2016温州初中数学竞赛卷

合集下载

浙江省温州地区2016年初中数学竞赛选拔试卷含答案

浙江省温州地区2016年初中数学竞赛选拔试卷含答案

浙江省温州地区2016年初中数学竞赛选拔试卷含答案G FE'C'E A DB C浙江省温州地区2016年初中数学竞赛选拔试卷(检测范围:初中数学竞赛⼤纲要求所有内容)⼀、单项选择题(本⼤题分4⼩题,每题5分,共20分)1、设⼆次函数y 1=a (x -x 1)(x -x 2)(a ≠0,x 1≠x 2)的图象与⼀次函数y 2=dx +e (d ≠0)的图象交于点(x 1,0),若函数y =y 2+y 1的图象与x 轴仅有⼀个交点,则( ). A .a (x 1-x 2)=d B .a (x 2-x 1)=d C .a (x 1-x 2)2=d D .a (x 1+x 2)2=d2、如图,ΔABC 、ΔEFG 均是边长为2的等边三⾓形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当ΔEFG 绕点D 旋转时,线段BM 长的最⼩值是( ). A .32- B .13+ C .2 D .13-3、⼀名模型赛车⼿遥控⼀辆赛车,先前进1m ,然后原地逆时针旋转α(0°<α<180°),被称为⼀次操作.若5次操作后,发现赛车回到出发点,则α为( ). A .72° B .108° C .144° D .以上选项均不正确4、⽅程()y x y xy x +=++322的整数解有( ).A 、3组B 、4组C 、5组D 、6组⼆、填空题(本⼤题分16⼩题,每题5分,共80分)5、如图,在矩形ABCD 中,AB =64,AD =10,连接BD ,DBC ∠的⾓平分线BE 交DC 于点E ,现把BCE ?绕点B 逆时针旋转,记旋转后的BCE ?为''E BC ?,当射线'BE 和射线'BC 都与线段AD 相交时,设交点分别为F ,G ,若BFD ?为等腰三⾓形,则线段DG 长为 .6、如图,在平⾯直⾓坐标系中,点M 是第⼀象限内⼀点,过M 的直线分别交x 轴,y 轴的正半轴于A 、B 两点,且M 是AB 的中点.以OM 为直径的⊙P 分别交x 轴,y 轴于C 、D 两点,交直线AB 于点E (位于点M 右下⽅),连结DE 交OM 于点K .设x OBA =∠tan (0OK=,则y 关于x的函数解析式为 .7、如图,梯形ABCD 的⾯积为34cm 2,AE=BF ,CE 与DF 相交于O ,OCD ?的⾯积为11cm 2,则阴影部分的⾯积为______cm 2.8、如图,四边形ABCD 为正⽅形,⊙O 过正⽅形的顶点第5题第2题第6题第7题A 和对⾓线的交点P ,分别交AB 、AD 于点F 、E .若⊙O 的半径为23,AB =2+1,则EDAE的值为. 9、已知⼀个正三⾓形的三个顶点在⼀个正⽅形的边上移动.如果这个内接三⾓形的最⼤⾯积是3.则该正⽅形的边长为. 10、在四边形ABCD 中,边AB=x ,BC=CD =4,DA =5,它的对⾓线AC=y ,其中x ,y 都是整数,∠BAC =∠DAC ,那么x = .11、如果满⾜ ||x 2-6x -16|-10| = a 的实数x 恰有6个,那么实数a 的值等于.12、⼀批救灾物资分别随16列货车从甲站紧急调运到三百多千⽶以外的⼄站,已知每列货车的平均速度都相等,且记为v千⽶/⼩时.两列货车实在运⾏中的间隔不⼩于225v ??千⽶,这这批救灾物资全部运到⽬的地最快需要6⼩时,那么每隔分钟从甲站向⼄站发⼀趟货车才能使这批货物在6⼩时内运到.13、已知0≤a-b ≤1,1≤a+b ≤4,那么当a -2b 达到最⼤值时,8a +2015b 的值等于 .14、在边长为l 的正⽅形ABCD 中,点M 、N 、O 、P 分别在边AB 、BC 、CD 、DA 上.如果AM=BM ,DP =3AP ,则MN+NO+OP 的最⼩值是 .15、如图,在四边形纸⽚ABCD 中,AB=BC ,AD=CD ,∠A =∠C =90°,∠B =150°,将纸⽚先沿直线BD 对折,再将对折后的图形沿从⼀个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有⼀个是⾯积为2的平⾏四边形,则CD =______________. 16、从1,2,…,2008中选出总和为1009000的1004个数,并且这1004个数中的任意两数之和都不等于2009.则这1004个数的平⽅和为. 17、已知直⾓三⾓形ABC 中,斜边AB 长为2,∠ACB =90°,三⾓形内⼀个动点到三个顶点的距离之和的最⼩值为7,则这个直⾓三⾓形的两个锐⾓⼤⼩分别为,. 18、若实数x 、y 满⾜:=+-13x x y y -+23,则若设p=x+y ,则p max = ,p min = . 19、已知平⾯上有4个圆叠在⼀起形成10个区域,其中在外区域的三个圆每个圆有5个区域,在内区域的圆有7个区域.现将数字0,1,…,9分别放⼊10个区域,且使每个圆都有相同的数字和,则数字和S 的取值范围为.第8题第10题第15题第19题x 1x 2 x 3x 4 x 5 x 6x 7x 8 x 9x 1020、已知∠BAC =90°,四边形ADEF 是正⽅形且边长为1,则CABC AB 111++ 的最⼤值为,简述理由(可列式): .三、分析解答题(本⼤题分5⼩题,分值依次为8分、10分、8分、14分、10分,共50分)21、(8分)⽜顿和莱布尼茨于17世纪分别独⽴地创⽴了积分学.其中有⼀个重要的概念:定积分.我们规定把函数()x f 中区间[]b a ,(包括a ,b )与x轴围成的⾯积记作:()?ba x x f d .(1).试证:()()x x f k x x kf babad d ??=;(2).对于任意实数c b a ,,其中(a <c <b ),是否都有:()()()+=bccabax x f x x f x x f d d d .如没有请举出反例;如有,请证明之.22、(10分)在正⽅形ABCD 的AB 、AD 边各取点K 、N ,使得AK ·AN =2BK ·DN ,线段CK 、CN 交对⾓线BD 于点L 、M ,试证:∠BLK =∠DNC =∠BAM .第20题 ABD E F C23、(8分)设AB ,CD 为圆O 的两直径,过B 作PB 垂直AB ,并与CD 延长线相交于点P ,过P 作直线PE ,与圆分别交于E ,F 两点,连AE ,AF 分别与CD 交于G ,H 两点(如图),求证:OG=OH .24、(14分)如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q ,以AQ 为边作Rt ABQ ?,使∠BAQ =90°,AQ :AB =3:4,作ABQ ?的外接圆O .点C 在点P 右侧,PC =4,过点C 作直线m ⊥l ,过点O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF =23CD ,以DE ,DF 为邻边作矩形DEGF .设AQ =3x . (1)⽤关于x 的代数式表⽰BQ ,DF .(2)当点P 在点A 右侧时,若矩形DEGF 的⾯积等于90,求AP 的长. (3)在点P 的整个运动过程中,①当AP 为何值时,矩形DEGF 是正⽅形?②作直线BG 交⊙O 于点N ,若BN 的弦⼼距为1,求AP 的长.第23题25、(10分)有A、B、C三个村庄,各村分别有适龄⼉童a、b、c⼈.今要建⽴⼀所⼩学,使各村学⽣到校总⾥程最短.试问:若三村⼈数不⼀定相等时学校应建在哪⾥?初中数学竞赛选拔试卷参考答案⼀、单项选择题(本⼤题分4⼩题,每题5分,共20分)题⽬ 1 2 3 4 答案BDDD⼆、填空题(本⼤题分10⼩题,每题5分,共50分)5、17986、212xy -= 7、12 8、222或 9、332+ 10、4或5 11、10 12、12 13、8 14、 48515、 432+或32+16、1351373940 17、30°,60° 18、2213921539++或 19、21≤S ≤25 20、221+;理由:求式=1+BC1,⼜EFC BDE ??∽?BD ·CF =1,BC 2≥2+2BD ·CF +CF BD ?4=8∴计算可得为221+三、分析解答题(本⼤题分5⼩题,分值依次为8分、10分、14分、10分,共50分)21、(8分)【解】(暂⽆解答,征求答案) 22、(10分)【解】连结KN 、KM ,将NDC ?绕点C 顺时针旋转90°得EBC ?.AB=AD ?AK+BK=AN+DN ?(AK-AN )2=(DN-BK )2AK 2+AN 2-2AK ·AN =DN 2+BK 2-2ND ·BK (两边同加2AK ·AN )AK 2+AN 2=(DN +BK )2(由AK ·AN =2BK ·DN 可知),结合图可知NK 2=KE 2 ∴EKC NKC ??∽(SSS )∴∠DNC =∠KEC =∠KNC ,且∠KCN =45° ∴B 、C 、M 、K 四点共圆(∠KBN =45°) ∴KM ⊥CN ,∴A 、K 、M 、N 四点共圆∴∠KAM =∠KNM =∠DNC ,⼜∠MDN =45°=∠KCN ∴N 、L 、C 、D 四点共圆,∴∠DNC =∠DLC =∠KLB ∴∠DNC =∠KAM =∠KLB (即∠BLK =∠DNC =∠BAM )23、(8分)【解】24、(14分)【解】23、第23题解25、(10分)【解】(I)当三村⼈数相等时,分以下两种情形(如图):(1)ABC中最⼤⾓⼤于120°,不妨令∠A≥120°,则学校应建在A村;(2)ABC中最⼤⾓⼩于120°,则学校应建在X点(此点到三边的张⾓相等,亦称ABC的费马点) (II)当三村⼈数不⼀定相等时,则学校所在地X,可通过物理学的模拟⽅法求出:在平⾯上,⽤三点A、B、C模拟三村,⽤重物a、b、c模拟相应各村⼈数,并⽤细线通过滑轮连接于X点.当出现平衡时,平衡点X就是学校该建的地⽅.由静⼒学势能原理可知:AX·a+BX·b+CX·c达最⼩值,即各村分别有适龄⼉童到校总⾥程最短.当a=b=c时,AX、BX、CX三⽅向拉⼒ABC (1)XABC(2)相等且平衡.由对称关系,⽴得:∠AXB=∠BXC=∠CXA=90°.。

