半导体第三讲下单晶硅生长技术

合集下载

单晶硅的生产工艺

单晶硅的生产工艺

单晶硅的生产工艺
单晶硅是一种高纯度的硅材料,广泛应用于太阳能电池、集成电路、半导体等领域。

它的制备过程主要包括三个步骤:原料准备、单晶生长和晶圆加工。

首先,原料准备是制备单晶硅的关键步骤。

通常使用的原料是金属硅,它的纯度需要达到99.9999%以上。

原料经过高温预处理,去除其中的杂质和气体。

然后将原料放入熔炉中,加热至高温,使其熔化成液态硅。

接下来是单晶生长阶段。

在熔融硅中加入少量的掺杂剂,以改变硅的性质。

然后,在特定的条件下,将种子晶体(通常是硅材料的小晶片)以特定的角度浸入熔融硅中。

通过缓慢提升或旋转种子晶体,可以在其上生长出一片完整的单晶硅。

在整个生长过程中,需要精确控制温度、气氛和流速等参数,以保证单晶的质量和形状。

最后是晶圆加工过程。

将生长好的单晶硅锯成薄片,通常称为晶圆。

晶圆表面会有一层氧化膜,需要通过化学腐蚀或机械抛光等方法去除。

然后,在晶圆表面通过光刻和腐蚀等工艺制作电路图案。

最后,进行离散元件的切割、测试和包装等步骤,得到最终的单晶硅产品。

总的来说,单晶硅的生产工艺是一个复杂而精细的过程。

在每个步骤中,需要严格控制工艺参数,以确保单晶硅的质量和性能。

随着技术的进步,单晶硅的生产工艺不断完善,产量和质量也在不断提高,为相关行业的发展提供了重要的支持。

半导体制造工艺之晶体的生长

半导体制造工艺之晶体的生长

半导体制造工艺之晶体的生长导语半导体制造是现代电子行业的关键环节之一,而晶体的生长是半导体制造工艺中的必要步骤之一。

本文将详细介绍半导体制造工艺中晶体的生长过程和相关技术。

一、晶体生长基础概念晶体是由连续的原子、离子或分子排列而成的固体物质,其内部结构具有高度有序性。

晶体的生长是指在适当条件下,将原子、离子或分子从溶液或气相中传输到一个固体基底上,形成一个完整的晶体结构。

半导体晶体通常是通过化学气相沉积(CVD)或溶液法来生长的。

在CVD过程中,悬浮的气体或溶液中的原料物质会在晶体基底表面孕育生长。

晶体的生长速度、晶体的性质和电学性能都与晶体生长条件密切相关。

二、晶体生长过程晶体生长过程涉及一系列的步骤,包括原料制备、气相或溶液传输、吸附、扩散、结晶和去除杂质等。

下面将逐步介绍这些步骤。

2.1 原料制备晶体生长的基本材料是高纯度的原料物质,以确保晶体的纯度和质量。

通常需要对原料进行提纯和处理,以去除其中的杂质。

2.2 传输在气相生长中,原料气体会通过供气系统进入晶体生长的反应室。

在溶液法中,原料会被溶解在溶液中,通过流动或浸没晶体基底的方式被传输到晶体生长区域。

2.3 吸附原料物质在晶体基底表面吸附,形成吸附物。

随着吸附反应的进行,表面吸附物会逐渐增多,形成一个薄层。

2.4 扩散扩散是指原料物质在吸附层内部的传输过程。

原料物质会沿着晶体基底的表面扩散,寻找到新的吸附位置,并逐渐积聚起来。

2.5 结晶当吸附物质达到一定浓度时,会出现结晶现象。

原料物质会从吸附层中析出,形成新的晶体结构。

晶体的生长速度取决于扩散速率和结晶速率。

2.6 去除杂质晶体生长过程中会存在一些杂质,如异质原子或离子。

这些杂质会影响晶体的纯度和性能。

因此,在晶体生长结束后,需要进行杂质的去除和晶体的后处理,以提高晶体的质量。

三、晶体生长技术半导体制造工艺中有多种晶体生长技术,常见的包括单晶生长和多晶生长两种。

3.1 单晶生长单晶生长是将晶体在基底上沿特定方向生长,并形成完整的单晶结构。

半导体材料与工艺之 晶体生长原理

半导体材料与工艺之 晶体生长原理
半导体材料制备概述
晶体生长原理
1
1
晶体生长作为一种相变过程大体分为3类:
(1)固相生长:即物态没有变化,仅有晶格结构发生变化的 相变过程。譬如,离子注入后变成非晶态的注入层在 退火过程中再结晶的过程,具有两种以上同质异构体 的晶体在适当条件下的晶型转变过程等等。
2
(2)液相生长:伴随在液-固相变过程中的结晶过程,包括从 溶液中生长晶体(通常是薄层)的液相外延过程和从熔体中 生长晶体的正常凝固过程和区域熔炼过程。例如。GaAs衬 底上的GaAlAs液相外延和用直拉法生长硅单晶等。 (3)气相生长:伴随在气-固相变过程中的结晶过程,包括晶 体薄膜的气相外延生长过程和利用升华法生长难熔晶体的 过程。例如,SiH4生长硅薄膜的外延过程和碳化硅块状晶 体的生长过程等。
17
8.1.1.3 结晶的微观过程
无论是非金属还是金属,结晶过程都是形核与长大的过 程。液态金属结晶时,首先形成一些微小而稳定的晶体, 它们就是晶体长大的核心,故称为晶核。这些晶核逐渐 长大,在先形成的晶核长大过程中,又有新的晶核形成, 直至液态金属全部消失。 由于每个晶核的晶体学位向不同,在结晶完成之后,由 一个晶核长成的一部分晶体,其位向相同,形成一个小 单元,这就是晶粒。晶粒与晶粒的交界面称为晶界。因 此,在一般结晶条件下,都得到由很多晶粒组成的多晶 体。如果要得到单晶体,就必须采取措施,保证结晶过 程是由一个晶粒长大而成。
11
气相生长
在温度为T的气相生长系统中,将气体视为理想气体, 其化学势(对单元系即单位克分子物质的吉布斯自由能 )可用其温度T和压强P表示为
μ g (T, P) =μ 0 g (T) + RTln P
式中,右边第一项表示温度为T的标准态(即压强为1大 气压)理想气体的化学势,R为摩尔气体常数。

