这种产品的综合质量指标值x服从正态分布N(100,σ2)且P(x<80)=0.2.现从中随机抽取该产品1000件,估计其综合质量指标值在[100,120]内的产品件数为()A.200B.300C.400D.600【分析】先根据正态曲线的对称性性质,算出P(100≤x≤120),然后用该值乘以1000即可.解:因为综合质量指标值x服从正态分布N(100,σ2)且P(x<80)=0.2.∴P(x<80)=P(x>120)=0.2,P(x≤100)=P(x≥100)=0.5.∴P(100≤x≤120)=P(x≥100)﹣P(x>120)=0.3.故综合质量指标值在[100,120]内的产品件数为1000×0.3=300.故选:B.【点评】本题考查正态分布密度函数的性质及应用,要注意利用正态曲线的对称性求解概率,同时考查学生利用转化思想解决问题的能力,属于中档题.4.已知sin(α2−π4)=√33,则cos2α=()A.79B.−79C.2√23D.−2√23【分析】由已知利用二倍角的余弦函数公式可求cos(α−π2),利用诱导公式可求sinα,再根据二倍角的余弦函数公式即可计算得解.解:∵sin(α2−π4)=√33,∴cos(α−π2)=1﹣2sin2(α2−π4)=1﹣2×(√33)2=13,即sinα=13,∴cos2α=1﹣2sin2α=1﹣2×(13)2=79.故选:A.【点评】本题主要考查了二倍角的余弦函数公式,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.5.已知p:﹣2≤x﹣y≤2且﹣2≤x+y≤2,q:x2+y2≤2,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】p:﹣2≤x﹣y≤2且﹣2≤x+y≤2,可得:﹣2≤x≤2,﹣2≤y≤2.q:x2+y2≤2,可得:−√2≤x≤√2,−√2≤y≤√2.即可判断出关系.解:p:﹣2≤x﹣y≤2且﹣2≤x+y≤2,可得:﹣2≤x≤2,﹣2≤y≤2.q:x2+y2≤2,可得:−√2≤x≤√2,−√2≤y≤√2.∴由q⇒p,由p无法得出q.∴p是q的必要不充分条件.故选:B.【点评】本题考查了不等式的应用、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6.已知函数f(x)的定义域为R且满足f(﹣x)=﹣f(x),f(x)=f(2﹣x),若f(1)=4,则f(6)+f(7)=()A.﹣8B.﹣4C.0D.4【分析】推导出f(x+4)=f(2﹣x﹣4)=﹣f(x+2)=﹣f(2﹣x﹣2)=f(x),f(0)=0,由此根据f(1)=4,能求出f(6)+f(7)的值.解:∵函数f(x)的定义域为R且满足f(﹣x)=﹣f(x),f(x)=f(2﹣x),∴f(x+4)=f(2﹣x﹣4)=﹣f(x+2)=﹣f(2﹣x﹣2)=f(x),f(0)=0,∵f (1)=4,∴f (6)=f (2)=f (0)=0,f (7)=f (3)=f (﹣1)=﹣f (1)=﹣4, 则f (6)+f (7)=0﹣4=﹣4. 故选:B .【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.7.已知函数f(x)=√3sinωx −cosωx(ω>0),f (x 1)=2,f (x 2)=﹣2,且|x 1﹣x 2|最小值为π2,若将y =f (x )的图象沿x 轴向左平移φ(φ>0)个单位,所得图象关于原点对称,则实数φ的最小值为( )A .π12B .π6C .π3D .7π12【分析】直接利用三角函数关系式的恒等变换把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.解:函数f(x)=√3sinωx −cosωx(ω>0)=2sin (ωx −π6),由于函数满足f (x 1)=2,f (x 2)=﹣2,且|x 1﹣x 2|最小值为π2,所以T =π,解得ω=2.故f (x )=2sin (2x −π6).将y =f (x )的图象沿x 轴向左平移φ(φ>0)个单位,所得函数g (x )=2sin (2x +2φ−π6)图象,由于函数g (x )关于原点对称,所以2φ−π6=k π(k ∈Z ),解得φ=kπ2+π12(k ∈Z ),当k =0时,φ=π12, 即实数φ的最小值为π12.故选:A .【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,函数的图象的平移变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.8.2020年2月,在新型冠状病毒感染的肺炎疫情防控工作期间,某单位有4名党员报名参加该地四个社区的疫情防控服务工作,假设每名党员均从这四个社区中任意选取一个社区参加疫情防控服务工作,则恰有一个社区未被这4名党员选取的概率为( )A .81256B .2764C .964D .916【分析】基本事件总数n =44,恰有一个社区未被这4名党员选取包含的基本事件个数m =C 41C 42A 33,由此能求出恰有一个社区未被这4名党员选取的概率.解:某单位有4名党员报名参加该地四个社区的疫情防控服务工作, 假设每名党员均从这四个社区中任意选取一个社区参加疫情防控服务工作, 基本事件总数n =44,恰有一个社区未被这4名党员选取包含的基本事件个数m =C 41C 42A 33,则恰有一个社区未被这4名党员选取的概率为P =m n =C 41C 42A 3344=916.故选:D .【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.9.已知f(x)={(3a −4)x −2a ,x <1log a x ,x ≥1对任意x 1,x 2∈(﹣∞,+∞)且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,那么实数a 的取值范围是( )A .(1,+∞)B .(0,1)C .(43,2] D .(43,4]【分析】根据题意,由函数单调性的定义分析可得函数f (x )在R 上是增函数,结合函数的解析式可得{3a −4>0a >1(3a −4)−2a ≤log a 1,解可得a 的取值范围,即可得答案.解:根据题意,f (x )满足对任意x 1,x 2∈(﹣∞,+∞)且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,则函数f (x )在R 上是增函数,又由f(x)={(3a −4)x −2a ,x <1log a x ,x ≥1,则有{3a −4>0a >1(3a −4)−2a ≤log a 1,解可得:43<a <4,即a 的取值范围为(43,4).故选:D .【点评】本题考查分段函数的单调性,注意函数单调性的定义,属于基础题. 10.在三棱锥P ﹣ABC 中,∠BAC =60°,∠PBA =∠PCA =90°,PB =PC =√6,点P 到底面ABC 的距离为2,则三棱锥P ﹣ABC 的外接球的体积为( ) A .4πB .3√3πC .4√3πD .36π【分析】先由题设条件找到球心的位置,再利用∠BAC =60°,∠PBA =∠PCA =90°,PB =PC =√6⇒△ABC 为等边三角形,进一步找出球的半径,计算出体积. 解:如图,记PA 的中点为O ,连OB ,OC .∵∠PBA =∠PCA =90°, ∴OA =OP =OB =OC ,因此O 为三棱锥P ﹣ABC 的外接球的球心. 又∵PB =PC =√6,∴△PAB ≌△PAC ,∴AB =AC .又∠BAC =60°, ∴△ABC 为等边三角形.记点O 在底面ABC 内的射影为O 1,则O 1为△ABC 的中心.连接OO 1,O 1A ,点P 到底面ABC 的距离为2,∴OO 1=1.设AB =a ,则O 1A =√33a .在直角三角形PBA 中,PA =√6+a 2.在直角三角形OO 1A 中,OA 2=1+(√3a 3)2=1+a 23=|PA|24=6+a 24,解得:a =√6, ∴三棱锥P ﹣ABC 的外接球的半径R =OA =√3.所以三棱锥P ﹣ABC 的外接球的体积V =43π(√3)3=4√3π. 故选:C .【点评】本题主要考查多面体的外接球问题,属于基础题.11.已知双曲线C :x 2a −y 2b =1(a >0,b >0)的左、右焦点分别为F 1,F 2,一条渐近线为l ,过点F 2且与l 平行的直线交双曲线C 于点M ,若|MF 1|=2|MF 2|,则双曲线C 的离心率为( ) A .√2B .√3C .√5D .√6【分析】利用已知条件,结合双曲线定义,通过余弦定理以及渐近线的斜率,列出关系式求解双曲线的离心率即可. 解:由题意可知|MF 1|﹣|MF 2|=2a ,所以|MF 2|=2a ,|MF 1|=4a ,所以16a 2=4a 2+4c 2﹣2×2a ×2c cos ∠MF 2F 1,tan∠MF2F1=ba,所以cos∠MF2F1=ac,所以:16a2=4a2+4c2﹣2×2a×2c×ac,可得5a2=4c2.所以双曲线的离心率为:e=√5.故选:C.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力,是中档题.12.已知函数f(x)=(lnx+1﹣ax)(e x﹣2m﹣ax),若存在实数a使得f(x)<0恒成立,则实数m的取值范围是()A.(12,+∞)B.(−∞,12)C.(12,1)D.(−1,12)【分析】分析题意可知,存在实数a,使得直线y=ax始终在函数g(x)=lnx+1与函数h(x)=e x﹣2m之间,作出函数g(x)与函数h(x)的图象,只需分析出极限情况即可得解.解:依题意,存在实数a,使得直线y=ax始终在函数g(x)=lnx+1与函数h(x)=e x﹣2m之间,考虑直线y=ax与函数g(x),函数h(x)均相切于同一点的情况,设切点为(x0,y0),由g′(x)=1x,h′(x)=ex−2m可知,{1x0=e x0−2my0=e x0−2my0=lnx0+1,解得{x0=1y0=1m=12,作出图象如下,由图象观察可知,当m <12时,函数h (x )越偏离函数g (x ),符合题意,即实数m 的取值范围为(−∞,12). 故选:B .【点评】本题考查利用导数研究不等式的恒成立问题,涉及了导数的几何意义的运用,考查等价转化思想,推理能力与计算能力,理解题意是关键,属于较难难题.二、填空题:本题共4个小题,每小题5分,共20分.把答案填写在答题卡相应的位置上.13.设非零向量a →,b →满足a →⊥(a →−b →),且|b →|=2|a →|,则向量a →与b →的夹角为 π3 .