浙江省温州市龙湾区永中中学2016届九年级12月月考数学试题(原卷版)

浙江省温州市龙湾区永中中学2016届九年级12月月考数学试题(原卷版)

2015学年第一学期九年级三校联考数学试卷一、选择题(每小题4分,共40分)1. 已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是( )A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断2. 抛物线的顶点坐标是()A. (3, -5)B. (-3, 5)C. (3, 5)D. (-3, -5)3. 若,则的值为()A. 1B.C.D.4. 小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A. B. C. 1 D.5. 如图,在△ABC中,DE∥BC,AD:DB=1:2,BC=2,那么DE=()A. B. C. D.6. 如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A. ∠ABP=∠CB. ∠APB=∠ABCC. =D. =7. 如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S△BAC的值为()...A. B. C. D.8. 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为( )A. 50°B. 130°C. 100°D. 80°9. 如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B. C. D.10. 如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点 E,AB=6,AD=5,则AE的长为( )A. 2.5B. 2.8C. 3D. 3.2二、填空题(每小题5分,共30分)11. 已知线段a=2,b=8,则a,b的比例中项是__.12. 如果一个正多边形的内角是140°,则它是正___边形.13. 如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是_____.14. 如图,△ABC内接于⊙O,∠C=45º,AB=2,则⊙O的半径为______.15. 如图,MN是半径为2的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为_____。

2016年浙江省温州市中考试题数学

2016年浙江省温州市中考试题数学

2016年浙江省温州市中考数学试卷一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合 题意的,请把正确的选项填在题后的括号内)1 •计算(+5) + (- 2)的结果是()A • 7B • - 7C • 3D • - 32•如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不 含后一个边界值)•由图可知,人数最多的一组是( ) 3•三本相同的书本叠成如图所示的几何体,它的主视图是( )A • - 3B • - 2C • 0D • 2 3个红球和5个白球,它们除颜色外都相同•从袋 ) 7 •六边形的内角和是( ) A • 540 °B • 720 °C • 900 °D • 10808 •如图,一直线与两坐标轴的正半轴分别交于 A , B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为 10,则该直线的函 A • B •亠厂7,甲数是乙数的2倍•设甲数为 x ,乙数为y ,根据题意,列方 Bb y则x 的值是( )D • 8〜10小时主视左向4 •已知甲、乙两数的和是程组正确的是( ) X = 25 •若分式〒厂的值为0,C •代円D • 6 • 一个不透明的袋中,装有2个黄球、 中任意摸出一个球,是白球的概率是(数表达式是()A . c >a > bB . b >a >cC . c >b >aD . b >c >a10. 如图,在 △ ABC 中,/ ACB=90° , AC=4 , BC=2 . P 是 AB 边上一动点,PD 丄 AC 于点 D ,点E 在P 的右侧,且PE=1,连结CE . P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动•在整个运动过程中,图中阴影部分面积 S 1+S 2的大小变化情况是( )A .一直减小B .一直不变C .先减小后增大D .先增大后减小 二、填空题(共 6小题,每小题5分,满分30分)11. 因式分解:a 2 - 3a= ____________ .12. ____________________ 某小组6名同学的体育成绩(满分 40分)分别为:36, 40, 38, 38, 32, 35,这组数 据的中位数是 ___ 分.[好2尸513 .方程组(戈耳―巧=丫的解是 _____________ .14. _______________________________________ 如图,将△ ABC 绕点C 按顺时针方向旋转至 △ A B',使点A'落在BC 的延长线上.已 知 / A=27° , / B=40°,贝U / ACB = 度.A . y=x+5B . y=x+10C . 9•如图,一张三角形纸片 第一次使点A 落在C 处;y= - x+5 D . y= - x+10ABC ,其中/ C=90° AC=4 , BC=3 •现小林将纸片做三次折叠: 将纸片展平做第二次折叠,使点 B 落在C 处;再将纸片展平做第 a, b , c ,贝U a , b , c 的大小关 三次折叠,使点 A 落在B 处.这三次折叠的折痕长依次记为系疋15.七巧板是我们祖先的一项卓越创造, 被誉为 东方魔板”小明利用七巧板(如图1所示) 中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是 cm •16•如图,点A , B 在反比例函数 y 丄(k >0)的图象上, D 分别在x 轴的正、负半轴上, CD=k ,已知AB=2AC , E 是AB 的中点,且△ BCE 的面积 是厶ADE 的面积的2倍,贝U k 的值是 _______________________ •三、解答题(共8小题,满分80分)17.( 1)计算:.…I + (- 3) 2-(卜珂-1)(2)化简:(2+m ) (2 - m ) +m ( m - 1).18 •为了解学生对 垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统 计图,其中统计图中没有标注相应人数的百分比•请根据统计图回答下列问题:(1 )求 非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对 垃圾分类”知识达到 非常了解”和 比较了解”程 度的学生共有多少人?某学应学埜垃圾分类知识了翳程度 的绒计图.4非常了無 2比较了馨 C 基本了解 D 不大了弊19•如图,E 是?ABCD 的边CD 的中点,延长 AE 交BC 的延长线于点F . (1) 求证:△ ADE ◎△ FCE • (2) 若/ BAF=90 , BC=5 , EF=3,求 CD 的长.AC 丄x 轴,BD 丄x 轴,垂足C , D C144 W8 6JA, B, P都在格点上•请按要求画出以AB为边的格点四边形, 使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个?ABCD •(2)在图乙中画出一个四边形ABCD,使/ D=90,且/ 2 90° (注:图甲、乙在答题纸上)21. 如图,在△ ABC中,/ C=90°, D是BC边上一点,以DB为直径的O O经过AB的中点E,交AD的延长线于点F,连结EF .(1)求证:/仁/ F .22. 有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克) 152530千克数404020(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?23. 如图,抛物线y=x2- mx - 3 ( m> 0)交y轴于点C, CA丄y轴,交抛物线于点A,点B 在抛物线上,且在第一象限内,BE丄y轴,交y轴于点E,交AO的延长线于点D, BE=2AC .(1)用含m的代数式表示BE的长.(2)当m= .「;时,判断点D是否落在抛物线上,并说明理由.(3)若AG // y轴,交OB于点F,交BD于点G.①若△ DOE与厶BGF的面积相等,求m的值.②连结AE,交OB于点皿,若厶AMF与厶BGF的面积相等,则m的值是__________________ .V.* J§r r C24. 如图,在射线BA , BC, AD , CD 围成的菱形ABCD 中,/ ABC=60°, AB=6 :';, O 是射线BD上一点,O O与BA , BC都相切,与BO的延长线交于点M .过M作EF丄BD 交线段BA (或射线AD )于点E,交线段BC (或射线CD)于点F.以EF为边作矩形EFGH , 点G, H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM .(2)设EF> HE,当矩形EFGH的面积为24. 一;时,求O O的半径.(3)当HE或HG与O O相切时,求出所有满足条件的BO的长.2016年浙江省温州市中考数学试卷参考答案与试题解析一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合 题意的,请把正确的选项填在题后的括号内)1 •计算(+5) + (- 2)的结果是( )A • 7B • - 7C • 3D • - 3【考点】有理数的加法.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:(+5) + (- 2),=+ ( 5-2),=3 •故选C2 •如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不 含后一个边界值)•由图可知,人数最多的一组是( )【考点】 频数(率)分布直方图.【分析】根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【解答】 解:由条形统计图可得,人数最多的一组是 4〜6小时,频数为22 ,故选B •3•三本相同的书本叠成如图所示的几何体,它的主视图是( )【考点】简单组合体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是D • 8〜10小时主视左向f2x+y=7lv=2x【考点】由实际问题抽象出二元一次方程组.【分析】 根据题意可得等量关系: ①甲数+乙数=7,②甲数=乙数X2,根据等量关系列出方 程组即可.【解答】 解:设甲数为x ,乙数为y ,根据题意, 可列方程组,得:故选:A .K = 25.若分式 一^的值为0,则x 的值是()A . - 3B . - 2C . 0D . 2【考点】分式的值为零的条件.【分析】 直接利用分式的值为 0,则分子为0,进而求出答案. K 2【解答】解:•••分式• 的值为0,••• x - 2=0,/• x=2 .故选:D .【分析】由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.【解答】 解:•••从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可 能结果,其中摸出的球是白球的结果有 5种,•••从袋中任意摸出一个球,是白球的概率是 故选:A .7.六边形的内角和是( ) A . 540 °B . 720 °C . 900 °D . 1080 ° 5 1 10|_ ■2故选:B .4 •已知甲、乙两数的和是 7,甲数是乙数的2倍.设甲数为 x ,乙数为y ,根据题意,列方 p^y=7|y=2x6. 一个不透明的袋中,装有 2个黄球、 3个红球和5个白球,它们除颜色外都相同.从袋) 程组正确的是( )中任意摸出一个球,是白球的概率是(【考点】概率公式.【考点】多边形内角与外角.【分析】多边形内角和定理:n变形的内角和等于(n - 2)X180° (n》3,且n为整数),据此计算可得.【解答】 解:由内角和公式可得:(6 - 2) X180°=720O , 故选:B .8•如图,一直线与两坐标轴的正半轴分别交于 A , B 两点,P 是线段AB 上任意一点(不 包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函A . y=x+5B . y=x+10C . y= - x+5D . y= - x+10【考点】待定系数法求一次函数解析式;矩形的性质. 【分析】设P 点坐标为(x , y ),由坐标的意义可知 PC=x , PD=y ,根据题意可得到 x 、y 之 间的关系式,可得出答案.【解答】解:设P 点坐标为(x , y ),如图,过P 点分别作PD 丄x 轴,PC 丄y 轴,垂足分别为 D 、C , ••• P 点在第一象限,/• PD=y , PC=x ,•••矩形PDOC 的周长为10,••• 2 (x+y ) =10 ,••• x+y=5,即 y= - x+5 ,故选C .9 .如图,一张三角形纸片 ABC ,其中/ C=90° , AC=4 , 第一次使点A 落在C 处;将纸片展平做第二次折叠,使点 三次折叠,使点 A 落在B 处.这三次折叠的折痕长依次记为 系是A . BC=3 .现小林将纸片c>a> b B. b>a>c C. c>b>a D. b>c>a【考点】翻折变换(折叠问题).【分析】(1 )图1,根据折叠得:DE是线段AC的垂直平分线,由中位线定理的推论可知: DE是厶ABC的中位线,得出DE的长,即a的长;(2)图2,同理可得:MN是厶ABC的中位线,得出MN的长,即b的长;(3)图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ ACB AGH,利用比例式可求GH的长,即c的长.【解答】解:第一次折叠如图1,折痕为DE,由折叠得:AE=n g,DE丄AC•••/ ACB=90••• DE // BC:a=DE丄BC丄金亠第二次折叠如图2,折痕为MN ,由折叠得:BN=NC=』BC=1 X3=:, MN 丄BC•••/ ACB=90•MN // AC•b=MN=丄人。