半导体晶体生长技术

半导体晶体生长技术

半导体晶体生长技术半导体晶体生长技术是一项重要的技术领域,它在半导体器件制造、光电子器件制造等领域起着关键作用。

本文将从晶体生长方法、生长机理和应用等方面进行介绍。

一、晶体生长方法半导体晶体生长技术包括气相生长、液相生长和固相生长等方法。

其中,气相生长是在特定温度和压力条件下,通过气相中的原料气体在衬底上生长晶体。

液相生长是通过溶液中的溶质在衬底上沉积晶体,常用的方法有溶液浸渍法、溶液蒸发法等。

固相生长是通过固体相变化的方式在衬底上生长晶体,常用的方法有化学蒸发法、分子束外延法等。

二、晶体生长机理半导体晶体的生长机理涉及到热力学和动力学过程。

在热力学方面,晶体生长是由于原子或分子在原料气体或溶液中的过饱和度引起的。

过饱和度越大,晶体生长速度越快。

在动力学方面,晶体生长是由于原子或分子在表面附着、扩散和沉积的过程。

表面附着是原子或分子与晶体表面相互作用并附着在晶体上的过程,扩散是原子或分子在晶体表面上的迁移过程,沉积是原子或分子在晶体表面上的沉积过程。

三、晶体生长的应用半导体晶体生长技术在半导体器件制造、光电子器件制造等领域具有广泛的应用。

在半导体器件制造中,晶体生长技术可以用于生长硅、镓砷化镓、硫化锌等半导体材料,用于制备晶体管、二极管、场效应管等器件。

在光电子器件制造中,晶体生长技术可以用于生长锗、镓砷化镓等光电子材料,用于制备激光器、光电探测器等器件。

此外,晶体生长技术还在生物医学、能源等领域有着重要的应用,如用于生长蛋白质晶体、太阳能电池材料等。

半导体晶体生长技术是一项重要的技术领域,它通过不同的生长方法和生长机理,实现了半导体晶体的高质量生长。

该技术在半导体器件制造、光电子器件制造等领域具有广泛的应用。

随着科学技术的不断发展,半导体晶体生长技术将继续得到改进和创新,为相关领域的发展提供更多可能性。

单晶硅生长技术及氧缺陷控制方法

单晶硅生长技术及氧缺陷控制方法

单晶硅生长技术及氧缺陷控制方法摘要:目前电子信息技术以及光伏技术飞速发展,而作为此类技术的基础材料,硅发挥了重要作用。

从某些角度分析,硅(Si)影响了未来科技的发展,是高薪技术进步的基础,因此国家想要发展自身在能源领域以及高新技术领域实力,必须将Si作为战略资源。

作为功能性材料,Si具有各项异性,所以将Si应用于半导体材料需要将其制成硅单晶,并进一步将其加工成为抛光片。

这样才能将Si应用于CI器件的制造中,目前所生产的电子元件中89%以上的均使用硅单晶。

关键词:单晶硅;生长技术;氧缺陷单晶硅的生产需要以半导体单晶硅切割过程中产生的头尾料、单晶硅碎片以及边皮料作为原料。