【分析】根据题意,设向量a →与b →的夹角为θ,设|a →|=t ,则|b →|=2t ,由向量垂直与数量积的关系可得a →•(a →−b →)=a →2−a →•b →=t 2﹣2t 2cos θ=0,变形可得cos θ的值,结合θ的范围分析可得答案.解:根据题意,设向量a →与b →的夹角为θ,又由|b →|=2|a →|,设|a →|=t ≠0,则|b →|=2t ,又由a →⊥(a →−b →),则a →•(a →−b →)=a →2−a →•b →=t 2﹣2t 2cos θ=0,变形可得:cos θ=12;又由0≤θ≤π,则θ=π3; 故答案为:π3.【点评】本题考查向量数量积的计算,涉及向量垂直的性质以及应用,属于基础题. 14.过抛物线y 2=8x 焦点的直线PC 与该抛物线相交于A ,B 两点,点P (4,y 0)是AB 的中点,则|AB |的值为 12 .【分析】通过抛物线的方程可知p =4,利用中点坐标公式可知x A +x B =2×4=8,最后结合抛物线的定义即可求得焦点弦|AB|的长度.解:∵抛物线y2=8x,∴p=4,又点P(4,y0)是AB的中点,∴x A+x B=2×4=8,由抛物线的定义可知,|AB|=x A+x B+p=x A+x B+4=8+4=12.故答案为:12.【点评】本题考查抛物线的定义及其焦点弦的应用,考查学生的分析能力和运算能力,属于基础题.15.设△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的外接圆面积为16π,且cos2C﹣cos2B=sin2A+sin A sin C,则a+c的最大值为8.【分析】设△ABC的外接圆的半径为R.根据△ABC的外接圆面积为16π,利用正弦定理可得R.由cos2C﹣cos2B=sin2A+sin A sin C,化为:1﹣sin2C﹣(1﹣sin2B)=sin2A+sin A sin C,利用正弦定理及其余弦定理可得B,进而得出b.利用基本不等式的性质即可得出.解:设△ABC的外接圆的半径为R.∵△ABC的外接圆面积为16π,∴16π=πR2,解得R=4.∵cos2C﹣cos2B=sin2A+sin A sin C,∴1﹣sin2C﹣(1﹣sin2B)=sin2A+sin A sin C,∴b2﹣c2=a2+ac,即c2+a2﹣b2=﹣ac,∴cos B=a2+c2−b 22ac =−ac2ac=−12,B∈(0,π),解得B=2π3.∴b=2R sin B=8×√32=4√3.∴(c+a)2=ac+(4√3)2≤(a+c)24+48,∴c+a≤8.当且仅当a=c=4时取等号.故答案为:8.【点评】本题考查了正弦定理余弦定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.16.如图,在正方体ABCD﹣A1B1C1D1中,AC∩BD=O,E是B1C(不含端点)上一动点,则下列正确结论的序号是②③.①D1O⊥平面A1C1D;②OE∥平面A1C1D;③三棱锥A1﹣BDE体积为定值;④二面角B1﹣AC﹣B的平面角的正弦值为√6.6【分析】根据正方体的几何特征,即可判断各命题的真假.解:如图所示,取AD中点F,连接OF,D1F,因为OF⊥平面ADD1A1,所以D1F为OD1在平面ADD1A1的射影,显然,D1F不垂直于A1D,故OD1不垂直于A1D,D1O不垂直于平面A1C1D,①错误;因为AC∥A1C1,B1C∥A1D,所以平面ACB1∥平面A1C1D,而OE⊂平面ACB1,根据线面平行的定义可知,OE∥平面A1C1D,所以②正确;因为B1C∥A1D,所以B1C∥平面A1BD,故点E到平面A1BD等于点C到平面A1BD的距离,所以三棱锥A1﹣BDE体积为定值,③正确;因为B 1B ⊥平面ABC ,AC ⊥BD ,所以∠B 1OB 为二面角B 1﹣AC ﹣B 的平面角的平面角,在△B 1BO 中,tan ∠B 1OB =22=√2,sin ∠B 1OB =√23=√63,④错误.故答案为:②③.【点评】本题主要考查利用面面平行的判定定理,线面平行的定义,线面垂直的判定定理判断命题真假,以及三棱锥体积的求法,二面角的求法的应用, 考查学生的直观想象能力和逻辑推理能力,属于中档题.三、解答题:共70分.解答时应写出必要的文字说明、演算步骤或推理过程.并答在答题卡相应的位置上.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.(一)必考题:共60分 17.已知数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n +1. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =log 3(a n •a n +1),数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+⋯+1T n<2.【分析】本题第(Ⅰ)题根据题干a n +1=2S n +1,可得当n ≥2时有a n =2S n ﹣1+1成立,两式相减后再运用公式a n =S n ﹣S n ﹣1(n ≥2),进一步转化计算可判断出数列{a n }是以1为首项,以3为公比的等比数列,即可得到数列{a n }的通项公式;第(Ⅱ)题先由第(Ⅰ)题的结果计算出数列{b n }的通项公式并判别出数列{b n }是以1为首项,2为公差的等差数列,再通过等差数列的求和公式可计算出T n的表达式,再代入1 T1+1T2+⋯+1T n进行计算时运用1n2<1n−1−1n(n≥2)进行放缩即可证明不等式成立.【解答】(Ⅰ)解:依题意,由a n+1=2S n+1,可得当n≥2时,a n=2S n﹣1+1,两式相减,得a n+1﹣a n=2S n+1﹣2S n﹣1﹣1=3a n(n≥2),又∵a1=1,a2=2S1+1=2×1+1=3,∴a2=3a1符合上式,∴数列{a n}是以1为首项,以3为公比的等比数列,故a n=3n−1,n∈N*.(Ⅱ)证明:由(Ⅰ)知,b n=log3(a n•a n+1)=log3(3n﹣1•3n)=log332n﹣1=2n﹣1,则b n=2n﹣1=1+(n﹣1)•2,故数列{b n}是以1为首项,2为公差的等差数列,∴T n=n(1+2n−1)2=n2,∴1T1+1T2+⋯+1T n=1 12+122+⋯+1n2<1+11⋅2+12⋅3+⋯+1(n−1)n=1+1−12+12−13+⋯+1n−1−1n=2−1 n<2,∴不等式1T1+1T2+⋯+1T n<2成立.【点评】本题主要考查数列求通项公式,数列求和与不等式的综合问题.考查了转化与化归思想,放缩法,定义法,指、对数的运算,以及逻辑思维能力和数学运算能力.本题属中档题.18.某工厂通过改进生产工艺来提高产品的合格率,现从改进工艺前和改进工艺后所生产的产品中用随机抽样的方法各抽取了容量为100的样本,得到如表的2×2列联表:改进工艺前改进工艺后合计合格品8595180次品15520合计100100200(Ⅰ)是否有99%的把握认为“提高产品的合格率与改进生产工艺有关”?(Ⅱ)该工厂有甲、乙两名工人均使用改进工艺后的新技术进行生产,每天各生产50件产品,如果每生产1件合格品可获利30元,生产1件次品损失50元.甲、乙两名工人30天中每天出现次品的件数和对应的天数统计如表:甲一天生产的次品数(件)01234对应的天数(天)281073乙一天生产的次品数(件)01234对应的天数(天)369102将统计的30天中产生不同次品数的天数的频率作为概率,记X表示甲、乙两名工人一天中各自日利润不少于1340元的人数之和,求随机变量X的分布列和数学期望.附:P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.841 5.0246.6357.87910.828K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n =a +b +c +d .【分析】(Ⅰ)求出K 2,即可判断是否有99%的把握认为“提高产品的合格率与改进生产工艺有关”.(Ⅱ)每天生产的次品数为x ,X 的可能值为0,1,2,求出概率,得到分布列,然后求解期望即可.解:(Ⅰ)K 2=200×(85×5−95×15)2100×100×20×180=509≈5.556<6.635.∴没有99%的把握认为“提高产品的合格率与改进生产工艺有关”. (Ⅱ)∵每天生产的次品数为x ,日利润y =30(50﹣x )﹣50x =1500﹣80x ,其中0≤x ≤4,x ∈N . 由1500﹣80x ≥1340得0≤x ≤2.∵X 是甲、乙1天中生产的次品数不超过2件的人数之和, ∴X 的可能值为0,1,2,又甲1天中生产的次品数不超过2件的概率为2+8+1030=23,乙1天中生产的次品数不超过2件的概率为3+6+930=35,∴P(X =0)=13×25=215,P(X =1)=23×25+13×35=715,P(X =2)=23×35=615, ∴随机变量X 的分布列为:X12P215715615∴E(X)=0×215+1×715+2×615=1915.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查转化思想以及计算能力,是中档题.19.如图,在正三棱柱ABC﹣A1B1C1中,点M,N分别是AB,CC1的中点,D为AB1与A1B的交点.(Ⅰ)求证:CM∥平面AB1N;(Ⅱ)已知AB=2,AA1=4,求A1B1与平面AB1N所成角的正弦值.【分析】(Ⅰ)连接DM,DN.由已知可得BB1∥CC1,BB1=CC1,且四边形AA1B1B 是矩形,结合D为AB1的中点.即可证明四边形CMDN是平行四边形,得CM∥DN,再由直线与平面平行的判定可得CM∥平面AB1N;(Ⅱ)取BC的中点为O,B1C1的中点为E,连接AO,OE,证得AO⊥平面BB1C1C.以OB,OE,OA所在直线为x,y,z轴建立空间直角坐标系,求出A1B1→的坐标与平面AB1N 的一个法向量,由两法向量所成角的余弦值可得A1B1与平面AB1N所成角的正弦值.【解答】(Ⅰ)证明:连接DM,DN.在正三棱柱ABC﹣A1B1C1中,BB1∥CC1,BB1=CC1,且四边形AA1B1B是矩形,∴D为AB1的中点.又∵M为AB的中点,∴DM∥BB1,且DM=12BB1.∵N 为CC 1 的中点,∴CN =12CC 1, ∴DM =CN ,且DM ∥CN ,∴四边形CMDN 是平行四边形,得CM ∥DN , 又DN ⊂平面AB 1N ,CM ⊄平面AB 1N , ∴CM ∥平面AB 1N ;(Ⅱ)解:取BC 的中点为O ,B 1C 1 的中点为E ,连接AO ,OE , ∵△ABC 为正三角形,∴AO ⊥BC ,又平面BB 1C 1C ⊥平面ABC ,∴AO ⊥平面BB 1C 1C .