2016年全国初中数学联合竞赛试题及详细解答(含一试二试)

2016年全国初中数学联合竞赛试题及详细解答(含一试二试)

2016年全国初中数学联合竞赛试题第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.) 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知23t =-a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ) .A 12.B 3.C 1 .D 3 2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种 3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858 .B 6860 .C 9260 .D 9262 3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab = ( ).A 0 .B 14 .C 34- .D 2-4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为 ( ).A 12 .B 15 .C 16 .D 185.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 3.B 5.C 22 .D 126.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =则AM = .2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 .3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O e 交于点N .证明:FN DE =.(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++=求222222()()()a ab b b bc c c ca a ++++++的值.三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.2016年全国初中数学联合竞赛试题详解 第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分. 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知t =a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ).A 12.B .C 1 .D 【答案】A .【解析】22,t ==+<<Q 324,∴<+< 即34,t <<3 1.a t ∴=-=又221,t -=---<-423,∴-<-<-(4)2b t ∴=---=11211,2222b a ∴-==-=故选A .2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种【答案】C .【解析】设购买三种图书的数量分别为,,,x y z 则30101520500x y z x y z ++=⎧⎨++=⎩,即30341002y z x y z x +=-⎧⎨+=-⎩,解得20210y xz x=-⎧⎨=+⎩ 依题意得,,,x y z 为自然数(非负整数),故010,x ≤≤x 有11种可能的取值(分别为0,1,2,,9,10)L ,对于每一个x 值,y 和z 都有唯一的值(自然数)相对应. 即不同的购书方案共有11种,故选C .3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858 .B 6860 .C 9260 .D 9262 【答案】B .【解析】[]3322(21)(21)(21)(21)(21)(21)(21)(21)k k k k k k k k ⎡⎤+--=+--+++-+-⎣⎦22(121)k =+ (其中k 为非负整数),由22(121)2016k +≤得,9k ≤0,1,2,,8,9k ∴=L ,即得所有不超过2016的“和谐数”,它们的和为333333333331(1)(31)(53)(1715)(1917)1916860.⎡⎤--+-+-++-+-=+=⎣⎦L 故选B . 3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab =( ) .A 0 .B 14 .C 34- .D 2- 【答案】B .【解析】依题意知0,0,10,2ba ab a<-<++= 故0,b < 且1b a =--, (1)21a b a a a -=---=+,于是10,a -<< 1211a ∴-<+<又a b -为整数,210,a ∴+= 故1,2a b =-=14ab =,故选B . 4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为( ).A 12 .B 15 .C 16 .D 18【解析】设,OC x =则2,OA OD x ==+OD AB ⊥Q 于,C 14,2AC CB AB ∴=== 在Rt OAC ∆中,222,OC AC OA +=即2224(2),x x +=+解得3x =,即3OC = (第4题答案图)OC Q 为ABE ∆的中位线,2 6.BE OC ∴== AE Q 是O e 的直径,90,B ∴∠=o 114612.22BCE S CB BE ∆∴=⋅=⨯⨯= 故选A .5.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 3.B 5.C 2 .D 12(第5题答案图)【答案】D . 【解析】过点A 作AH BD ⊥于点,H 则AMH ∆~,CMD ∆,AH AMCD CM∴=1,CD =Q,AMAHCM ∴=设,AM x = 则,CM x AH =∴=在Rt ABM ∆中,BM == 则AB AMAH BM⋅===显然0x ≠,化简整理得22100x -+=解得2x =(x =,故2CM =在Rt CDM ∆中,12DM ==,故选D . 6.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1【答案】C .【解析】22(23)(23)(1)34232M xy y x z xy y x x y x xy y x y =++=++--=---++222211122332222y x y x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+--++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦222211113322222244y x x x y x x ⎛⎫⎛⎫⎛⎫=-+--++=-+---+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当1,02x y ==时,M 取等号,故max 34M =,故选C . 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .【答案】322⎛⎫⎪ ⎪⎝⎭. 【解析】如图,过点C 作CD AB ⊥于点D . 在Rt ACB ∆中,cos 33BC AB ABC =⋅∠= 在Rt BCD ∆中,33sin 2CD BC B =⋅=(第1题答案图) 9cos ,2BD BC B =⋅=32AD AB BD ∴=-=,设33,C m A n ⎛⎛ ⎝⎭⎝⎭, 依题意知0,n m >>故33,CD n m AD =-=3323332n m mn ⎧-=⎪⎪-=⎩ 解得323m n ⎧=⎪⎨⎪=⎩,故点C 的坐标为322⎛⎫ ⎪ ⎪⎝⎭. 1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,3AD =则AM = .【答案】2.【解析】(第1题答案图1 ) ( 第1题答案图2)依题意得BAD DAM MAC ∠=∠=∠,090,ADB ADC ∠=∠= 故ABC ACB ∠≠∠. (1)若ABC ACB ∠>∠时,如答案图1所示,ADM ∆≌,ADB ∆1,2BD DM CM ∴== 又AM 平分,DAC ∠ 1,2AD DM AC CM ∴==在Rt DAC ∆中,即1cos ,2DAC ∠= 060,DAC ∴∠= 从而0090,30BAC ACD ∠=∠=.在Rt ADC ∆中,tan 3tan 603,CD AD DAC =⋅∠==o 1.DM =在Rt ADM ∆中,222AM AD DM =+=.(2)若ABC ACB ∠<∠时,如答案图2所示.同理可得2AM =.综上所述,2AM =. 2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .【答案】126o.【解析】设,OCD ADO αβ∠=∠=,CA Q 平分BCD ∠,OCD OCB α∴∠=∠=,BC Q ∥AD ,,ADO OBC DAO OCB βα∴∠=∠=∠=∠=, (第2题答案图) OCD DAO α∴∠=∠=,AD CD ∴=,Q ,CD AO =AD AO ∴=,ADO AOD BOC OBC β∴∠=∠=∠=∠=,OC BC ∴=, Q ,BC OD =,OC OD ∴=ODC OCD α∴∠=∠=,180BOC ODC OCD BOC OBC OCB ∠=∠+∠∠+∠+∠=o Q2,2180,βααβ∴=+=o解得36,72αβ==o o ,72DBC BCD ∴∠=∠=o,,BD CD AD ∴==18054,2ABD BAD β-∴∠=∠==o o 故126ABC ABD DBC ∠=∠+∠=o.3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 . 