而生产所用技术目前主要有两种,一种为直拉法,一种则是悬浮区熔法。

制备单晶硅过程中,依照实际的需要还需要添加必要元素,从而增大、减小材料电阻率,掺杂元素主要为第Ⅲ主族元素以及第Ⅴ主族元素。

完成单晶硅材料的制备后,还需要依照半导体材料的需要进行深加工,深加工程序主要包括切片、打磨以及腐蚀和抛光。

而随着单晶硅的生产技术、加工技术的发展,目前的单晶硅逐步向着300mm以上大直径材料发展,且缺陷含量以及杂志含量更低,材料分布更加均匀,且生产成本不断降低、效率更高。

1 单晶硅的概念半导体材料的电学性质和其他物理性质对晶格缺陷以及所含杂质的种类和数量非常敏感。

制作各种半导体器件,尤其是集成电路和大规模集成电路的制作更需要均匀性好的大直径完善单晶。

目前不仅能制造无位错的完善单晶,而且还可以将位错密度控制在一定范围内[1]。

无位错单晶的直径已达到200mm规格化。

2 单晶硅的生长方法2.1 直拉(CZ)法CZ是单晶硅生长中直拉法的简称,其过程相对较为简单,通过从熔硅中利用旋转籽晶对单晶硅进行提拉制备,该种方法生产成本相对较低,且能够大量生产。

因此该项技术在国内太阳能单晶硅片的生产中广泛贵推广开来,直拉法目前使用的技术工艺核心有磁场直拉法、热场构造以及控制氧浓度等。

半导体材料课件熔体晶体生长 硅、锗单晶生长

半导体材料课件熔体晶体生长 硅、锗单晶生长

≈ θm
1− hr 2 / 2ra
⎜⎛1 ⎝

1 2
hra
⎟⎞ ⎠
⎡ exp⎢−
⎢⎣
⎜⎜⎝⎛
2h ra
⎟⎟⎠⎞1/
2
z
⎤ ⎥ ⎥⎦
吉林大学电子科学与工程学院 半导体材料
3-2 熔体的晶体生长
晶体中温度梯度沿轴向z和沿径向r的分量为
( ) ∂θ
∂z

−θm
⎜⎜⎝⎛
2h ra
⎟⎟⎠⎞1/
2
1− hr 2 / 2ra
⎝ dZ ⎠L
Runyan对一个硅单晶生长系统进行了估算:
fmax=2.96cm/min。
实际测得 fmax=2.53 cm/min。
理论与实验值大体是相符的。 QF = fAdH~ = QC - QL
③ 生长速度f 一定时,A=(QC-QL)/fdH
QC→大 或 QL →小, A →大 (非稳定生长→建立新 的稳态 )
相对温度θ(r.φ.z)=T(r.φ.z)-T0;
T0:环境温度,T:体系温度。
晶体中热场是圆柱对称,与圆周角
φ无关;θ只是半径r和高度z的函
数,热传导方程为
∂ 2θ
∂r 2
+1 r
∂θ
∂r
+
∂ 2θ
∂z 2
=0
吉林大学电子科学与工程学院 半导体材料
l
3-2 熔体的晶体生长
三个边界条件:
l
⑴ 固-液界面上,界面温度为熔点Tm,
3-2 熔体的晶体生长
AK
L
⎜⎛ ⎝
dT dZ
⎟⎞ ⎠L
+
fAd
H~
=