以OB ,OE ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系,如图所示. 则A (0,0,√3),A 1(0,4,√3),B 1(1,4,0),N (﹣1,2,0), A 1B 1→=(1,0,−√3),AB 1→=(1,4,−√3),B 1N →=(−2,−2,0). 设平面AB 1N 的法向量为n →=(x ,y ,z),则{n →⋅AB 1→=x +4y −√3z =0n →⋅B 1N →=−2x −2y =0,令x =1,得n →=(1,−1,−√3). 设A 1B 1与平面AB 1N 所成角为θ,则sin θ=|cos <A 1B 1→,n →>|=|A 1B 1→⋅n→|A 1B 1→|⋅|n →||=25=2√55. ∴A 1B 1与平面AB 1N 所成角的正弦值为2√55.【点评】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.20.已知圆C :(x +2)2+y 2=24与定点M (2,0),动圆I 过M 点且与圆C 相切, 记动圆圆心I 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)斜率为k 的直线l 过点M ,且与曲线E 交于A ,B 两点,P 为直线x =3上的一点,若△ABP 为等边三角形,求直线l 的方程.【分析】(Ⅰ)设圆I 的半径为r ,由题意可得|IC |+|IM |=2√6>4为定值,由椭圆的定义可得E 的轨迹为椭圆,且可知a ,c 的值,再由a ,b ,c 之间的关系求出椭圆的方程; (Ⅱ)设直线l 的方程,与椭圆联立求出两根之和及两根之积,求出AB 的中点D 的坐标,进而求出弦长|AB |,可得直线PQ 的斜率,再由P 在直线x =3上,可得|PQ |的长,由△ABP 为等边三角形时,|PQ |=√32|AB |,进而求出k 的值.解:(Ⅰ)设圆I 的半径为r ,题意可知,点I 满足: |IC |=2√6−r ,|IM |=r , 所以,|IC |+|IM |=2√6,由椭圆定义知点I 的轨迹是以C ,M 为焦点的椭圆, 所以a =√6,c =2,b =√2, 故轨迹E 方程为:x 26+y 22=1;(Ⅱ)直线l 的方程为y =k (x ﹣2),联{x 26+y 22=1y =k(x −2)消去y 得(1+3k 2)x 2﹣12k 2x +12k 2﹣6=0.直线y =k (x ﹣2)恒过定点(2,0),在椭圆内部,所以△>0恒成立,设A (x 1,y 1),B (x 2,y 2), 则有x 1+x 2=12k21+3k2,x 1x 2=12k 2−61+3k2,所以|AB |=√1+k 2|x 1﹣x 2|=√1+k 2√(x 1+x 2)2−4x 1x 2=2√6(1+k 2)1+3k2,设AB 的中点为Q (x 0,y 0),则x 0=6k21+3k2,y 0=−2k 1+3k2,直线PQ 的斜率为−1k(由题意知k ≠0),又P 为直线x =3上的一点,所以x P =3,|PQ |=√1+1k2|x 0﹣x P |=√1+k2k2−3(1+k 2)1+3k2, 当△ABP 为等边三角形时,|PQ |=√32|AB |,即√1+k 2k 2−3(1+k 2)1+3k2=√32−2√6(1+k 2)1+3k2,解得k =±1,即直线l 的方程为x ﹣y ﹣2=0,或x +y ﹣2=0.【点评】本题考查求轨迹方程和直线与椭圆的综合,及等边三角形的性质,属于中档题.21.设函数f (x )=e xx,g (x )=lnx +1x .(Ⅰ)若直线x =m (m >0)与曲线f (x )和g (x )分别交于点P 和Q ,求|PQ |的最小值;(Ⅱ)设函数F (x )=xf (x )[a +g (x )],当a ∈(0,ln 2)时,证明:F (x )存在极小值点x 0,且e x 0(a +lnx 0)<0.【分析】(Ⅰ)设函数h(x)=f(x)−g(x)=e xx−lnx−1x(x>0),利用导数求出函数h(x)在定义域上的最小值,即为|PQ|的最小值;(Ⅱ)对函数F(x)=e x(a+1x+lnx)求导得F′(x)=e x(a+2x−1x2+lnx),分析可知当x∈(12,x0),F(x)单调递减;当x∈(x0,1),F(x)单调递增,进而得证x0是F(x)的极小值点,且x0∈(12,1),a+lnx0=1x02−2x=1−2x0x02,由此可证ex0(a+lnx0)<0.解:(Ⅰ)设函数h(x)=f(x)−g(x)=e xx−lnx−1x(x>0),则h′(x)=xex−e xx2−1x+1x2=(x−1)(e x−1)x2,当x∈(0,+∞)时,e x﹣1>0,故当x∈(0,1)时,h′(x)<0,h(x)单调递减,当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,∴h(x)在(0,+∞)上有最小值h(1)=e﹣1,∴当m=1时,|PQ|的最小值为e﹣1;(Ⅱ)证明:F(x)=e x(a+1x+lnx),则F′(x)=e x(a+2x−1x2+lnx),因为e x>0,所以F′(x)与a+2x−1x2+lnx同号.设t(x)=a+2x−1x2+lnx,则t′(x)=x2−2x+2x3=(x−1)2+1x3>0,故t(x)在(0,+∞)单调递增,因a∈(0,ln2),t(1)=a+1>0,t(12)=a+ln12<0,所以存在x0∈(12,1),使得t(x0)=0,当x∈(12,x0),F′(x)<0,F(x)单调递减;当x ∈(x 0,1),F ′(x )>0,F (x )单调递增;所以若a ∈(0,ln 2),存在x 0∈(12,1),使得x 0是F (x )的极小值点,由t (x 0)=0得a +2x 0−1x 02+lnx 0=0,即a +lnx 0=1x 02−2x 0=1−2xx 02, 所以e x 0(a +lnx 0)=e x 0⋅1−2x 0x 02<0. 【点评】本题主要考查利用导数研究函数的单调性,极值及最值,考查转化思想及推理论证能力,属于中档题. 一、选择题22.在平面直角坐标系xOy 中,直线l 的参数方程为{x =2+√22ty =√22t(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=8cos θ. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)已知点M 的直角坐标为(2,0),直线l 和曲线C 交于A 、B 两点,求1|MA|+1|MB|的值.【分析】(Ⅰ)直接将直线的参数方程中的参数t 消去,可得直线的普通方程,利用极坐标方程与直角坐标方程的互化公式可得曲线C 的直角坐标方程;(Ⅱ)将直线的参数方程代入曲线C 的直角坐标方程,化为关于t 的一元二次方程,由根与系数的关系结合此时t 的几何意义求解.解:(Ⅰ)将{x =2+√22ty =√22t 中参数t 消去得x ﹣y ﹣2=0, 将{x =ρcosθy =ρsinθ代入ρsin 2θ=8cos θ,得y 2=8x , ∴直线l 和曲线C 的直角坐标方程分别为x ﹣y ﹣2=0和y 2=8x ;(Ⅱ)将直线l 的参数方程代入曲线C 的普通方程,得t 2−8√2t −32=0,设A 、B 两点对应的参数为t 1,t 2,则|MA |=|t 1|,|MB |=|t 2|,且t 1+t 2=8√2,t 1t 2=﹣32,∴|t 1|+|t 2|=|t 1−t 2|=√(t 1+t 2)2−4t 1t 2=16, ∴1|MA|+1|MB|=1|t 1|+1|t 2|=|t 1|+|t 2||t 1t 2|=|t 1−t 2||t 1t 2|=12.【点评】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,关键是直线参数方程中此时t 的几何意义的应用,是中档题. [选修4-5:不等式选讲] 23.已知f (x )=|2x +a 2|.(Ⅰ)当a =2时,求不等式f (x )+|x ﹣1|≥5的解集;(Ⅱ)若对于任意实数x ,不等式|2x +3|﹣f (x )<2a 成立,求实数a 的取值范围. 【分析】(Ⅰ)由题意可得|2x +4|+|x ﹣1|≥5,由零点分区间法,绝对值的定义,去绝对值,解不等式,求并集,即可得到所求解集;(Ⅱ)由题意可得|2x +3|﹣|2x +a 2|<2a 恒成立,运用绝对值不等式的性质可得该不等式左边的最大值,再由绝对值的解法和二次不等式的解法可得所求范围. 解:(Ⅰ)当a =2时,f (x )+|x ﹣1|=|2x +4|+|x ﹣1|≥5,则{x <−2−2x −4−x +1≥5或{−2≤x ≤12x +4−x +1≥5或{x >12x +4+x −1≥5, 解得x ≤−83或0≤x ≤1或x >1,所以原不等式的解集为(﹣∞,−83]∪[0,+∞); (Ⅱ)对于任意实数x ,不等式|2x +3|﹣f (x )<2a 成立, 即|2x +3|﹣|2x +a 2|<2a 恒成立,又因为|2x +3|﹣|2x +a 2|≤|2x +3﹣2x ﹣a 2|=|a 2﹣3|,要使原不等式恒成立,则只需|a 2﹣3|<2a , 由﹣2a <a 2﹣3<2a ,即{a 2+2a −3>0a 2−2a −3<0,即为{a >1或a <−3−1<a <3, 可得1<a <3,所以实数a 的取值范围是(1,3).【点评】本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用绝对值不等式的性质,考查化简运算能力和推理能力,属于中档题.。

重庆市2020届5月份高三“二诊”考试理科数学试题(含答案)

重庆市2020届5月份高三“二诊”考试理科数学试题(含答案)

故只需 (a 2)(a 2) ≤ 1 ,即 - 3 ≤ a ≤ 3 .
三、解答题
17.(12 分)
解:(1) f (x) sin 2x
3(1 cos 2x)
3
2 sin(2 x
)
,……2

3
由 2k ≤ 2x ≤2k 得 k ≤ x ≤ k 5 ,……4 分
2
3
2
12
12
4
4
4
4
2
f (x 3) f (x 3) f (x) , f (x) 是周期为 3 的周期函数, 2

f
(100)
f
(1)
f
( 1) 2
log 2
3m 2
,即 log2
3 2
m
log2 3 , m
1 ,故选 B.
第Leabharlann 10题提示:由题知 |FP |
xP
p 2
3p
, xP
5 2
p ,设点
15. 3 2n1
16.[ 3, 3]
5 月调研测试卷(理科数学)参考答案 第 1页 共 4 页
1
第 14 题提示:由三视图可知该几何体是一个长方体中挖去一个 球,
8
如图所示,V 3 3 5 1 4 33 45 9 .