【答案】167334.【解析】设两个三位数分别为,x y ,则10003x y xy +=,①31000(31000),y xy x y x ∴=-=-故y 是x 的正整数倍,不妨设y tx =(t 为正整数),代入①得10003,t tx +=1000,3t x t +∴=x Q 是三位数,10001003tx t+∴=≥,解得 1000,299t ≤t Q 为正整数,t ∴的可能取值为1,2,3.验证可知,只有2t =符合,此时 167,334.x y == 故所求的六位数为167334.3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 【答案】1007.【解析】由340q p --=得,34,p q =-2224(34)343,33pq q q q q q ⎛⎫∴=-=-=-- ⎪⎝⎭因q 为质数,故pq 的值随着质数q 的增大而增大,当且仅当q 取得最大值时,pq 取得最大值.又111p q +<,34111,q q ∴-+<3284q ∴<,因q 为质数,故q 的可能取值为 23,19,17,13,11,7,5,3,2,但23q =时,3465513p q =-==⨯不是质数,舍去.当19q =时,3453p q =-=恰为质数.故max max 19,()53191007q pq ==⨯=.4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 . 【答案】10.【解析】(依据5个1分布的列数的不同情形进行讨论,确定M 的最大值.(1)若5个1分布在同一列,则5M =;(2)若5个1分布在两列中,则由题意知这两列中出现的最大数至多为3,故 2515320M ≤⨯+⨯=,故10M ≤;(3) 若5个1分布在三列中,则由题意知这三列中出现的最大数至多为3,故 351525330M ≤⨯+⨯+⨯=,故10M ≤;(4) 若5个1分布在至少四列中,则其中某一列至少有一个数大于3,这与已知矛盾. 综上所述,10.M ≤另一方面,如下表的例子说明M 可以取到10.故M 的最大值为10.第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.【解析】解:因,a b 为正整数,要使得22324M a ab b =---的值为正整数,则有2a ≥.当2a =时,b 只能为1,此时 4.M =故M 能取到的最小正整数值不超过4.当3a =时,b 只能为1或2.若1,18b M ==;若2b =,则7M =.当4a =时,b 只能为1或2或3.若1,38b M ==;若2,24b M ==;若3,b =则2M =. (下面考虑:22324M a ab b =---的值能否为1?)(反证法)假设1M =,则223241a ab b ---=,即22325a ab b -=+, 2(3)25a a b b -=+ ①因b 为正整数,故25b +为奇数,从而a 为奇数,b 为偶数,不妨设21,2a m b n =+=,其中,m n 均为正整数,则22222(3)(21)3(21)(2)4(332)3a a b m m n m m mn n ⎡⎤-=++-=+--+⎣⎦即2(3)a a b -被4除所得余数为3,而252(2)141b n n +=+=+被4除所得余数为1,故①式不可能成立,故1M ≠.因此,M 能取到的最小正整数值为2.二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O e 交于点N .证明:FN DE =.(第2(A)题答案图)【证明】:连接BC 、.BN AB Q 为O e 的直径,CD AB ⊥于点D90ACB ANB ADC ∴∠=∠=∠=o,,CAB DAC ACB ADC ∠=∠∠=∠Q ,ACB ADC ∴∆∆∽,AC AB AD AC∴=2AC AD AB ∴=⋅ 由四边形DEFM 是正方形及CD AB ⊥于点D 可知:点M 在CD 上,DE DM EF MF ===,,NAB DAM ANB ADM ∠=∠∠=∠Q ,ANB ADM ∴∆∆∽,AN AB AD AM∴=,AD AB AM AN ∴⋅=⋅2,AC AM AN ∴=⋅ ,AE AC =Q 2AE AM AN ∴=⋅以点F 为圆心、FE 为半径作,F e 与直线AM 交于另一点P ,则F e 与AB 切于点E ,即AE 是F e 的切线,直线AMP 是F e 的割线,故由切割线定理得2AE AM AP =⋅AN AP ∴=,即点N 与点P 重合,点N 在F e 上,FN FE DE ∴==.(注:上述最后一段得证明用了“同一法”)(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++= 求222222()()()a ab b b bc c c ca a ++++++的值. 【解析】由已知得22221()()52ab bc ca a b c a b c ⎡⎤++=++-++=⎣⎦ 由恒等式3332223()()a b c abc a b c a b c ab bc ca ++-=++++---得,4735(155),abc -=⨯-1abc ∴=-又22()()()5(5)55(1)a ab b a b c a b ab bc ca c c ++=+++-++=--=- 同理可得22225(4),5(4)b bc c a c ca a b ++=-++=-∴原式=[]35(4)(4)(4)1256416()4()a b c a b c ab bc ca abc ---=-+++++- 125[6416545(1)]625.=⨯-⨯+⨯--=【注:恒等式32()()()()()t a t b t c t a b c t ab bc ca t abc ---=-+++++-】三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且 222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= . (3) 求111xy yz zx++的值. (4) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.【解析】(1)解:由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=, 去分母得222222(1)(1)(1((1)(1)(1)4z x y x y z y z x xyz --+--+--=,222222222222()()()3()0,x y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦ ()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=,∴[()](1)0xyz x y z xy yz zx -++++-=,1,10xy yz zx xy yz zx ++≠∴++-≠Q ,()0,xyz x y z ∴-++=xyz x y z ∴=++,∴原式= 1.x y z xyz++= (2)证明:由(1)得计算过程知xyz x y z ∴=++,又Q ,,x y z 为正实数,9()()()8()x y y z z x xyz xy yz zx ∴+++-++9()()()8()()x y y z z x x y z xy yz zx =+++-++++222222()()()6x y z y z x z x y xyz =+++++-222()()()0.x y z y z x z x y =-+-+-≥∴9()()()8()x y y z z x xyz xy yz zx +++≥++.【注:222222()()()2x y y z z x x y xy y z yz z x zx xyz +++=++++++ 222222()()()2x y z y z x z x y xyz =++++++222222()()3x y z xy yz zx x y xy y z yz z x zx xyz ++++=++++++222222()()()3x y z y z x z x y xyz =++++++】(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.(第3(B )题答案图)【解析】如图,连接,,AE ED CF ,则,AB AC =Q ABD ACB ∴∠=∠Q 点C 关于直线AD 的对称点为点E ,,BED BCF AED ACD ACB ∴∠=∠∠=∠=∠ ,ABD AED ∴∠=∠,,,A E B D ∴四点共圆,BED BAD ∴∠=∠(同弧所对得圆周角相等) BAD BCF ∴∠=∠,,,,A B F C ∴四点共圆,AFB ACB ABD ∴∠=∠=∠,AFB ABD ∴∆∆∽,AB AF AD AB ∴=225 5.AD AF AB ∴⋅===(注:若共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆,也可以说成:若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆)------------------------------------------------------------------------ 怎样才能学好数学一、把握好课堂的每一分钟如今的小学数学教师,都比较重视课堂教学的效益,所以,老师最期盼的事情就是:学生能够专心听讲,眼睛时刻盯在老师身上,或者盯在黑板上。