单晶硅的生长方法

单晶硅的生长方法

单晶硅的生长方法1. 直拉法呀,就像我们小时候搭积木一样,一点点把单晶硅拉起来。

你看,在一个高温的坩埚里,把多晶硅熔化,然后用一根细细的籽晶去慢慢往上提拉,哇,单晶硅就这么神奇地生长出来啦!就像盖高楼一样,一层一层的。

2. 区熔法呢,这可有意思了,就好比是在一个局部区域进行一场特殊的“培育”。

把一根多晶硅棒固定,然后用一个加热环在上面移动,加热的地方就熔化啦,慢慢移动过去,单晶硅不就长出来了嘛!是不是很神奇呀!3. 外延生长法,哎呀呀,就好像给单晶硅穿上一件新衣服一样。

在一个已经有单晶硅的衬底上,让气态的反应物沉积上去,形成新的单晶硅层,这就像给它装饰打扮一番呢!4. 气相沉积法,就如同是在空中“变魔术”,让那些气体中的硅原子乖乖地聚集在一起变成单晶硅。

比如把含硅的气体通入反应室,它们就会乖乖地在合适的地方沉积下来成为单晶硅啦,多奇妙呀!5. 分子束外延法,这可是个精细活儿呀,就像一个细心的工匠在雕琢一件艺术品。