83
2
第 15 题提示:设公差为 d ,由题知 a42 (a4 2d )(a4 4d ) ,
cos 0
4 5
,sin
0
3 5
,或 cos0
4 5
,sin
0
3 5
,故点
M
( 2,21) 55
,或
(18 ,9 ) 55

重庆市2020届高三5月调研(二诊)数学(理)试题 含解析

重庆市2020届高三5月调研(二诊)数学(理)试题 含解析

2020年普通高等学校招生全国统一考试5月调研测试卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知集合{}2,3,5,7A =,{}2|log (2)1B x x =-<,则A B =( )A. {}2B. {}3C. {}2,3D. {}3,5【答案】B 【解析】 【分析】由对数函数的性质可得{}|24B x x =<<,再由集合交集的概念即可得解. 【详解】由题意{}{}{}2|log (2)1|022|24B x x x x x x =-<=<-<=<<, 所以{}{}{}2,3,5,7|243x Ax B <<==.故选:B.【点睛】本题考查了对数不等式的求解及集合的运算,属于基础题. 2.若复数z 满足()2z i i i +=-,则z =( ) 2 B. 210D. 10【答案】C 【解析】 【分析】由题意13z i =--,再由复数模的概念即可得解.【详解】由题意()22213i i iz i i i i i --=-=-=--,所以z ==故选:C.【点睛】本题考查了复数的运算与模的求解,属于基础题. 3.下列说法正确的是( )A. “若2a >,则24a >”的否命题为“若2a >,则24a ≤”B. 命题p q ∨与()p q ⌝∨至少有一个为真命题C. “0x ∀>,2220x x -+≥”的否定为“0x ∀>,2220x x -+<”D. “这次数学考试的题目真难”是一个命题 【答案】B 【解析】 【分析】由否命题的概念即可判断A ,由命题及其否定的关系可判断B ,由全称命题的否定方法可判断C ,由命题的概念可判断D ,即可得解.【详解】对于A ,“若2a >,则24a >”的否命题为“若2a ≤,则24a ≤”,故A 错误; 对于B ,命题p q ∨的否定为()p q ⌝∨,故命题p q ∨与()p q ⌝∨有一个命题为真,故B 正确; 对于C ,“0x ∀>,2220x x -+≥”的否定为“0x ∃≤,2220x x -+<”,故C 错误; 对于D ,“这次数学考试的题目真难”不能判断真假,故“这次数学考试的题目真难”不是一个命题,故D 错误. 故选:B.【点睛】本题考查了命题、命题的否定及否命题的概念,属于基础题.4.为了判断英语词汇量与阅读水平是否相互独立,某语言培训机构随机抽取了100位英语学习者进行调查,经过计算2K 的观测值为7,根据这一数据分析,下列说法正确的是( ) 附:A. 有99%以上的把握认为英语词汇量与阅读水平无关B. 有99.5%以上的把握认为英语词汇量与阅读水平有关C. 有99.9%以上的把握认为英语词汇量与阅读水平有关D. 在犯错误的概率不超过1%的前提下,可以认为英语词汇量与阅读水平有关 【答案】D 【解析】 【分析】由题意()26.6350.01P K ≥=,由独立性检验的原理即可得解.【详解】由题意27K =,()26.6350.01P K ≥=,所以在犯错误的概率不超过1%的前提下,可以认为英语词汇量与阅读水平有关,有99%的把握认为英语词汇量与阅读水平有关. 故选:D.【点睛】本题考查了独立性检验的应用,属于基础题.5.斐波那契数列,指的是这样一个数列:1,1,2,3,5,8,13,21,…,在数学上,斐波那契数列{}n a 定义如下:121a a ==,()123,n n n a a a n n Z --=+≥∈.随着n 的增大,1nn a a +越来越逼近黄金分割10.6182≈,故此数列也称黄金分割数列,而以1n a +、n a 为长和宽的长方形称为“最美长方形”,已知某“最美长方形”的面积约为336平方分米,则该长方形的长应该是( ) A. 144厘米 B. 233厘米C. 250厘米D. 377厘米【答案】B 【解析】 【分析】由题意可得10.618nn a a +≈且133600n n a a +=,即可得解. 【详解】由题意可得10.618nn a a +≈且133600n n a a +=,解得1233n a +≈. 故选:B.【点睛】本题考查了数学文化及数列新定义的应用,属于基础题.6.在103x 的展开式中,常数项为( )A. -252B. -45C. 45D. 252【答案】C 【解析】 【分析】由题意写出10的展开式的通项公式,令8r =即可得解.【详解】由题意,10的展开式的通项公式为:()105110101rrr rr rr T C C x --+⎛=⋅=-⋅⋅ ⎝, 令53r -=-即8r =,()()8583310101145rr r C x C x x ----⋅⋅=-⋅⋅=,所以103x 的展开式中,常数项为45.故选:C.【点睛】本题考查了二项式定理的应用,属于基础题. 7.已知,0a b >,22a b +=,则1b a b+取值范围是( )A. ()0,∞+B. [)2,+∞C. )1,+∞D.)⎡+∞⎣【答案】C 【解析】【分析】 由题意112b b aa b a b+=++,利用基本不等式即可得解. 【详解】由题意得,1212121222b b a b b a b a a b a b a b a b++=+=++≥⋅+=+, 当且仅当2b aa b=,即222a =-,22b =-时等号成立. 故选:C.【点睛】本题考查了基本不等式的应用,关键是对于条件做适当的变形,属于基础题. 8.函数x xy e=的部分图象是( ) A. B.C. D.【答案】A 【解析】 【分析】对比函数的性质与图象的特征,逐项排除即可得解. 【详解】令()x x f x e =,则()()x xf x f x e ---==-,所以()f x 为奇函数,可排除C 选项; 当0x >时,()1x xf x e-'=,故()f x 在()0,1上单调递增,()1,+∞上单调递减,故排除B 、D. 故选:A.【点睛】本题考查了函数图象的识别及利用导数判断函数单调性的应用,属于基础题.9.定义在R 上的奇函数()f x 满足:3344f x f x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,且当30,4x ⎛⎫∈ ⎪⎝⎭时,()2log (1)f x x m =++,若()2100log 3f =,则实数m 的值为( )A. 2B. 1C. 0D. -1【答案】B 【解析】 【分析】由题意结合奇函数的性质可得()32f x f x ⎛⎫+=- ⎪⎝⎭,结合函数周期的概念可得()f x 是周期为3的周期函数,进而可得()()110012f f f ⎛⎫== ⎪⎝⎭,即可得解. 【详解】由()f x 为奇函数知3344f x f x ⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭,∴3344f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,即()32f x f x ⎛⎫+=- ⎪⎝⎭,∴()()332f x f x f x ⎛⎫+=-+= ⎪⎝⎭,∴()f x 是周期为3的周期函数, 故()()2131001log 22f f f m ⎛⎫===+ ⎪⎝⎭,即223log log 32m +=,∴1m =. 故选:B.【点睛】本题考查了函数周期性、奇偶性的综合应用,考查了对数运算及运算求解能力,属于中档题.10.已知抛物线2:2(0)E y px p =>的焦点为F ,以F 为圆心、3p 为半径的圆交抛物线E 于P ,Q 两点,以线段PF 为直径的圆经过点()0,1-,则点F 到直线PQ 的距离为( )B.3C.5D. 【答案】C 【解析】 【分析】由题意结合抛物线的性质得52p x p =,p y =,由以线段PF 为直径的圆经过点()0,1A -可得115212p p+⋅=-,求得5p =即可得解. 【详解】由题意点,02p F ⎛⎫⎪⎝⎭,设点()(),0P P P P x y y >,()0,1A -,32p p FP x p =+=,∴52p x p =,p y =, 以线段PF 为直径的圆经过点()0,1A -,∴AP AF ⊥,即1212p =-,∴p =由//PQ y轴可得所求距离为522p p -=. 故选:C.【点睛】本题考查了直线与抛物线的综合应用,考查了运算求解能力和转化化归思想,属于基础题.11.已知ABC 的面积为1,角,,A B C 的对边分别为,,a b c,若sin sin sin sin a A b B B c C -=+,cos cos 5B C =,则a =( )B.2【答案】D 【解析】 【分析】由题意结合正弦定理得222a b c -=+,由余弦定理得cos A =即34A π=,再由cos sin sin cos cos A B C B C =-可得sin sin B C =sin b B =,sin c C =,则212sin sin 2ABC S a B C =⋅△即可得解.【详解】由sin sin sin sin a A b B B c C -=+得222a b c -=+,则222cos 2b c a A bc +-==()0,A π∈可得34A π=,由cos cos()sin sin cos cos A B C B C B C =-+=-得sin sin 10B C =,由正弦定理知sin sin b cB C==,即sin b B =,sin c C =,∴22111sin 2sin sin 222101ABC S bc A a B C a ==⋅⋅==△,所以a =故选:D.【点睛】本题考查了正弦定理、余弦定理与三角形面积公式的综合应用,考查了运算能力与转化化归思想,属于中档题.12.已知,,,A B C D 四点均在球O 的球面上,ABC 是边长为6的等边三角形,点D 在平面ABC 上的射影为ABC 的中心,E 为线段AD 的中点,若BD CE ⊥,则球O 的表面积为( )A. 36πB. 42πC. 54πD.【答案】C 【解析】 【分析】设ABC 的中心为G ,连接BG 并延长BG 交AC 于F ,则F 为AC 中点,连接DF 、DG ,由题意可得AC BD ⊥,进而可得BD ⊥平面ACD ,即可得DA ,DB ,DC 两两垂直,可把原三棱锥的外接球转化为以DA ,DB ,DC 为棱的正方体的外接球,即可得解.【详解】设ABC 的中心为G ,连接BG 并延长BG 交AC 于F ,则F 为AC 中点,连接DF 、DG ,由题知DG ⊥平面ABC ,所以DG AC ⊥,又AC GB ⊥,DG GB G =,所以AC ⊥平面DGB ,所以AC BD ⊥, 又BD CE ⊥,CEAC C =,∴BD ⊥平面ACD ,∴BD CD ⊥,BD AD ⊥,又D ABC -为正三棱锥,∴DA ,DB ,DC 两两垂直,故三棱锥D ABC -可看作以DA ,DB ,DC 为棱的正方体的一部分,二者有共同的外接球, 由6AB =得32DA =,故正方体外接球直径232336R ==所以球O 的表面积为223644542R πππ⎛== ⎝⎭.故选:C.【点睛】本题考查了棱锥的几何特征与外接球半径的求解,考查了线面垂直的性质与判定和空间思维能力,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()2,a m =,()1,2a b +=,若()//3a a b +,则实数m =______________. 