浙江省温州市2016年中考数学真题试题(含解析)

浙江省温州市2016年中考数学真题试题(含解析)

2016 年浙江省温州市中考数学试卷一、(共 10 小题,每题 4 分,满分 40 分,在每题给出的四个选项中,只有一个是切合题意的,请把正确的选项填在题后的括号内))1.计算( +5) +(﹣ 2)的结果是(A.7 B.﹣ 7 C.3 D.﹣32.如图是九(1)班 45 名同学每周课外阅读时间的频数直方图(每组含前一个界限值,不含后一个界限值).由图可知,人数最多的一组是()A.2~4 小时 B.4~6 小时 C. 6~8 小时 D.8~10 小时3.三真同样的书籍叠成如下图的几何体,它的主视图是()A. B .C. D .4.已知甲、乙两数的和是7,甲数是乙数的 2 倍.设甲数为x,乙数为 y,依据题意,列方程组正确的是()A. B . C . D .5.若分式的值为 0,则 x 的值是()A.﹣ 3 B.﹣ 2 C.0 D.26.一个不透明的袋中,装有 2 个黄球、 3 个红球和 5 个白球,它们除颜色外都同样.从袋中随意摸出一个球,是白球的概率是()A. B.C.D.7.六边形的内角和是()A.540° B .720° C.900° D. 1080°8.如图,向来线与两坐标轴的正半轴分别交于A,B 两点, P 是线段 AB 上随意一点(不包含端点),过 P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A. y=x+5 B . y=x+10 C .y=﹣ x+5 D . y= ﹣ x+109.如图,一张三角形纸片ABC,此中∠ C=90°, AC=4, BC=3.现小林将纸片做三次折叠:第一次使点 A 落在 C处;将纸片展平做第二次折叠,使点 B 落在 C 处;再将纸片展平做第三次折叠,使点 A 落在 B 处.这三次折叠的折痕长挨次记为 a, b, c,则 a, b,c 的大小关系是()A. c>a> b B . b> a> c C . c> b>a D . b>c> a10.如图,在△ ABC 中,∠ ACB=90°, AC=4,BC=2. P是 AB边上一动点, PD⊥AC 于点 D,点 E 在 P的右边,且 PE=1,连结 CE. P 从点个运动过程中,图中暗影部分面积A 出发,沿AB方向运动,当S1+S2的大小变化状况是(E 抵达点)B 时, P 停止运动.在整A.向来减小 B .向来不变 C .先减小后增大 D .先增大后减小二、填空题(共 6 小题,每题 5 分,满分30 分)212.某小组 6 名同学的体育成绩(满分40 分)分别为:位数是分.36, 40, 38, 38, 32, 35,这组数据的中13.方程组的解是.14.如图,将△ ABC 绕点 C 按顺时针方向旋转至△A′B′C,使点A′落在BC的延伸线上.已知∠A=27°,∠ B=40°,则∠ ACB′=度.15.七巧板是我们先人的一项优秀创建,被誉为“东方魔板”,小明利用七巧板(如图 1 所示)中各板块的边长之间的关系拼成一个凸六边形(如图 2 所示),则该凸六边形的周长是cm.16.如图,点A, B 在反比率函数x 轴的正、负半轴上,CD=k,已知则 k 的值是.y= ( k> 0)的图象上, AC⊥x轴, BD⊥x轴,垂足 C, D 分别在AB=2AC,E 是 AB的中点,且△ BCE 的面积是△ ADE 的面积的2 倍,三、解答题(共8 小题,满分 80 分)17.( 1)计算:+ (﹣ 3)2﹣(﹣1)0.( 2)化简:( 2+m)( 2﹣ m) +m( m﹣ 1).18.为认识学生对“垃圾分类”知识的认识程度,某学校正本校学生进行抽样检查,并绘制统计图,此中统计图中没有标明相应人数的百分比.请依据统计图回答以下问题:( 1)求“特别认识”的人数的百分比.( 2)已知该校共有 1200 名学生,请预计对“垃圾分类”知识达到“特别认识”和“比较认识”程度的学生共有多少人?19.如图, E 是?ABCD的边 CD的中点,延伸AE交 BC的延伸线于点F.(1)求证:△ ADE≌△ FCE.(2)若∠ BAF=90°, BC=5, EF=3,求 CD的长.20.如图,在方格纸中,点 A, B, P 都在格点上.请按要求画出以 AB 为边的格点四边形,使 P 在四边形内部(不包含界限上),且 P 到四边形的两个极点的距离相等.(1)在图甲中画出一个 ?ABCD.(2)在图乙中画出一个四边形ABCD,使∠ D=90°,且∠ A≠90°.(注:图甲、乙在答题纸上)21.如图,在△ ABC 中,∠ C=90°, D 是 BC边上一点,以 DB为直径的⊙O 经过 AB的中点 E,交 AD 的延伸线于点 F,连结 EF.(1)求证:∠ 1=∠F.(2)若 sinB=,EF=2,求CD的长.22.有甲、乙、丙三种糖果混淆而成的什锦糖100 千克,此中各样糖果的单价和千克数如表所示,商家用加权均匀数来确立什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元 / 千克)15千克数40( 1)求该什锦糖的单价.( 2)为了使什锦糖的单价每千克起码降低千克,问此中最多可加入丙种糖果多少千克?253040202 元,商家计划在什锦糖中加入甲、丙两种糖果共10023.如图,抛物线 y=x2﹣ mx﹣ 3( m> 0)交 y 轴于点 C,CA⊥y轴,交抛物线于点 A,点 B 在抛物线上,且在第一象限内, BE⊥y轴,交 y 轴于点 E,交 AO的延伸线于点 D, BE=2AC.(1)用含 m的代数式表示 BE的长.(2)当 m= 时,判断点 D能否落在抛物线上,并说明原因.(3)若 AG∥y轴,交 OB于点 F,交 BD于点 G.①若△ DOE与△ BGF的面积相等,求m的值.②连结 AE,交 OB于点 M,若△ AMF与△ BGF的面积相等,则m的值是.24.如图,在射线 BA, BC, AD, CD围成的菱形 ABCD中,∠ ABC=60°, AB=6 , O是射线 BD上一点,⊙O 与 BA, BC都相切,与 BO的延伸线交于点 M.过 M作 EF⊥BD 交线段 BA(或射线 AD)于点E,交线段 BC(或射线 CD)于点 F.以 EF为边作矩形 EFGH,点 G,H分别在围成菱形的此外两条射线上.(1)求证: BO=2OM.( 2)设 EF> HE,当矩形 EFGH的面积为24时,求⊙O 的半径.( 3)当 HE或 HG与⊙O 相切时,求出全部知足条件的BO的长.2016 年浙江省温州市中考数学试卷参照答案与试题分析一、(共 10 小题,每题 4 分,满分 40 分,在每题给出的四个选项中,只有一个是切合题意的,请把正确的选项填在题后的括号内))1.计算( +5) +(﹣ 2)的结果是(A.7 B.﹣7 C.3 D.﹣3【考点】有理数的加法.【剖析】依占有理数的加法运算法例进行计算即可得解.【解答】解:( +5) +(﹣ 2),=+( 5﹣ 2),=3.应选 C.含后一2.如图是九( 1)班 45 名同学每周课外阅读时间的频数直方图(每组含前一个界限值,不个界限值).由图可知,人数最多的一组是()A.2~4 小时 B.4~6 小时 C. 6~8 小时 D.8~10 小时【考点】频数(率)散布直方图.【剖析】依据条形统计图能够获得哪一组的人数最多,从而能够解答此题.【解答】解:由条形统计图可得,人数最多的一组是4~ 6 小时,频数为22,应选 B.3.三真同样的书籍叠成如下图的几何体,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【剖析】主视图是分别从物体正面看,所获得的图形.【解答】解:察看图形可知,三真同样的书籍叠成如下图的几何体,它的主视图是.应选: B.4.已知甲、乙两数的和是7,甲数是乙数的 2 倍.设甲数为x,乙数为y,依据题意,列方程组正确的是()A. B . C . D .【考点】由实质问题抽象出二元一次方程组.【剖析】依据题意可得等量关系:①甲数+ 乙数 =7,②甲数 =乙数× 2,依据等量关系列出方程组即可.【解答】解:设甲数为x,乙数为y,依据题意,可列方程组,得:,应选: A.5.若分式的值为0,则x的值是()A.﹣ 3 B.﹣ 2 C.0 D.2【考点】分式的值为零的条件.【剖析】直接利用分式的值为0,则分子为0,从而求出答案.【解答】解:∵分式的值为0,∴x﹣ 2=0,∴x=2.应选: D.6.一个不透明的袋中,装有 2 个黄球、 3 个红球和 5 个白球,它们除颜色外都同样.从袋中随意摸出一个球,是白球的概率是()A. B .C. D .【考点】概率公式.【剖析】由题意可得,共有10 可能的结果,此中从口袋中随意摸出一个球是白球的有用概率公式即可求得答案.【解答】解:∵从装有 2 个黄球、 3 个红球和 5 个白球的袋中随意摸出一个球有此中摸出的球是白球的结果有 5 种,5 状况,利10 种等可能结果,∴从袋中随意摸出一个球,是白球的概率是=,应选: A.7.六边形的内角和是()A.540° B .720° C.900° D.1080°【考点】多边形内角与外角.【剖析】多边形内角和定理:n 变形的内角和等于(n﹣ 2)× 180°( n≥3,且算可得.【解答】解:由内角和公式可得:(6﹣2)× 180°=720°,应选: B.n 为整数),据此计8.