通过精确控制分子束的流量和方向,让单晶硅完美地生长出来,厉害吧!6. 固相晶体生长法,这就像是在一个安静的角落默默努力的小伙伴。

在固体状态下,通过一些特殊的条件,让单晶硅悄悄地生长,给人一种很踏实的感觉呢!7. 助熔剂法,好比是有了一个好帮手一样。

加入助熔剂来帮助单晶硅生长,就像有人在旁边助力,让单晶硅长得更好更快呢!8. 水热法,哇哦,就如同在一个温暖的水中“孕育”着单晶硅。

在特定的温度和压力下,让单晶硅在水中生长,是不是很特别呀!9. 熔盐法,这就好像是在一个充满魔法的盐世界里让单晶硅现身。

利用熔盐作为介质,单晶硅就神奇地冒出来啦,真的好有趣呀!10. 等离子体增强化学气相沉积法,就像有一股神奇的力量在推动着单晶硅生长。

利用等离子体来增强反应,让单晶硅快快长大,太有意思啦!我觉得呀,这些单晶硅的生长方法都好神奇,各有各的独特之处,都为我们的科技发展做出了重要贡献呢!。

半导体第三讲-下-单晶硅生长技术

半导体第三讲-下-单晶硅生长技术
单晶棒:据估计,CZ法长晶法约占整个Si单晶市场的82%, 其余采用悬浮区熔法制备。
单晶硅主要生长方法
直拉法生长单晶硅容易控制,产能 比区熔高,会引入杂质,应用于半 导体集成电路、二极管、外延片衬 底20、20/1太1/5阳能电池。
区熔法可生长出纯度高均匀性好的 单晶硅,应用于高电压大功率器件 上,如可控硅、可关断晶闸管。
2020/11/5
单晶硅简介
单晶硅属于立方晶系,金刚石结构,是一种性能优良 的半导体材料。
自上世纪 40 年代起开始使用多晶硅至今,硅材料的生 长技术已趋于完善,并广泛的应用于红外光谱频率光 学元件、红外及 射线探测器、集成电路、太阳能电池 等。
此外,硅没有毒性,且它的原材料石英(SiO2)构成了 大约60%的地壳成分,其原料供给可得到充分保障。
在磁场下生长单晶,当引入磁感应强度达 到一定值时,一切宏观对流均受到洛伦兹 力的作用而被抑制。
2020/11/5
垂直磁场对动量及热量的分布具有双重效 应。垂直磁场强度过大(Ha=1000/2000), 不利于晶体生长。
对无磁场、垂直磁场、勾形磁场作用下熔 体内的传输特性进行比较后发现,随着勾 形磁场强度的增加,熔体内子午面上的流 动减弱,并且紊流强度也相应降低。
区熔硅的常规掺杂方法有硅芯掺杂、表面涂敷 掺杂、气相掺杂等,以气相掺杂最为常用。
2020/11/5
晶体缺陷 区熔硅中的晶体缺陷有位错和漩涡缺陷。
中子嬗变晶体还有辐照缺陷,在纯氢或氩 一氢混合气氛中区熔时,常引起氢致缺陷。
2020/11/5
通过在氩气气氛及真空环境下进行高阻区 熔硅单晶生长试验发现,与在氢气气氛下生长 硅单晶相比,在真空环境下采用较低的晶体生 长速率即可生长出无漩涡缺陷的单晶, 而当晶 体生长速度较高时, 尽管可以消除漩涡, 但单晶 的少子寿命却有明显的下降。在真空中生长无 漩涡缺陷单晶的生长速率,比在氢气气氛下生 长同样直径单晶的生长速率低,但漩涡缺陷对 单晶少子寿命的影响并不明显。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018/11/21
应用简介
2018/11/21
2018/11/21
单晶硅生长的原材料:多晶硅原料的制备 技术

地球上Si材料的含量丰富,它以硅砂的Sia:状态存在 于地球表面。从硅砂中融熔还原形成低纯度的Si是制造 高纯度Si的第一步。将Si仇与焦炭、煤及木屑等混合, 置于石墨电弧炉中在1 SDO℃一2 000℃下加热,将氧化 物分解还原,可以获得纯度为98%的多晶硅。接下来需 将这种多晶硅经一系列的化学过程逐步纯化,其工艺及 化学反应式分别如下:
2018/11/21

பைடு நூலகம்

通过一定的工艺, 在硅片体内形成高密度的 氧沉淀, 而在硅片表面形成一定深度的无缺 陷洁净区,该区域将用于制造器件, 这就是 “内吸杂”工艺。 如果氧浓度太低, 就没有 “内吸杂”作用, 反之如果氧浓度太高, 会使晶片在高温制程 中产生挠曲。 因此适当控制氧析出物的含量对制备性能 优良的单晶硅材料有重大意义
2018/11/21
先进的热场构造


在现代下游IC产业对硅片品质依赖度日益 增加的情况下, 热场的设计要求越来越高 。 好的热场必须能够使炉内的温度分布达到 最佳化,因此一些特殊的热场元件正逐渐 被使用在先进的CZ长晶炉内。
2018/11/21
先进的热场构造
任丙彦等对200mm太 阳能用直拉单晶的生长速 率进行了研究。通过采用 热屏、复合式导流系统及 双加热器改造直拉炉的热 系统进行不同热系统下的 拉晶试验,结果发现平均 拉速可从0.6mm/min提高 到0.9mm/min,提升了 50%。
2018/11/21
与敞开系统相 比,密闭系统界面 附近晶体轴向温度 梯度增大约10℃, 而熔体中轴向温度 梯度降低约5℃。 温度-距离曲线(晶体) 在CZ长晶过程中, 当熔体中的温度梯度 越小而晶体温度梯度 越大时,生长速率越 高。
2018/11/21
温度-距离曲线(熔体)
磁场直拉法



今年来,随着生产规模的扩大,直拉单晶 硅正向大直径发展,投料量急剧增加。由 于大熔体严重的热对流不但影响晶体质量, 甚至会破坏单晶生长。 目前,抑制热对流最常用的方法是在长晶 系统内加装磁场。 在磁场下生长单晶,当引入磁感应强度达 到一定值时,一切宏观对流均受到洛伦兹 力的作用而被抑制。
2018/11/21
直拉法生长单晶硅设备实物图与示意图
直拉法单晶硅生长工艺