【答案】4 【解析】 【分析】由题意可得()1,2b m =--,进而可得()31,62a b m +=--,再由平面向量共线的特征即可得解. 【详解】()2,a m =,()1,2a b +=,∴()1,2b m =--,∴()31,62a b m +=--,又()//3a a b +,∴()262m m -=-,解得4m =. 故答案为:4.【点睛】本题考查了平面向量线性运算的坐标表示及共线的特征,属于基础题.14.已知某几何体的三视图如图所示,网格中的每个小方格是边长为1的正方形,则该几何体的体积为_______________.【答案】9452π- 【解析】 【分析】由三视图还原该几何体为一个长方体中挖去一个18球,利用体积公式即可得解. 【详解】由三视图可知该几何体是一个长方体中挖去一个18球,如图所示,∴3149335345832V ππ=⨯⨯-⋅⋅=-. 故答案为:9452π-.【点睛】本题考查了三视图识别与立体图形体积的求解,属于基础题.15.已知公差不为0的等差数列{}n a 中,2a ,4a ,8a 依次成等比数列,若3a ,6a ,1b a ,2b a ,…,n b a ,…成等比数列,则n b =_____________.【答案】132n +⋅ 【解析】 【分析】由题意结合等比数列、等差数列的性质可得n a nd =,进而可得132n n b a d +=⋅,即可得解.【详解】设数列{}n a 公差为d ,由题知()()24284424a a a a d a d ==-+,即44a d =,故413d d a a =-=, ∴n a nd =,33a d =,66a d =, 故新等比数列首项为3d 、公比为2, 因此132n n b a d +=⋅,故132n n b +=⋅.故答案为:132n +⋅.【点睛】本题考查了等差数列、等比数列的综合应用,考查了运算求解能力,属于基础题. 16.若曲线2cos y ax x =+上存在两条切线相互垂直,则实数a 的取值范围是__________.【答案】⎡⎣【解析】 【分析】求导得[]2sin 2,2y a x a a '=-∈-+,转化条件得存在[]12,2,2k k a a ∈-+使得121k k =-,进而可得()()221a a -+≤-,即可得解. 【详解】求导得[]2sin 2,2y a x a a '=-∈-+, 曲线2cos y ax x =+上存在两条切线相互垂直,∴存在[]12,2,2k k a a ∈-+使得121k k =-,不妨设120k k <<,()()()121222k k k a a a ≥+≥-+,∴()()221a a -+≤-,即a ≤≤故答案为:⎡⎣.【点睛】本题考查了导数几何意义的应用及导数的计算,考查了转化化归思想,属于中档题. 三、解答题:共70分.解答应写岀文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知函数()2cos 22f x x x π⎛⎫=--+ ⎪⎝⎭(1)求函数()f x 的单调性;(2)在ABC 中,角,,A B C 的对边分别为,,a b c ,且2A f ⎛⎫=⎪⎝⎭a =1c =,求ABC 的面积.【答案】(1)在5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦上单调递增,在511,1212k k ππππ⎡⎤++⎢⎥⎣⎦上单调递减,k Z ∈;(2【解析】 【分析】 (1)由三角恒等变换得()2sin 23f x x π⎛⎫=- ⎪⎝⎭,分别令()222232k x k k Z πππππ-≤-≤+∈、()3222232k x k k Z πππππ+≤-≤+∈即可得解; (2)由题意可得23A π=,由正弦定理得1sin 2C =,进而可得6B π=,再利用1sin 2ABC S ac B =△即可得解.【详解】(1)由题意()2cos 22f x x x π⎛⎫=--+⎪⎝⎭1cos 2sin 22sin 223x x x π+⎛⎫=-=- ⎪⎝⎭, 由()222232k x k k Z πππππ-≤-≤+∈得()51212k x k k Z ππππ-≤≤+∈,由()3222232k x k k Z πππππ+≤-≤+∈得()1212k x k k Z 5π11ππ+≤≤π+∈, 故()f x 在()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,在()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上单调递减; (2)由题意2sin 323A f A π⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,则3sin 32A π⎛⎫-= ⎪⎝⎭, ∵()0,A π∈,∴33A ππ-=,即23A π=, 由正弦定理得sin sin c a C A=即13sin 32C =,1sin 2C =, 由0,3C π⎛⎫∈ ⎪⎝⎭可得6C π=,∴ππ6B A C, ∴1113sin 31222ABC S ac B ==⨯⨯⨯=△. 【点睛】本题考查了三角函数的性质、三角恒等变换及解三角形的综合应用,属于中档题. 18.国庆70周年阅兵式上的女兵们是一道靓丽的风景线,每一名女兵都是经过层层筛选才最终入选受阅方队,筛选标准非常严格,例如要求女兵身高(单位:cm )在区间[]165,175内.现从全体受阅女兵中随机抽取200人,对她们的身高进行统计,将所得数据分为[)165,167,[)167,169,[)169,171,[)171,173,[]173,175五组,得到如图所示的频率分布直方图,其中第三组的频数为75,最后三组的频率之和为0.7.(1)请根据频率分布直方图估计样本的平均数x 和方差2s (同一组中的数据用该组区间的中点值代表);(2)根据样本数据,可认为受阅女兵的身高X (cm )近似服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . (i )求()167.86174.28P X <<;(ii )若从全体受阅女兵中随机抽取10人,求这10人中至少有1人的身高在174.28cm 以上的概率.参考数据:若()2~,X Nμσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=10.7≈,100.95440.63≈,90.97720.81≈,100.97720.79≈.【答案】(1)170x =,2 4.6s =;(2)(i )0.8185;(ii )0.21 【解析】 【分析】(1)由题意求出各组频率,由平均数公式及方差公式即可得解; (2)(i )由题意结合正态分布的性质即可得解;(ii )由题意结合正态分布的性质可得()174.280.0228P X >=,再由()10110.0228P =--即可得解.【详解】(1)由题知第三组的频率为750.375200=, 则第五组的频率为0.70.3750.12520.075--⨯=, 第二组的频率为10.70.0520.2--⨯=,所以五组频率依次为0.1,0.2,0.375,0.25,0.075,故0.11660.21680.3751700.251720.075174170x =⨯+⨯+⨯+⨯+⨯=,22222(170166)0.1(170168)0.2(170172)0.25(170174)0.075s =-⨯+-⨯+-⨯+-⨯4.6=;(2)由题知170μ=, 2.14σ==≈, (i )()()167.86174.282P X P X μσμσ<<=-<<+()()()222P X P X P X μσμσμσμσμσμσ-<<+--<<+=-<<++0.95440.68260.68260.81852-=+=;(ii )()()10.9544174.2820.02282P X P X μσ->=>+==, 故10人中至少有1人的身高在174.28cm 以上的概率:()1010110.022810.977210.790.21P =--=-≈-=.【点睛】本题考查了频率分布直方图的应用,考查了正态分布的应用,属于中档题. 19.如图,在四棱锥P ABCD -中,//AB CD ,AB AP ⊥,3AB =,4=AD ,5BC =,6CD =.过直线AB 的平面分别交棱PD ,PC 于E ,F 两点.(1)求证:PD EF ⊥;(2)若直线PC 与平面PAD 所成角为3π,且PA PD =,EF AB =,求二面角A BD F --的余弦值.【答案】(1)证明见解析;(2)131131-【解析】 【分析】(1)由线面平行的性质可得//AB EF ,取DC 中点G ,连接BG ,则ABGD 为平行四边形,由平面几何知识90BGC ∠=︒即AB AD ⊥,由线面平行的判定可得AB ⊥平面PAD ,再由线面垂直的性质即可得证;(2)由题意3PD =E 、F 分别为PD 、PC 的中点,建立空间直角坐标系,求出各点坐标后,进而可得平面DBF 的一个法向量为m 、平面ABD 的一个法向量n ,由cos ,m nm n m n⋅=⋅即可得解. 【详解】(1)证明:∵//AB DC ,AB ⊄平面PDC ,∴//AB 平面PDC ,又面ABFE 面PDC EF =,∴//AB EF ,取DC 中点G ,连接BG ,如图:则ABGD 为平行四边形,∴4BG =,又3GC =,5BC =,故90BGC ∠=︒, ∴AD DC ⊥,∴AB AD ⊥,又AB AP ⊥,AP AD A ⋂=,∴AB ⊥平面PAD , ∴EF ⊥平面PAD ,又PD ⊂平面PAD ,∴PD EF ⊥;(2)由(1)知CD ⊥平面PAD ,∴CPD ∠即为直线PC 与平面PAD 所成角, ∴3CPD π∠=,∴tan 3CPD DCDP ∠==,解得23PD =, 又12EF AB DC ==,∴E ,F 分别为PD ,PC 的中点, 取AD 中点O ,连接PO ,则PO AD ⊥,2222PO PD OD =-=,由CD ⊥平面PAD 可得CD PO ⊥,CDAD D =,故PO ⊥平面ABCD ,以O 为原点,OA ,AB ,OP 分别为,,x y z 轴的正方向建立空间直角坐标系,如图:则()2,0,0A ,()2,0,0D -,()2,3,0B ,()2,6,0C -,(0,0,22P ,故(F -,()4,3,0DB =,(DF =, 设平面DBF 的一个法向量为(),,m x y z =,则43030m DB x y m DF x y ⎧⋅=+=⎪⎨⋅=++=⎪⎩,令3x =得3,4,2m ⎛=- ⎝⎭, 显然()0,0,1n =是平面ABD 的一个法向量,∴922c 13os ,1311m n m n m n ⋅===⋅, 由题知二面角A BD F --的余弦值为131-. 【点睛】本题考查了线面平行、垂直的判定及利用空间向量求二面角,考查了空间思维能力与运算求解能力,属于中档题.20.已知椭圆2222:1(0)x y C a b a b +=>>1,3⎛ ⎝⎭在椭圆C 上. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点F 作斜率为1的直线与椭圆C 交于M ,N 两点,点P 满足2OP OM =(O 为坐标原点),直线NP 与椭圆C 的另一个交点为Q ,若NQ NP λ=,求λ的值.