如图,向来线与两坐标轴的正半轴分别交于A,B 两点,P 是线段AB 上随意一点(不包含端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为 10,则该直线的函数表达式是()A. y=x+5 B . y=x+10 C .y=﹣ x+5 D . y= ﹣ x+10【考点】待定系数法求一次函数分析式;矩形的性质.【剖析】设 P 点坐标为( x, y),由坐标的意义可知 PC=x, PD=y,依据题意可获得 x、 y 之间的关系式,可得出答案.【解答】解:设 P 点坐标为( x, y),如图,过 P 点分别作 PD⊥x轴, PC⊥y轴,垂足分别为 D、C,∵P点在第一象限,∴P D=y, PC=x,∵矩形 PDOC的周长为10,∴2( x+y) =10,∴x+y=5,即 y=﹣ x+5,应选 C.9.如图,一张三角形纸片ABC,此中∠ C=90°, AC=4, BC=3.现小林将纸片做三次折叠:第一次使点 A 落在 C处;将纸片展平做第二次折叠,使点 B 落在 C 处;再将纸片展平做第三次折叠,使点 A 落在 B 处.这三次折叠的折痕长挨次记为 a, b, c,则 a, b,c 的大小关系是()A. c>a> b B . b> a> c C . c> b>a D . b>c> a【考点】翻折变换(折叠问题).【剖析】( 1)图 1,依据折叠得: DE是线段 AC的垂直均分线,由中位线定理的推论可知:DE是△ ABC 的中位线,得出DE的长,即 a 的长;(2)图 2,同理可得: MN是△ ABC的中位线,得出 MN的长,即 b 的长;(3)图 3,依据折叠得: GH是线段 AB的垂直均分线,得出 AG的长,再利用两角对应相等证△ACB∽△ AGH,利用比率式可求GH的长,即c 的长.【解答】解:第一次折叠如图1,折痕为DE,由折叠得: AE=EC= AC= ×4=2,DE⊥AC∵∠ ACB=90°∴DE∥BC∴a=DE= BC= ×3=第二次折叠如图2,折痕为MN,由折叠得: BN=NC= BC= ×3=,MN⊥BC∵∠ ACB=90°∴MN∥AC∴b=MN= AC= ×4=2第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG= AB=×5=,GH⊥AB∴∠ AGH=90°∵∠ A=∠A,∠ AGH=∠ACB∴△ ACB∽△ AGH∴=∴=∴GH=,即c=∵2>>∴b> c> a应选( D)10.如图,在△ ABC 中,∠ ACB=90°, AC=4,BC=2. P是 AB边上一动点, PD⊥AC 于点 D,点 E 在 P的右边,且 PE=1,连结 CE. P 从点个运动过程中,图中暗影部分面积A 出发,沿AB方向运动,当S1+S2的大小变化状况是(E 抵达点)B 时, P 停止运动.在整A.向来减小 B .向来不变 C .先减小后增大 D .先增大后减小【考点】动点问题的函数图象.【剖析】设 PD=x,AB边上的高为 h,想方法求出 AD、h,建立二次函数,利用二次函数的性质解决问题即可.【解答】解:在 RT△ABC中,∵∠ ACB=90°, AC=4, BC=2,∴AB===2,设PD=x,AB边上的高为h,h==,∵PD∥BC,∴=,∴A D=2x, AP= x,∴S1+S2=?2x?x+(2﹣1﹣x)?=x2﹣ 2x+4﹣=( x﹣ 1)2+3﹣,∴当 0< x< 1 时, S1+S2的值随 x 的增大而减小,当 1≤x≤2时, S1+S2的值随 x 的增大而增大.应选 C.二、填空题(共 6 小题,每题 5 分,满分30 分)2【考点】因式分解 - 提公因式法.【剖析】直接把公因式 a 提出来即可.2故答案为: a( a﹣ 3).12.某小组 6 名同学的体育成绩(满分 40 分)分别为: 36, 40, 38, 38, 32, 35,这组数据的中位数是 37 分.【考点】中位数.【剖析】直接利用中位数的定义剖析得出答案.【解答】解:数据按从小到大摆列为:32, 35, 36, 38, 38, 40,则这组数据的中位数是:(36+38)÷ 2=37.故答案为: 37.13.方程组的解是.【考点】二元一次方程组的解.【剖析】因为 y 的系数互为相反数,直接用加减法解答即可.【解答】解:解方程组,①+②,得: 4x=12,解得: x=3,将 x=3 代入①,得: 3+2y=5,解得: y=1,∴,故答案为:.A′B′C,使点A′落在BC的延伸线上.已知14.如图,将△ ABC 绕点 C 按顺时针方向旋转至△∠A=27°,∠ B=40°,则∠ ACB′= 46 度.【考点】旋转的性质.【剖析】先依据三角形外角的性质求出∠ ACA′=67°,再由△ ABC 绕点 C 按顺时针方向旋转至△A′B′C,获得△ ABC≌△ A′B′C,证明∠ BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠ A=27°,∠ B=40°,∴∠ ACA′=∠A+∠B=27°+40°=67°,∵△ ABC绕点 C按顺时针方向旋转至△ A′B′C,∴△ ABC≌△ A′B′C,∴∠ ACB=∠A′CB′,∴∠ ACB﹣∠ B′CA=∠A′CB﹣∠ B′CA,即∠ BCB′=∠ACA′,∴∠ BCB′=67°,∴∠ ACB′=180°∠ ACA′﹣∠ BCB′=180°﹣ 67°﹣67°=46°,故答案为: 46.15.七巧板是我们先人的一项优秀创建,被誉为“东方魔板”,小明利用七巧板(如图各板块的边长之间的关系拼成一个凸六边形(如图 2 所示),则该凸六边形的周长是cm.1 所示)中( 32+16)【考点】七巧板.【剖析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【解答】解:如下图:图形1:边长分别是:16, 8,8;图形 2:边长分别是:16, 8, 8;图形 3:边长分别是:8,4, 4;图形 4:边长是: 4;图形 5:边长分别是:8,4, 4;图形 6:边长分别是: 4 ,8;图形 7:边长分别是:8,8, 8;∴凸六边形的周长 =8+2×8+8+4×4=32+16( cm);故答案为: 32 +16.16.如图,点A, B 在反比率函数y=( k> 0)的图象上,AC⊥x轴, BD⊥x轴,垂足C, D 分别在x 轴的正、负半轴上,则 k 的值是CD=k,已知.AB=2AC,E 是 AB的中点,且△BCE 的面积是△ ADE 的面积的 2 倍,【考点】反比率函数系数k 的几何意义.【剖析】依据三角形面积间的关系找出2S △ABD=S△BAC,设点 A 的坐标为( m,),点B的坐标为(n,),联合 CD=k、面积公式以及 AB=2AC即可得出对于 m、n、k 的三元二次方程组,解方程组即可得出结论.【解答】解:∵E 是 AB的中点,∴S△ABD=2S△ADE,S△BAC=2S△BCE,又∵△ BCE的面积是△ ADE 的面积的 2 倍,∴2S△ABD=S△BAC.设点 A 的坐标为( m,),点B的坐标为(n,),则有,解得:,或(舍去).故答案为:.三、解答题(共8 小题,满分 80 分)17.( 1)计算:+ (﹣ 3)2﹣(﹣1)0.( 2)化简:( 2+m)( 2﹣ m) +m( m﹣ 1).【考点】实数的运算;单项式乘多项式;平方差公式;零指数幂.【剖析】( 1)直接利用二次根式的性质联合零指数幂的性质分别剖析得出答案;( 2)直接利用平方差公式计算,从而去括号得出答案.【解答】解:( 1)原式 =2+9﹣ 1=2+8;(2)(2+m)( 2﹣ m) +m(m﹣ 1)22=4﹣ m+m﹣m=4﹣ m.18.为认识学生对“垃圾分类”知识的认识程度,某学校正本校学生进行抽样检查,并绘制统计图,此中统计图中没有标明相应人数的百分比.请依据统计图回答以下问题:(1)求“特别认识”的人数的百分比.(2)已知该校共有 1200 名学生,请预计对“垃圾分类”知识达到“特别认识”和“比较认识”程度的学生共有多少人?【考点】扇形统计图;用样本预计整体.【剖析】( 1)依据扇形统计图能够求得“特别认识”的人数的百分比;(2)依据扇形统计图能够求得对“垃圾分类”知识达到“特别认识”和“比较认识”程度的学生共有多少人.【解答】解:( 1)由题意可得,“特别认识”的人数的百分比为:,即“特别认识”的人数的百分比为20%;( 2)由题意可得,对“垃圾分类”知识达到“特别认识”和“比较认识”程度的学生共有:1200×=600(人),即对“垃圾分类”知识达到“特别认识”和“比较认识”程度的学生共有600 人.19.如图, E 是?ABCD的边 CD的中点,延伸AE交 BC的延伸线于点F.(1)求证:△ ADE≌△ FCE.(2)若∠ BAF=90°, BC=5, EF=3,求 CD的长.【考点】平行四边形的性质;全等三角形的判断与性质.【剖析】( 1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠ DAE=∠F,∠ D=∠ECF,由AAS证明△ ADE≌△ FCE 即可;(2)由全等三角形的性质得出 AE=EF=3,由平行线的性质证出∠ AED=∠BAF=90°,由勾股定理求出 DE,即可得出 CD的长.【解答】( 1)证明:∵四边形 ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ DAE=∠F,∠ D=∠ECF,∵E是?ABCD的边 CD的中点,∴DE=CE,在△ ADE和△ FCE中,,∴△ ADE≌△ FCE( AAS);(2)解:∵ ADE≌△ FCE,∴AE=EF=3,∵AB∥CD,∴∠ AED=∠BAF=90°,在 ?ABCD中, AD=BC=5,∴DE===4,∴C D=2DE=8.20.