直拉法生长单晶硅的制备步骤一般包括: (1)多晶硅的装料和熔化 (2)引晶 (3)缩颈 (4)放肩 (5)等颈 (6)收尾
2018/11/21
直拉法生长单晶硅工艺流程图
2018/11/21


目前, 直拉法生产工艺的研究热点主要有: 先进的热场构造 磁场直拉法 对单晶硅中氧浓度的控制
2018/11/21


垂直磁场对动量及热量的分布具有双重效 应。垂直磁场强度过大(Ha=1000/2000), 不利于晶体生长。 对无磁场、垂直磁场、勾形磁场作用下熔 体内的传输特性进行比较后发现,随着勾 形磁场强度的增加,熔体内子午面上的流 动减弱,并且紊流强度也相应降低。
2018/11/21
2018/11/21
单晶硅简介




单晶硅属于立方晶系,金刚石结构,是一种性能优良 的半导体材料。 自上世纪 40 年代起开始使用多晶硅至今,硅材料的生 长技术已趋于完善,并广泛的应用于红外光谱频率光 学元件、红外及 射线探测器、集成电路、太阳能电池 等。 此外,硅没有毒性,且它的原材料石英(SiO2)构成了 大约60%的地壳成分,其原料供给可得到充分保障。 硅材料的优点及用途决定了它是目前最重要、产量最 大、发展最快、用途最广泛的一种半导体材料。
单晶硅主要生长方法
直拉法生长单晶硅容易控制,产能 比区熔高,会引入杂质,应用于半 导体集成电路、二极管、外延片衬 2018/11/21 底、太阳能电池。
区熔法可生长出纯度高均匀性好的 单晶硅,应用于高电压大功率器件 上,如可控硅、可关断晶闸管。
直拉法生长硅单晶

基本原理:原料装在一个坩埚中,坩埚上 方有一可旋转和升降的籽晶杆,杆的下端 有一夹头,其上捆上一根籽晶。原料被加 热器熔化后,将籽晶插入熔体之中,控制 合适的温度,使之达到过饱和温度,边旋 转边提拉,即可获得所需单晶。因此,单 晶硅生长的驱动力为硅熔体的过饱和。根 据生长晶体不同的要求,加热方式可用高 频或中频感应加热或电阻加热。
2018/11/21
工艺及化学反应式分别如下

1.盐酸化处理
将冶金级Si置于流床反应器中,通人盐酸形成 SiHCI
2.蒸馏提纯
置于蒸馏塔中,通过蒸馏的方法去除其他的反应杂质

3.分解析出多晶硅
将上面已纯化的SiHCl}置于化学气相沉积反应炉中与 氢气,发生还原反应,使得单质Si在炉内高纯度细长 硅棒表面析出,再将此析出物击碎即成块状多晶硅
2018/11/21

Fz单晶的氧含量比直拉硅单晶的氧含量 低2~3个数量级,这一方面不会产生由氧 形成的施主与沉积物,但其机械强度却不 如直拉单晶硅,在器件制备过程中容易产 生翘曲和缺陷。在Fz单晶中掺入氮可提高 其强度。
2018/11/21


工艺特点 大直径生长,比直拉硅单晶困难得多,要克服 的主要问题是熔区的稳定性。这可用“针眼技 术”解决,在FZ法中这是一项重大成就。另一 项重大成就是中子嬗变掺杂。Fz技术无法控制 熔体对流和晶/熔边界层厚度,因而电阻率的 波动比CZ单晶大。高的电阻率不均匀性限制了 大功率整流器和晶闸管的反向击穿电压。利用 中子嬗变掺杂可获得掺杂浓度很均匀的区熔硅 (简称NTD硅),从而促进了大功率电力电子器 件的发展与应用。 区熔硅的常规掺杂方法有硅芯掺杂、表面涂敷 掺杂、气相掺杂等,以气相掺杂最为常用。
2018/11/21
热系统改造示意图



直拉炉中增加热屏后平均拉速明显提高的原因 主要有两个: 一方面,热屏阻止加热器的热量向晶体辐射, 减弱了固液界面热辐射力度; 另一方面,热屏起到了氩气导流作用。在敞开 系统中,氩气流形成漩涡,增加了炉内气氛流 的的不稳定性,氩气对晶体的直接冷却能力弱, 不利于生长出无位错单晶。增加热屏后,漩涡 消失,氩气流速增加,对晶体的直接冷却和溶 液界面吹拂能力加强。
单晶硅生长技术现状
2018/11/21
单晶硅简介