【答案】(1)22132x y +=;(2)2237λ= 【解析】 【分析】 (1)由题意可得3c a =、221413a b +=,解出23a =,22b =后即可得解; (2)设()11,M x y ,()22,N x y ,转化条件得2212124(1)4(1)132x x y y λλλλ⎛⎫+-+-+= ⎪⎝⎭,联立方程可得1265x x +=,1235x x =-,即可得解.【详解】(1)由题知c a =,故2223b a =,又221413a b+=,∴23a =,22b =, 所以椭圆C 的方程为22132x y +=;(2)设()11,M x y ,()22,N x y ,由2OP OM =得()112,2P x y , 由NQ NP λ=得()()221212,2,2Q Q x x y y x x y y λ--=--, ∴122(1)Q x x x λλ=+-,122(1)Q y y y λλ=+-,又点Q椭圆C 上,故[][]2212122(1)2(1)132x x y y λλλλ+-+-+=,即222222112212124(1)4(1)1323232x y x y x x y y λλλλ⎛⎫⎛⎫⎛⎫++-++-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴2212124(1)4(1)132x x y y λλλλ⎛⎫+-+-+=⎪⎝⎭,由题知直线:1MN y x =-,与椭圆C 的方程联立得25630x x --=,>0∆, 则1265x x +=,1235x x =-, ∴()()()121212123641111555y y x x x x x x =--=-++=--+=-, ∴212524(1)055λλλλ⎛⎫-+---= ⎪⎝⎭,解得2237λ=或0, 又N ,Q 不重合,∴0λ≠,故2237λ=. 【点睛】本题考查了椭圆方程的确定及直线、平面向量与椭圆的综合应用,考查了运算求解能力,属于中档题. 21.已知函数()21ln 2f x x ax =+,a R ∈.(1)讨论()f x 的单调性; (2)若不等式()12xf x e e a <-+对()1,x ∀∈+∞恒成立,求a 的取值范围.【答案】(1)当0a ≥时,在()0,∞+上单调递增,当0a <时,在⎛ ⎝上单调递增,在⎫+∞⎪⎭上单调递减;(2)1a e -≤ 【解析】 【分析】(1)求导后,按照0a ≥、0a <分类讨论,求出()0f x '>、()0f x '<的解集即可得解; (2)转换条件得211ln 022xe ax x e a ---+>在()1,+∞上恒成立,令()211ln 22x g x e ax x e a =---+,求导后结合()10g =,按照1a e >-、1a e -≤分类讨论,即可得解.【详解】(1)求导得()211(0)ax f x ax x x x+'=+=>,当0a ≥时,()0f x '>,()f x 在()0,∞+上单调递增; 当0a <时,()00f x x'>⇔<<,所以()f x 在⎛⎝上单调递增,在⎫+∞⎪⎭上单调递减; (2)()2111ln 0222xx f x e e a e ax x e a <-+⇔---+>, 令()211ln 22xg x e ax x e a =---+,()10g =,则()1xg x e ax x'=--,若()10g '<,即1a e >-,则存在01x >,使得当(]01,x x ∈时()0g x '<,()g x 单调递减, ∴()()010g x g <=,与题意矛盾;当1a e -≤时,令()1xh x e ax x=--,()1,x ∈+∞, ∴()()221110xh x e a e e x x'=-+>--+>,∴()h x 即()g x '单调递增,∴()()110g x g e a ''>=--≥,∴()g x 单调递增,∴()()10g x g >=,符合题意; 综上所述,1a e -≤.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,曲线C 的参数方程为22cos 32sin x y θθ=+⎧⎨=+⎩(θ为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为(4sin 3cos )a ρθθ+=,且直线l 与曲线C 有两个不同的交点.(1)求实数a 的取值范围;(2)已知M 为曲线C 上一点,且曲线C 在点M 处的切线与直线l 垂直,求点M 的直角坐标. 【答案】(1)828a <<;(2)221,55⎛⎫ ⎪⎝⎭或189,55⎛⎫⎪⎝⎭【解析】 【分析】(1)分别求出曲线C 与直线l 的直角坐标方程,由点到直线的距离公式即可得解;(2)设点()0022cos ,32sin M θθ++,由题意可得1//O M l 即002sin 32co 4s θθ=-,结合同角三角函数的平方关系求得004cos 53sin 5θθ⎧=-⎪⎪⎨⎪=⎪⎩或004cos 53sin 5θθ⎧=⎪⎪⎨⎪=-⎪⎩后即可得解.【详解】(1)消参可得曲线C 的普通方程为()()22234x y -+-=,可得曲线C 是圆心为()2,3,半径为2的圆,直线l 的直角坐标方程为43y x a +=,由直线l 与圆C 有两个交点知61225a+-<,解得828a <<; (2)设圆C 的圆心为()12,3O ,由圆C 的参数方程可设点()0022cos ,32sin M θθ++,由题知1//O M l ,∴002sin 32co 4s θθ=-, 又2200s cos in 1θθ+=,解得004cos 53sin 5θθ⎧=-⎪⎪⎨⎪=⎪⎩,或004cos 53sin 5θθ⎧=⎪⎪⎨⎪=-⎪⎩, 故点M 的直角坐标为221,55⎛⎫ ⎪⎝⎭或189,55⎛⎫ ⎪⎝⎭. 【点睛】本题考查了参数方程、极坐标方程、直角坐标方程之间的互相转化,考查了参数方程的应用,属于中档题.23.已知函数()22f x x x =+-的最小值为m .(1)求m 的值;(2)若实数a ,b 满足22a b m +=,求221112a b +++的最小值. 【答案】(1)2m =;(2)45【解析】【分析】(1)由绝对值三角不等式可得()()222f x x x x x ≥+--=+≥,即可得解; (2)由柯西不等式可得()222221112(11)12a b ab ⎛⎫++++≥+⎪++⎝⎭,结合222a b +=即可得解. 【详解】(1)由题意()()2222f x x x x x x x x =++-≥+--=+≥,当且仅当0x =时等号成立,故2m =;(2)由题意222a b +=, 由柯西不等式得()222221112(11124)a b a b ⎛⎫++++≥+⎪++⎭=⎝, 当且仅当232a =,212b =时,等号成立,∴222211441235a b a b +≥=++++,故221112a b +++的最小值为45. 【点睛】本题考查了绝对值三角不等式与柯西不等式的应用,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市渝西九校2020届高三(5月份)高考数学(理科)联考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合(){}2|680A x x x x =-+=,{}0,2,4,6A B ⋃=,则集合B 中必有的元素是( )A .0B .2C .4D .6 2.若复数z 满足1z i i=-+,则z 在复平面内的对应点( ) A .在直线y =﹣x 上 B .在直线y =x 上C .在直线y =﹣2x 上D .在直线y =2x 上3.若双曲线22:13x y C m-=,则C 的虚轴长为( )A.4 B .C .D .24.已知*n N ∈,则234512222n -++++=( ) A .254n - B .51236n +-C .324n -D .51212n -+ 5.北京公交101路是北京最早的无轨电车之一,最早可追溯至1957年.游客甲与乙同时从红庙路口西站上了开往百万庄西口站方向的101路公交车,甲将在故宫站之前的任意一站下车,乙将在展览路站之前的任意一站下车,他们都至少坐一站再下车,则甲比乙后下车的概率为( )A .48209B .1148C .50209D .519 6.已知二次函数()2f x ax bx =+在[)1,+∞上单调递减,则a ,b 应满足的约束条件为( ) A .020a a b ≠⎧⎨+≥⎩ B .020a a b <⎧⎨+≥⎩ C .020a a b ≠⎧⎨+≤⎩ D .020a a b <⎧⎨+≤⎩7.设函数()sin 2cos 233f x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭的最小正周期为T ,则()f x 在()0,T 上的零点之和为( )A .1312πB .76πC .1112πD .56π 8.执行如图所示的程序框图,则输出的a =( )A .12-B .23C .3D .-39.某品牌牛奶的保质期y (单位:天)与储存温度x (单位:C ︒)满足函数关系()0,1kx b y a a a +=>≠.该品牌牛奶在0C ︒的保质期为270天,在8C ︒的保质期为180天,则该品牌牛奶在24C ︒的保质期是( )A .60天B .70天C .80天D .90天10.已知椭圆C 的焦点为F 1(﹣c ,0),F 2(c ,0),其中c >0,C 的长轴长为2a ,过F 1的直线与C 交于A ,B 两点.若|AF 1|=3|F 1B |,4|BF 2|=5|AB |,则|AF 2|=( ) A .54a B .43a C .23a D .a11.已知QA ⊥平面ABC ,PC ⊥平面ABC ,AB BC ⊥,1PC =,3AB AQ ==,4BC =,现有下述四个结论:①四边形ACPQ 为直角梯形;②四面体PABC 的外接球的表面积为25π;③平面PBC ⊥平面QAB ;④四面体PABC 与四面体QABC 的公共部分的体积为32.其中所有正确结论的编号是( ) A .①③B .①③④C .②④D .①②③④12.设数列{}2n a 为等差数列,且0n a >,42a =,93a =.记()()()11111n n n n n b a a a a ++=+++,正整数m 满足()()9899lg 101lg 101m +<<+,则数列{}n b 的前m 项和为( )A .511B .512C .922D .1124二、填空题13.设向量()1,2AB =,()2,AC x =-,若A ,B ,C 三点共线,则x =______. 14.《九章算术》中有这样一个问题:“今有方锥,下方二丈七尺,高二丈九尺.问积几何?”其意思是:今有一个正四棱锥,其下底边长为2丈7尺(1丈10=尺),高为2丈9尺,则其体积为______立方尺.15.甲、乙两人同时参加当地一个劳动实践活动,该活动有任务需要完成,甲、乙完成任务的概率分别为0.7,0.8,且甲、乙是否完成任务相互独立互不影响.设这两人中完成任务的总人数为X ,则EX =______.三、双空题16.已知函数()()x x f x x ae e -=-为偶函数,函数()()x g x f x xe -=+,则a =______;若()g x mx e >-对()0,x ∈+∞恒成立,则m 的取值范围为______.四、解答题17.世界各国越来越关注环境保护问题,某检测点连续100天监视空气质量指数(AQI ),将这100天的AQI 数据分为五组,各组对应的区间分别为[)0,50,[)50,100,[)100,150,[)150,200,[]200,250,并绘制出如图所示的不完整的频率分布直方图.