如图,在方格纸中,点 A, B, P 都在格点上.请按要求画出以 AB 为边的格点四边形,使 P 在四边形内部(不包含界限上),且 P 到四边形的两个极点的距离相等.(1)在图甲中画出一个 ?ABCD.(2)在图乙中画出一个四边形ABCD,使∠ D=90°,且∠ A≠90°.(注:图甲、乙在答题纸上)【考点】平行四边形的性质.【剖析】( 1)先以点P 为圆心、 PB长为半径作圆,会获得 4 个格点,再选用适合格点,依据平行四边形的判断作出平行四边形即可;( 2)先以点 P 为圆心、 PB 长为半径作圆,会获得8 个格点,再选用适合格点记作点C,再以 AC为直径作圆,该圆与方格网的交点任取一个即为点D,即可得.【解答】解:( 1)如图①:.( 2)如图②,.21.如图,在△ ABC中,∠ C=90°, D 是 BC边上一点,以 DB为直径的⊙O 经过 AB的中点 E,交 AD 的延伸线于点 F,连结 EF.(1)求证:∠ 1=∠F.(2)若 sinB=,EF=2,求CD的长.【考点】圆周角定理;解直角三角形.【剖析】( 1)连结 DE,由 BD是⊙O的直径,获得∠ DEB=90°,因为 E 是 AB的中点,获得DA=DB,依据等腰三角形的性质获得∠1=∠B等量代换即可获得结论;( 2)g 依据等腰三角形的判断定理获得AE=EF=2,推出AB=2AE=4,在Rt△ABC中,依据勾股定理获得BC==8,设CD=x,则AD=BD=8﹣ x,依据勾股定理列方程即可获得结论.【解答】解:( 1)证明:连结DE,∵BD是⊙O的直径,∴∠ DEB=90°,∵E是 AB的中点,∴DA=DB,∴∠ 1=∠B,∵∠ B=∠F,∴∠ 1=∠F;(2)∵∠ 1=∠F,∴AE=EF=2 ,∴AB=2AE=4 ,在 Rt△ABC中, AC=AB?sinB=4,∴BC==8,设 CD=x,则 AD=BD=8﹣ x,222∵AC+CD=AD,即42+x2=(8﹣x)2,∴x=3,即 CD=3.22.有甲、乙、丙三种糖果混淆而成的什锦糖100 千克,此中各样糖果的单价和千克数如表所示,商家用加权均匀数来确立什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元 / 千克)15千克数40( 1)求该什锦糖的单价.( 2)为了使什锦糖的单价每千克起码降低千克,问此中最多可加入丙种糖果多少千克?253040202 元,商家计划在什锦糖中加入甲、丙两种糖果共100【考点】一元一次不等式的应用;加权均匀数.【剖析】( 1)依据加权均匀数的计算公式和三种糖果的单价和克数,列出算式进行计算即可;( 2)设加入丙种糖果x 千克,则加入甲种糖果千克,依据商家计划在什锦糖中加入甲、丙两种糖果共 100 千克和锦糖的单价每千克起码降低 2 元,列出不等式进行求解即可.【解答】解:( 1)依据题意得:=22(元 / 千克).答:该什锦糖的单价是22 元/ 千克;( 2)设加入丙种糖果x 千克,则加入甲种糖果千克,依据题意得:≤20,解得: x≤20.答:加入丙种糖果20 千克.23.如图,抛物线 y=x2﹣ mx﹣ 3( m> 0)交 y 轴于点 C,CA⊥y轴,交抛物线于点 A,点 B 在抛物线上,且在第一象限内, BE⊥y轴,交 y 轴于点 E,交 AO的延伸线于点 D, BE=2AC.(1)用含 m的代数式表示 BE的长.(2)当 m= 时,判断点 D能否落在抛物线上,并说明原因.(3)若 AG∥y轴,交 OB于点 F,交 BD于点 G.①若△ DOE与△ BGF的面积相等,求m的值.②连结 AE,交 OB于点 M,若△ AMF与△ BGF的面积相等,则m的值是.【考点】二次函数综合题.【剖析】( 1)依据 A、 C两点纵坐标同样,求出点 A 横坐标即可解决问题.(2)求出点 D坐标,而后判断即可.(3)①第一依据 EO=2FG,证明 BG=2DE,列出方程即可解决问题.②求出直线 AE、BO的分析式,求出交点 M的横坐标,列出方程即可解决问题.【解答】解:( 1)∵ C( 0,﹣ 3),AC⊥OC,∴点 A 纵坐标为﹣ 3,2y=﹣ 3 时,﹣ 3=x ﹣ mx﹣ 3,解得 x=0 或 m,∴AC=m,∴B E=2AC=2m.( 2)∵ m= ,∴点 A 坐标(,﹣3),∴直线 OA为 y=﹣x,2∴抛物线分析式为y=x ﹣x﹣ 3,∴点 B 坐标( 2,3),∴点 D纵坐标为3,对于函数 y= ﹣x,当 y=3 时, x=﹣,∴点 D坐标(﹣,3).∵对于函数y=x2﹣x﹣ 3, x=﹣时,y=3,∴点 D在落在抛物线上.(3)①∵∠ ACE=∠CEG=∠EGA=90°,∴四边形 ECAG是矩形,∴EG=AC=BG,∵FG∥OE,∴O F=FB,∵ EG=BG,∴E O=2FG,∵?DE?EO= ?GB?GF,∴BG=2DE,∵DE∥AC,∴= = ,2∵点 B 坐标( 2m, 2m﹣ 3),∴OC=2OE,2∴3=2( 2m﹣ 3),∵m> 0,∴m=.22②∵ A( m,﹣ 3), B( 2m, 2m﹣ 3), E( 0, 2m﹣ 3),∴直线 AE 分析式为2x,y=﹣2mx+2m﹣ 3,直线 OB分析式为 y=由2x,解得 x=,消去 y 获得﹣ 2mx+2m﹣3=∴点 M横坐标为,∵△ AMF的面积 =△BFG的面积,∴ ?(+3)?( m﹣) =2?m? ?( 2m﹣ 3),42整理获得: 2m﹣ 9m=0,∵m> 0,∴m=.故答案为.24.如图,在射线 BA, BC, AD, CD围成的菱形 ABCD中,∠ ABC=60°, AB=6 , O是射线 BD上一点,⊙O 与 BA, BC都相切,与 BO的延伸线交于点 M.过 M作 EF⊥BD 交线段 BA(或射线 AD)于点E,交线段 BC(或射线 CD)于点 F.以 EF为边作矩形 EFGH,点 G,H分别在围成菱形的此外两条射线上.( 1)求证: BO=2OM.( 2)设 EF> HE,当矩形 EFGH的面积为24时,求⊙O 的半径.( 3)当 HE或 HG与⊙O 相切时,求出全部知足条件的BO的长.【考点】圆的综合题.【剖析】( 1)设⊙O 切 AB于点 P,连结 OP,由切线的性质可知∠ OPB=90°.先由菱形的性质求得∠OBP的度数,而后依照含 30°直角三角形的性质证明即可;( 2)设 GH交 BD于点 N,连结 AC,交 BD于点 Q.先依照特别锐角三角函数值求得BD的长,设⊙O 的半径为 r ,则 OB=2r, MB=3r.当点 E 在 AB上时.在 Rt△BEM中,依照特别锐角三角函数值可得到 EM的长(用含 r 的式子表示),由图形的对称性可获得EF、ND、 BM的长(用含 r 的式子表示,从而获得 MN=18﹣ 6r ,接下来依照矩形的面积列方程求解即可;当点 E 在 AD边上时.BM=3r,则MD=18﹣ 3r ,最后由 MB=3r=12列方程求解即可;( 3)先依据题意画出切合题意的图形,①如图 4 所示,点 E 在 AD上时,可求得 DM= r , BM=3r,而后依照 BM+MD=18,列方程求解即可;②如图 5 所示;依照图形的对称性可知获得OB= BD;③如图 6 所示,可证明 D 与 O重合,从而可求得OB的长;④如图 7 所示:先求得 DM=r ,OMB=3r,由BM﹣ DM=DB列方程求解即可.【解答】解:( 1)如图 1 所示:设⊙O 切 AB于点 P,连结 OP,则∠ OPB=90°.∵四边形 ABCD为菱形,∴∠ ABD= ∠ABC=30°.∴OB=2OP.∵OP=OM,∴BO=2OP=2OM.( 2)如图 2 所示:设GH交 BD于点 N,连结 AC,交 BD于点 Q.∵四边形 ABCD是菱形,∴AC⊥BD.∴B D=2BQ=2AB?cos∠ABQ= AB=18.设⊙O的半径为 r ,则 OB=2r, MB=3r.∵EF> HE,∴点 E, F, G,H 均在菱形的边上.①如图 2 所示,当点 E 在 AB 上时.在 Rt△BEM中, EM=BM?tan∠EBM=r .由对称性得: EF=2EM=2r ,ND=BM=3r.∴M N=18﹣ 6r .∴S矩形 EFGH=EF?MN=2r ( 18﹣ 6r ) =24.解得: r 1=1, r 2=2.当 r=1 时, EF< HE,∴r=1 时,不合题意舍当 r=2 时, EF> HE,∴⊙O的半径为 2.∴B M=3r=6.如图 3 所示:当点 E 在 AD边上时. BM=3r,则 MD=18﹣ 3r .由对称性可知:NB=MD=6.∴MB=3r=18﹣ 6=12.解得: r=4 .综上所述,⊙O 的半径为 2 或 4.(3)解设 GH交 BD于点 N,⊙O 的半径为 r ,则BO=2r.当点 E 在边 BA上时,明显不存在 HE或 HG与⊙O相切.①如图 4 所示,点 E 在 AD上时.∵HE与⊙O相切,∴ME=r, DM=r .∴3r+r=18 .解得: r=9 ﹣ 3.∴OB=18﹣ 6.②如图 5 所示;由图形的对称性得:ON=OM, BN=DM.∴OB= BD=9.③如图 6 所示.∵HG与⊙O相切时, MN=2r.∵BN+MN=BM=3r.∴BN=r.∴DM= FM=GN=BN=r.∴D与 O重合.∴B O=BD=18.④如图 7 所示:∵HE与⊙O相切,∴EM=r, DM=r .∴3r ﹣r=18 .∴r=9+3.∴O B=2r=18+6 .综上所述,当 HE或 GH与⊙O相切时, OB的长为 18﹣6或 9或18或18+6 .。