硅(Si)材料是信息技术、电子技术和光伏技术最重 要的基础材料。 从某种意义上讲, 硅是影响国家未来在高新技术和 能源领域实力的战略资源。 作为一种功能材料, 其性能应该是各向异性的, 因 此半导体硅大都应该制备成硅单晶, 并加工成抛光 片, 方可制造IC器件, 超过98%的电子元件都是使 用硅单晶
2018/11/21

熔区悬浮的稳定性很重要,稳定熔区的力 主要是熔体的表面张力和加热线圈提供的 磁浮力,而造成熔区不稳定的力主要是熔 硅的重力和旋转产生的离心力。要熔区稳 定地悬浮在硅棒上,前两种力之和必须大 于后两种力之和。
2018/11/21


由于生长过程中熔区始终处于悬浮状 态,不与任何物质接触,生长过程中的杂质分 凝效应和蒸发效应显著等原因, 因此产品纯 度高, 各项性能好。 但由于其生产成本高, 对设备和技术的 要求较为苛刻, 所以一般仅用于军工。太空 等高要求硅片的生长。
2018/11/21
直拉法单晶硅生长原理示意图
2018/11/21
直拉法单晶硅生长设备
整个生长系统主要包括:
晶体旋转提拉系统 加热系统 坩埚旋转提拉系统 控制系统等


2018/11/21
1 -晶体上升旋转机构; 2 -吊线; 3 -隔离阀; 4 -籽晶夹头; 5 -籽晶; 6 -石英坩埚; 7 -石 墨坩埚; 8 -加热器; 9 -绝缘材料; 10-真空泵; 11 -坩埚上升旋转机构; 12 -控制系统; 13 - 直径控制传感器; 14 -氩气; 15 -硅熔体



Si单晶的生长是将Si原料在1420℃以上的温度下融化, 再小心的控制液态一固态凝固过程,以长出直径4英寸、 5英寸、6英寸或8英寸的单一结晶体。 目前常用的晶体生长技术有:①提拉法,也称CZ法是将 Si原料在石英塔中加热融化,再将籽晶种入液面,通过 旋转和上拉长出单品棒②悬浮区熔法(floating zone technique),即将一多晶硅棒通过环带状加热器使多晶 硅棒产生局部融化现象,再控制凝固过程而生成 单晶棒:据估计,CZ法长晶法约占整个Si单晶市场的82%, 其余采用悬浮区熔法制备。
2018/11/21

对1000 ℃、1100℃退火后的掺氮直拉硅中 氧沉淀的尺寸分布进行的研究表明,随着 退火时间的延长,小尺寸的氧沉淀逐渐减 少,而大尺寸的氧沉淀逐渐增多。氮浓度 越高或退火温度越高, 氧沉淀的熟化过程进 行得越快。
2018/11/21
区熔(FZ )法生长硅单晶


无坩埚悬浮区熔法。 原理:在气氛或真空的炉室中,利用高频 线圈在单晶籽晶和其上方悬挂的多晶硅棒 的接触处产生熔区,然后使熔区向上移动 进行单晶生长。 由于硅熔体完全依靠其表面张力和高频电 磁力的支托,悬浮于多晶棒与单晶之间, 故称为悬浮区熔法。
体生长速度较高时, 尽管可以消除漩涡, 但单晶
的少子寿命却有明显的下降。在真空中生长无 漩涡缺陷单晶的生长速率,比在氢气气氛下生 长同样直径单晶的生长速率低,但漩涡缺陷对 单晶少子寿命的影响并不明显。
2018/11/21

采用钕铁硼永磁体向熔硅所在空间中引入 Cusp磁场后,当坩埚边缘磁感应强度达到 0.15T时,熔硅中杂质输运受到扩散控制, 熔硅自由表面观察到明显的表面张力对流, 单晶硅的纵向、径向电阻率均匀性得到改 善。
相关文档
最新文档