(1)请将频率分布直方图补充完整;(2)已知空气质量指数AQI 在[)0,50内的空气质量等级为优,在[)50,100内的空气质量等级为良,分别求这100天中空气质量等级为优与空气质量等级为良的天数; (3)若这100天中,AQI 在[)0,100的天数与AQI 在[],250m 的天数相等,估计m 的值.18.a ,b ,c 分别为ABC 的内角A ,B ,C 的对边,已知sin )sin b A c B =-.(1)求2b ac的最小值; (2)若4cos c a B =,求A ,B ,C .19.如图,在正三棱柱ABC ﹣A 1B 1C 1中,D 为AB 的中点,E 为棱BB 1上一点,且1AE A C ⊥.(1)在下列两个问题中任选一个作答,如果两个都作答,则按第一个解答计分.①证明:AE ⊥平面A 1CD ;②证明:BC 1∥平面A 1CD .(2)若AB =2,AA 1=3,求二面角A 1﹣BC 1﹣C 的余弦值.20.直线l 过点P (0,b )且与抛物线y 2=2px (p >0)交于A ,B (A ,B 都在x 轴同侧)两点,过A ,B 作x 轴的垂线,垂足分别为C ,D .(1)若b >0,|AC |+|BD |=p ,证明:l 的斜率为定值;(2)若Q (0,﹣b ),设△QAB 的面积为S 1,梯形ACDB 的面积为S 2,是否存在正整数λ,使3S 1=λS 2成立?若存在,求λ的值;若不存在,请说明理由,21.已知函数()cos 3x f x ae x =+-的图象在点()()0,0f 处的切线与直线0x y +=垂直.(1)判断()f x 的零点的个数,并说明理由;(2)证明:()ln f x x >对()0,x ∈+∞恒成立.22.在极坐标系中,曲线C 由圆M 与圆N 构成,圆M 与圆N 的极坐标方程为2cos ρθ=-,6cos ρθ=,直线l 的极坐标方程为()()sin cos 40k k ρθρθ=+>.(1)求圆M 与圆N 的圆心距;(2)若直线l 与曲线C 恰有2个公共点,求k 的取值范围.23.已知函数()12f x x x =-+.(1)求不等式()8f x <的解集;(2)若直线y kx =与曲线()y f x =仅有1个公共点,求k 的取值范围.参考答案1.D【分析】先由()2680x x x -+=解方程,求出集合A ,然后结合{}0,2,4,6A B ⋃=可得答案. 【详解】解:由()2680x x x -+=,得0x =,或2x =,或4x =所以{}0,2,4A =,因为{}0,2,4,6A B ⋃=,所以集合B 中必有的元素是6.故选:D【点睛】此题考查集合的并集运算的应用,属于基础题.2.A【分析】先利用复数的乘法法则进行整理,再利用复数的几何意义写出对应点坐标,分别代入检验即可得出结果.【详解】 由1z i i=-+, 得()11z i i i =-+=-+,则z 在复平面内的对应点坐标为()1,1-,把()1,1-代入选项可得A 正确.故选:A.【点睛】本题主要考查复数的四则运算以及几何意义.属于容易题.3.C【分析】利用离心率得到关于m 的方程,求出其解后可得虚轴长.因为双曲线22:13x y C m -==,解得6m =,所以虚轴长为故选:C.【点睛】本题考查双曲线的离心率及虚轴长,注意双曲线()2222:10,0x y C a b a b-=>>中各几何量计算公式的正确应用,如虚轴长指2b ,本题属于基础题.4.C【分析】利用等比数列的前n 项和的公式即可求解.【详解】25123451522222222432412n n n n ---⨯++++==-=--. 故选:C【点睛】 本题考查了等比数列的前n 项和的公式,需熟记公式,属于基础题.5.D【分析】首先计算出基本事件总数,再对乙的下车情况分类讨论,根据古典概型的概率公式计算可得;【详解】解:甲乙下车的所有可能情况有1119209⨯=种,若乙在小庄路口东站下车,则甲在呼家楼西站到沙滩路口西站任意一站下车,共有10种可能;若乙在呼家楼西站下车,则甲在关东店站到沙滩路口西站任意一站下车,共有9种可能; ……若乙在美术馆东站下车,则甲只能在沙滩路口西站下车,只有1种可能. 故甲比乙后下车的概率为10915551119111919+++==⨯⨯.【点睛】本题考查古典概型的概率计算公式的应用,属于基础题.6.D【分析】由二次函数在[)1,+∞上单调递减,得开口向下,对称轴小于等于1,可得答案.【详解】解:因为()f x 在[)1,+∞上单调递减,所以0a <,且12b a-≤, 所以020a ab <⎧⎨+≤⎩. 故选:D【点睛】此题考查二次函数的性质,属于基础题.7.A【分析】由题意可知7()212f x x π⎛⎫=- ⎪⎝⎭,可得T π=,再令72()12x k k Z ππ-=∈,可得()f x 在()0,T 上的零点,由此即可求出结果.【详解】因为7()223412f x x x πππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,所以T π=. 令72()12x k k Z ππ-=∈,得()7224k x k Z ππ=+∈, 所以()f x 在()0,T 上的零点为724π,1924π,则所求零点之和为71913242412πππ+=. 故选:A .【点睛】本题主要考查了函数()sin y A ωx φ=+ 的性质的应用,属于基础题.8.A【分析】由算法和程序框图的循环结构依次计算即可得答案.【详解】解:第1次,3a =,15i =≤成立,则 31233a -==,2i =; 第2次,25i =≤成立,则 2113223a -==-,3i =; 第3 次,35i =≤成立,则 112312a --==-,4i =; 第4 次,45i =≤成立,则 23a =,5i =, 第5次,55i =≤成立, 12a =-,6i =. 65i =≤不成立,所以输出的12a =-. 故选:A【点睛】此题考查算法和程序框图的循环结构,考查计算能力,属于基础题. 9.C【分析】根据题意将0x =或8代入表达式即可求解.【详解】由题意可知,0270b a +=,8180k b a +=,可得8823k b kb a a a +==, 所以()332482270803k b k b a a a +⎛⎫==⨯= ⎪⎝⎭, 故该品牌牛奶在24C ︒的保质期是80天.故选:C【点睛】本题考查了函数模型的应用,考查了分析能力以及基本运算求解能力,属于基础题. 10.D 【分析】根据椭圆的定义求解. 【详解】设1F B x =,则∵|AF 1|=3|F 1B |,∴13AF x =,又4|BF 2|=5|AB |,∴25BF x =, ∴1262BF BF x a +==,3a x =,∴212AF a AF a =-=. 故选:D . 【点睛】本题考查椭圆的定义,只要用定义表示出,A B 两点到焦点的距离之和即可求解. 11.B 【分析】利用线面垂直的性质定理可判断①;求出四面体PABC 的外接球的球心O 为线段PA 的中点,利用球的表面积公式可判断②;利用面面垂直的判定定理以及线面垂直的性质定理可判断③;利用锥体的体积公式即可判断④. 【详解】因为QA ⊥平面ABC ,PC ⊥平面ABC ,所以//QA PC ,且PC AC ⊥,又3QA PC =,所以四边形ACPQ 为直角梯形. 依题意可得,四面体PABC 的外接球的球心O 为线段PA 的中点,因为AC ==1PC =,所以22AO ==, 所以球O 的表面积为26π.由QA ⊥平面ABC ,则QA BC ⊥,AB BC ⊥,且QA AB A ⋂= 可证BC ⊥平面QAB ,而BC ⊂平面PBC ,所以平面PBC ⊥平面QAB . 设PAQC D =,则四面体PABC 与四面体QABC 的公共部分为四面体ABCD .过D 作DE AC ⊥于E ,则331DE PC =+,所以3344DE PC ==,所以四面体ABCD 的体积为1133343242⨯⨯⨯⨯=. 故所有正确结论的编号是①③④.故选:B 【点睛】本题考查了线面垂直的性质定理、面面垂直的判定定理、球的表面积公式、锥体的体积公式,属于中档题. 12.C 【分析】求得n a =,化简得出n b =,并结合题意求得正整数m 的值,然后利用裂项相消法可求得结果. 【详解】设{}2n a 的公差为d ,则()22229494325d a a -=-=-=,即1d =,所以()()2224424n a a n d n d n =+-=+-=,又0n a >,所以n a =,n b==11-==, 因为()9898lg 10199<+<,()9999lg 101100<+<,所以99m =, 所以数列{}nb 的前m 项和为11119111012112299+++-=-=+++. 故选:C.【点睛】本题考查裂项求和法,同时也考查了等差数列通项公式的应用,考查计算能力,属于中等题. 13.-4 【分析】由A ,B ,C 三点共线,可得//AB AC ,从而由共线向量的性质列方程可求出x 的值. 【详解】解:因为A ,B ,C 三点共线, 所以//AB AC ,因为()1,2AB =,()2,AC x =-, 所以224x =-⨯=-. 故答案为:-4 【点睛】此题考查共线向量的性质,属于基础题. 14.7047 【分析】根据题意得出该正四棱锥的高与底面边长,然后利用锥体的体积公式可计算得出结果. 【详解】因为该正四棱锥的底边长为27尺,高为29尺,所以其体积为21272970473⨯⨯=立方尺. 故答案为:7047. 【点睛】本题考查正四棱锥的体积的计算,关键就是根据题意得出该正四棱锥的底面边长和高,考查计算能力,属于基础题. 15.1.5(或32) 【分析】由题意得X 的可能取值,利用独立时间概率公式求得分布列,利用期望的定义计算即可. 【详解】X 的可能取值为0,1,2,且()()()010.810.70.06P X ==--=,()()()110.80.70.810.70.38P X ==-⨯+⨯-=,()20.80.70.56P X ==⨯=,故10.3820.56 1.5EX =⨯+⨯=. 故答案为:1.5(或32). 【点睛】本题考查简单离散型概率分布列的期望,根据事件的独立性概率公式求得分布列是关键,属基础题,难度不大. 16.1 (),2e -∞ 【分析】由已知条件,利用函数奇偶性的性质可得xxy ae e =-为奇函数,进而根据奇函数的定义求得1a =;将题中不等式分离参数为xe m e x <+,构造函数()()0xe h x e x x=+>,利用导数求得其最小值,根据不等式恒成立的意义得到m 的取值范围为(),2e -∞. 【详解】因为y x =为奇函数,()()xxf x x ae e=-为偶函数,所以x xy ae e =-为奇函数,∴000ae e =-,所以1a =,则()xg x xe =. 因为()g x mx e >-对()0,x ∈+∞恒成立,所以xem e x<+对()0,x ∈+∞恒成立. 设函数()()0x e h x e x x =+>,则()2'xe h x e x =-,显然()2'xe h x e x=-在()0,x ∈+∞上单调递增,且()'10h =,所以当01x <<时,()'0h x <;当1x >时,()'0h x >. 从而可得()()min 12h x h e ==, 故m 的取值范围为(),2e -∞. 故答案为:1;(),2e -∞. 【点睛】本题考查函数的奇偶性,利用导数求不等式恒成立中的参数取值范围问题,难度中等,关键是分离参数,构造函数并利用导数求函数的最值. 17.(1)直方图见解析;(2)20,40;(3)75. 【分析】(1)根据总频率和为1求得AQI 在[)100,150内的频率,进而计算频率组距的值,即可将直方图补充完整;(2)先求得相关频率,即可得到所求天数;(3)依题意,可得AQI 在[)0,100的频率等于AQI 在[],250m 的频率,可得到()50,100m ∈,从而列式求得m 的值. 【详解】(1)因为AQI 在[)100,150内的频率为150(0.0040.0080.0020.001)0.25-⨯+++=, 所以AQI 在[)100,150内的0.005=频率组距, 故频率分布直方图补充完整如图所示.(2)这100天中空气质量等级为优的天数为500.00410020⨯⨯=, 空气质量等级为良的天数为500.00810040⨯⨯=.(3)依题意,可得AQI 在[)0,100的频率等于AQI 在[],250m 的频率, 因为AQI 在[)0,100内的频率为0.6,AQI 在[)50,100内的频率为0.4, 所以()50,100m ∈,则()1000.00810.60.6m -⨯+-=,解得75m =. 【点睛】本题考查频率直方图,涉及频率直方图的性质,频率和频数的计算,属基础题. 18.(1)43;(2)30A =︒,60B =︒,90C =︒. 【分析】(1)首先正弦定理的边角互化可得)ab c b =-,从而可得a c +=,再利用基本不等式即可求解.(2)利用余弦定理可得22222a c b +=,根据a c +=,解得2c a =,再求出b =,根据勾股定理可得90C =︒,再根据边长关系即可求解. 【详解】(1)∵sin )sin b A c B =-,∴)ab c b =-,∴a c =-,a c +=.∵a c +≥≥当且仅当2a c ==时,等号成立, ∴243b ac ≥, 故2b ac的最小值为43.(2)∵2224cos 42a c b c a B a ac+-==⋅,∴22222a c b +=;∵a c +=,∴22222a c +=,∴()220c a -=, ∴2c a =,∴b =, ∴222+=a b c , ∴90C =︒. ∵2c a =,∴sin 2sin 1C A ==, ∴30A =︒,60B =︒,综上所述:30A =︒,60B =︒,90C =︒. 【点睛】本题主要考查了正弦定理、余弦定理解三角形,需熟记定理内容.属于中档题.19.(1)①证明见解析;②证明见解析;(2)4-. 【分析】(1)选择①,利用已知条件先证CD ⊥面11ABB A ,再利用线面垂直的性质定理推出线线垂直,结合已知条件即可得出线面垂直;选择②要证线面平行,先证线线平行,通过作辅助线及题设条件可得OD ∥1BC ,从而得到线面平行;(2)建立空间坐标系,找到相关点的坐标,找出要求的两个面的法向量,再由向量的夹角公式求解. 【详解】(1)选择①证明:因为D 为AB 的中点,AC BC =, 所以CD AB ⊥,在正三棱柱ABC ﹣A 1B 1C 1中,1AA ⊥面ABC ,则1AA CD ⊥, 因为1ABAA A =,所以CD ⊥面11ABB A , 因为AE ⊂面11ABB A , 所以CD AE ⊥,又11,AE AC CD AC C ⊥=, 所以AE ⊥平面A 1CD.选择②证明:设11AC A C O ⋂=, 因为侧面11ACC A 为平行四边形, 所以O 为线段1AC 的中点, 连接OD ,因为D 为AB 的中点, 所以OD ∥1BC ,因为OD ⊂面1A CD ,1BC ⊄面1A CD , 所以BC 1∥平面A 1CD .(2)以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,则()()()()111,0,0,,,1,0,3B C C A -,所以()()()1111,3,0,1,3,3,1,AC BC BC ==-=-,设面11A BC 的法向量为(),,m x y z =, 则111AC m BC m ⋅=⋅=, 即30x xz +=-++=,令3x =,得()3,2m =, 设面1BCC 的法向量为(),,n a b c =, 则10BC n BC n ⋅=⋅=,即30a a c -=-++=,令1b =,得()3,1,0n =.23cos ,244m n m n m n⋅===⨯, 由图可知,二面角A 1﹣BC 1﹣C 为钝角, 故二面角A 1﹣BC 1﹣C 的余弦值为4-【点睛】本题主要考查了线面平行的判定定理,线面垂直的判定和性质定理以及二面角求解等知识点,旨在考查学生的空间想象能力.属于中档题. 20.(1)证明见解析;(2)存在,且1λ=. 【分析】(1)设直线l 方程是(0)y kx b k =+>,设1122(,),(,)A x y B x y ,由|AC |+|BD |=12y y p +=,直线方程与抛物线方程联立 消去x 后应用韦达定理可得;(2)由(1)直线与抛物线相交得102kb p <<,计算12,S S 并作比12S S ,假设存在正整数λ,使123S S λ=成立,由此可得λ的范围,在此范围内的只要有正整数即可得结论. 【详解】(1)证明:据题意设直线l 方程是(0)y kx b k =+>,设1122(,),(,)A x y B x y , ∵|AC |+|BD |=p ,∴12y y p +=, 由2,2,y kx b y px =+⎧⎨=⎩得2220ky py pb -+=, ∴122py y p k+==,∴2k =,即l 的斜率为定值; (2)由(1)2480p pkb ∆=->,即102kb p <<,∵点Q 到直线l的距离d =,且12AB x =-,∴11212S AB d b x x ==-, 212121211(),22p S AC BD CD y y x x x x k=+=+-=- ∴12k b kb S kb S p p p===, ∵102kb p <<,∴102kb p <<, 假设存在正整数λ,使123S S λ=成立,则1032λ<<, ∴302λ<<. ∴存在正整数1λ=,使123S S λ=成立. 【点睛】本题考查直线与抛物线相交问题,考查抛物线中的定值问题,存在性问题.解题方法是“设而不求”的思想方法,设直线方程,设交点坐标1122(,),(,)A x y B x y ,直线方程与抛物线方程联立消元应用韦达定理,把韦达定理所得结论代入其他条件求解. 21.(1)1,理由见解析;(2)证明见解析. 【分析】(1)利用导数运算和导数的几何意义求得1a =,当0x ≤时,直接分析可得()f x 无零点;当0x >时,利用指数函数和三角函数的性质可得()'0f x >,得到()f x 的单调性,进而判定零点个数;(2)首先利用导数可证1ln x x -≥,于是将问题转化为证明()1f x x >-对()0,x ∈+∞恒成立.作差得到函数()()()()1cos 20x g x f x x e x x x =--=-+->,则利用导数,三角函数的有界性可得()g x 的单调性,从而证得结论.【详解】(1)解:()'sin xf x ae x =-,()()'011f a ⨯-=-=-,则1a =. 当0x ≤时,01x e <≤,1cos 1x -≤≤,则()0f x <,此时()f x 无零点;当0x >时,e 1x >,1sin 1x -≤≤,()'sin 0xf x e x =->, 所以()f x 在()0,∞+上单调递增.因为()00f <,()20f >,所以()f x 在()0,∞+上存在唯一的零点.综上,()f x 的零点的个数为1.(2)证明:设()1ln p x x x =--,则()()1'0x p x x x-=>, 当01x <<时,()'0p x <;当1x >时,()'0p x >.所以()()min 10p x p ==,则()1ln 0p x x x =--≥,即1ln x x -≥.要证()ln f x x >对()0,x ∈+∞恒成立,只需证()1f x x >-对()0,x ∈+∞恒成立. 设函数()()()()1cos 20xg x f x x e x x x =--=-+->, 则()'1sin x g x e x =--,设()()'h x g x =,则()'cos xh x e x =-. 因为0x >,所以e 1x >,1cos 1x -≤≤,所以()'0h x >,则()h x 在()0,∞+上单调递增,则()()00h x h >=,即()'0g x >,从而()g x 在()0,∞+上单调递增,于是()()00g x g >=,故()()10f x x -->,即()1f x x >-对()0,x ∈+∞恒成立,又1ln x x -≥,所以()ln f x x >对()0,x ∈+∞恒成立.【点睛】本题考查利用导数研究函数的零点个数和证明不等式问题,属中高档题,难度较大.(1)中的关键是注意分类讨论;(2)中的关键时要注意利用1ln x x -≥(需证明)将问题转化为证明()1f x x >-,进而构造函数,利用导数研究单调性并证明.22.(1)4;(2)⎝⎭. 【分析】 (1)将圆M 与圆N 的极坐标方程化为直角坐标方程,求出两圆圆心的直角坐标,然后利用两点间的距离公式可计算出圆M 与圆N 的圆心距;(2)分别求得当直线l 与圆M 、圆N 相切时直线l 的斜率k 的值,数形结合可求得当直线l 与曲线C 恰有2个公共点时,实数k 的取值范围.【详解】(1)以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系xOy .由2cos ρθ=-,得22cos ρρθ=-,则222x y x +=-,即()2211x y ++=, 所以圆M 的圆心的直角坐标为()1,0M -.由6cos ρθ=,得26cos ρρθ=,则226x y x +=,即()2239x y -+=, 所以圆N 的圆心的直角坐标为()3,0N .故圆M 与圆N 的圆心距134MN =+=;(2)因为直线l 的极坐标方程为()sin cos 4k ρθρθ=+,所以直线l 的直角坐标方程为()4y k x =+.当直线l 与圆M1=,又0k >,所以k =; 当直线l 与圆N3=,又0k >,所以20k =.由图象可知,当直线l 与曲线C 恰有2个公共点时,k 的取值范围为420⎛⎝⎭. 【点睛】 本题考查极坐标方程与直角坐标方程的相互转化,同时也考查了利用直线与两圆的公共点个数求参数,考查数形结合思想的应用,属于中等题.23.(1)()3,3-;(2)(]{}[),32,23,-∞-⋃-⋃+∞.【分析】(1)分1x <-、10x -≤≤、01x <≤、1x >解不等式()8f x <,综合可得出该不等式的解集;(2)作出函数()y f x =与y kx =的图象,数形结合可求得实数k 的取值范围.【详解】(1)当1x <-时,()318f x x =--<,解得31x -<<-;当10x -≤≤时,()18f x x =-<恒成立,则10x -≤≤;当01x <≤时,()18f x x =+<恒成立,则01x <≤;当1x >时,()318f x x =-<,解得13x <<.故不等式()8f x <的解集为()3,3-;(2)作出函数()y f x =(实线)与y kx =(虚线)的图象,如图所示:直线y kx =过原点,当此直线经过点()1,2时,2k =;当此直线与直线31y x =-平行时,3k =.结合()y f x =的图象的对称性,可得k 的取值范围为(]{}[),32,23,-∞-⋃-⋃+∞.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用两函数图象的交点个数求参数的取值范围,考查分类讨论思想以及数形结合思想的应用,属于中等题.。

相关文档
最新文档