2016温州中考数学试卷及标准答案综述

2016温州中考数学试卷及标准答案综述

一、选择趙(本■有10小■•算小越,分•共40分・H小■只有一个选项是正&的•不选、多选、错选•均不佶分)1 •计算( + 5) + (-2)ft结變是(▲ >A.7B.-7C.3D.-32•右图是九(1〉班45名同学每周课外阅渎时何的荻数宜方图(每组含前一个边界值・不含后一个边界值)•由图可知•人数最多的一粗是(▲)人2〜4小时B・4~6小时U6〜8小时 D.8〜2小时3 •三本相同的书本受成JDBE所示的几何体•它的主视图是(▲)4 •已知甲、乙肖数的和是7,甲数是乙数的2倍•设甲数为吳乙效为意,列方程组正谕的是(▲)入即B•臨7S•若分式笄|的值为O.Mz的值耿▲)A.-3B.-2C.0D.26•—个不透明的袋中•製有2个黄球.3个红球和5个白球•它幻除■色外郁相同•从袋中任倉摸出一个球•是白域的辄率是(▲〉D i• 10 •10.加图■在△ABC中.ZACB-90\AC-4• BC-2. P是AB边上一动点・PD丄AC于点D•点E在P的右剑•且PE=i.连结CE.P(第3题)A. a c. D./x+2>-7U lx»2yc w7 •六边形的内角和是(▲)A. 540* B72L C.900, D. 1080#8. 标紬的正半紬分别交于A.B W点』是牧段A"上任意一点(不包第號点〉•过P分JM作两坐标紬的itSl与卿坐标轴国成的矩形的周长为】0•则该直线的函敢表达式是(▲)人'匸工+5 B.y・j:+10D. b>c>aP+5 D. x+10从点A出发•沿AB方向运动,当E到达点B时.P停止运动•在整个运动过程中,图中阴形部分ifcflS,十S的大小变化悄况是(▲)A. 一宜頤小B. 一直不变Q先離小后增大 D.先堆大后减小• 11 •二■填空6小題•毎小逼5分,共30分)1】•刃式分—a- ▲・】2•某小姐6名同学的体育成分40分)分别为:36,0・38・38・32・35,这姐数|g的中位散足▲分.13.方程姐{;::二7的解是▲•H.iDffl.WAABCtt点C按瓢时针方向敦转至△ "B'C•使点片第在BCfOII长线上•巳知ZA-27*.19. (*H 8分〉如图•£是UAHCD的边CD的中点,建长AE交BC的延长线千点F.(1〉求if«A ADES2AFCE.(2)若ZBAF=90\BC=5t EF-3.求CD 的长.20.(本题8分)如图•在方格祇中•点A.B.P都在格点上•灣枚要求画出以A〃为边的格点四边形•使P在四边形内部(不包括边界上)•且P封四边形的两个II点的距冑村铮・ZB・40・・M»ZACB'N_」_度.(第ISfl)15 •七巧板是我们之阿的关晟拼成一16 •如图•点A.B在反比例^tty-y(4>0)的图进行抽样・誉・并捡制筑计图•其中统计图中没有惊注和应人效的苗分忆•谓根辦疣计图回答下MW«:(】)求■非常了«T的人数的百分务少人?簾学校学生•垃毁分类.如谋TMffflt的纹计图32& 比ttTMC:幕車了解(第19 «>(l)ftffi甲中■岀一个OABCD・(2〉在图乙中■出-个PB边形A/JCD•使ZD・90°・且ZAH90'.(注屈甲•图乙在答题纸t)• 11 •21. (减题10分)如图.ttAABC 中.ZC-90\D 是BC 边上一点,以DB 为 直径的eOftHAB的中点E,交AD 的廷长线于点F •连结EF ・(】)求 i£:Zl = ZF.⑵若sin B ■睜・EF=2代虑CD 的长.(2)为了使什怫第的单价每千克至少降低2元•商家计划在什佛糖中加入甲■丙两种糖果共100千克•问 其中最多可加入丙种耨果多少千克?23.(本題12分〉如图物线-mx —3S>0)交,输于点GCA. 线于点九点B 在從物线上.且衣第一象限内,BE 丄,釉•交y 较于& 延长线于A D.BE^2AQ《1)用含加的代数式表示BE 的长.G )当m-V3时•判斷点D 是否慕在宛物线上•并说明理由.(3)作AG//y 轴•交OB 于点F,交BD 于点GC^ADOE 与/kfiGF 的面枳相聲■求m 的值.②连结AE ■交OB 于点M.若AAMF ^^BGF 的面积相等•则 是▲・2<(*IS 】4分)如图•在射线HA.BC.AD 9CD 国或的菱形ABCD 中■ZABC=6『• AB・6冷・O 是射线BD 上一点■ 6)0与BA.BC 郡相切,与EO 的jg 长线交于点M.过M 作EF 丄BD 交纹段BA (SW 线AD )于点E ■交钱段BC (或肘线CD 〉于点F.以EF 为边 作矩形EFGH .点GH 分别在国成菱形的另外两条射线上.《1〉求证:BO=2OM ・«2)设EF>HE.当矩形EFGH 的面积为24疗时•求©O 的半径. (3)当HE或HG 与©O 相切时,求岀所有摘足条件的BO 的长.果A4+M 果 单价(无/千尢)15 25 30 千尢微40402022. <^fi 10分)有即、乙■丙三种箝果混合而成的什椀覇】00千克,其中冬种 箱果的单价和千克数如下表所示•商家用加权平均数来确定什悅第的单价. (1)求该什锯箱的单价.数学参考答案砂号12345678910答窦C B B A D A B C D C1 — 3〉12.37 13. 14.46 心32血+⑹16.昭三"答IB(本JK«T8/h■■共80 分) 17.(^8 10 分)鱗⑴阿+( —3)1—"一1「= 275+9-1-27^+&(2)(2 + m)(2-m)+m(m-l) »4 —m:4 m1— m —4 —m.】8・《本題8分)«(1)由题童•得焉X100% ・20%・了#T的人数的百分比是20%・(2)由题意•得1200X^^-600(人〉.答:估计对“垃聂分类-知识达到•非常了#T和•比较了IT程度的学生共有600人.19. (*« 8 分〉(1) i£明•••AD〃BC■即AD//BF.-Z1-=ZF.ZD=Z2> ••• DE=CE.••• △ADEMFCE.(2) WVAAD£KAFCE.AAE-EF-3. •••AB〃CD・ AZAED-ZBAF-90\ 庄口ABCD 中MD-BC-5.ADE=丿AD1-AB1 =4, :・CD=2DE=8.20•(本IE 8 分)«(1)B法不險一•如田①.②•③竽.(2)B法不喰一•如图④•⑤•⑥髯.21 •(本Q 10 分)(】)证明连结DE・•: BD是©O的苴艮. .••ZOEB=93\ •••E是AB的中点• ADA = DB>AZ1 = ZB. VZB-ZF.AZ1-ZK⑵解・・y•••AE・EF・2屁AAB-2AE-4V5.〈第21fi>在 RtAABC<P.AC-AB> sinB-4.ABC- ・/AB —Ad ・8・ 设 则 AD-BD-8-x.由勾肢定理•得AO + CD-AD 1 ■ 即 v+^-ca-xJS 解得工=3.•••C"3・22•(本 48 10 分)答】诙什悌辖旬千克22元・ 《2)设加入丙斤需果工千克・0加人甲种W«(100-x )千克•由■童■得 30工+15(100—工>+22X100“* 十一处200WZO. wW x^20.可加入丙科楮果20千克.23.(本題12分)解⑴•••貳物线的对称轴是工=号・:• AC= Tn • •••BE 二 2ZC ・2m«2)当m-V3时,点DJS 在池詢钱上.現由如下'Vm=V3t•••AC* 疗,BE=2VJ ・把x —2^3代入—苗尤一3朋 厂(2V3)1-73X2^3-3=3.AOE--3-OC.••• Z DEO= ZACO- ©. Z DOE-ZAOC. :•△OEg^OCA.••• DE=AC ■疗.••• D ( 一孙・3〉・把 一疗代入 >=x^—V5*x —3.WB (-小一心(F)-3=3・ •••点 D«amw^ 上. (3)(D*D 图2•当x-2m 时Q ・2赫一3,OE ・2肿一3・ TAG 〃川.AEG-AC-yfiEt••・ FC N *OE ・••• S A «c ■ S—即 yDE • O E- yBG • KG,•\DE-yBG-yAC.V z DOE= ZAOC. Z.unZ D0£= UnZAOC, ••• ZDEO=Z A8= Rt 厶• DE AC"OE OC 9/.OE-yOC,②皿的值是晋.■⑴ 15 "0 匕為 X 2+ 3。

历年浙江省温州市中考数学试题(含答案)

历年浙江省温州市中考数学试题(含答案)

2016年浙江省温州市中考数学试卷一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7 B.﹣7 C.3 D.﹣32.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时3.三本相同的书本叠成如图所示的几何体,它的主视图是()A.B.C.D.4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.B.C.D.5.若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.26.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.B.C.D.7.六边形的内角和是()A.540° B.720° C.900° D.1080°8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+109.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B 时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a=.12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是分.13.方程组的解是.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.15.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是cm.16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).18.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)15 25 30 千克数40 40 20(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?23.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B 在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD 交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.2016年浙江省温州市中考数学试卷参考答案与试题解析一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7 B.﹣7 C.3 D.﹣3【考点】有理数的加法.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:(+5)+(﹣2),=+(5﹣2),=3.故选C.2.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【考点】频数(率)分布直方图.【分析】根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【解答】解:由条形统计图可得,人数最多的一组是4~6小时,频数为22,故选B.3.三本相同的书本叠成如图所示的几何体,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是.故选:B.4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.【解答】解:设甲数为x,乙数为y,根据题意,可列方程组,得:,故选:A.5.若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.2【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,∴x=2.故选:D.6.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.B.C.D.【考点】概率公式.【分析】由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.【解答】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故选:A.7.六边形的内角和是()A.540° B.720° C.900° D.1080°【考点】多边形内角与外角.【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10【考点】待定系数法求一次函数解析式;矩形的性质.【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.9.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a【考点】翻折变换(折叠问题).【分析】(1)图1,根据折叠得:DE是线段AC的垂直平分线,由中位线定理的推论可知:DE是△ABC的中位线,得出DE的长,即a的长;(2)图2,同理可得:MN是△ABC的中位线,得出MN的长,即b的长;(3)图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【解答】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=×5=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB∴△ACB∽△AGH∴=∴=∴GH=,即c=∵2>>∴b>c>a故选(D)10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B 时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小【考点】动点问题的函数图象.【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【解答】解:在RT△ABC中,∵∠ACB=90°,AC=4,BC=2,∴AB===2,设PD=x,AB边上的高为h,h==,∵PD∥BC,∴=,∴AD=2x,AP=x,∴S1+S2=•2x•x+(2﹣1﹣x)•=x2﹣2x+4﹣=(x﹣1)2+3﹣,∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.故选C.二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a=a(a﹣3).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是37分.【考点】中位数.【分析】直接利用中位数的定义分析得出答案.【解答】解:数据按从小到大排列为:32,35,36,38,38,40,则这组数据的中位数是:(36+38)÷2=37.故答案为:37.13.方程组的解是.【考点】二元一次方程组的解.【分析】由于y的系数互为相反数,直接用加减法解答即可.【解答】解:解方程组,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,∴,故答案为:.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=46度.【考点】旋转的性质.【分析】先根据三角形外角的性质求出∠ACA′=67°,再由△ABC绕点C按顺时针方向旋转至△A′B′C,得到△ABC≌△A′B′C,证明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°,故答案为:46.15.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是(32+16)cm.【考点】七巧板.【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【解答】解:如图所示:图形1:边长分别是:16,8,8;图形2:边长分别是:16,8,8;图形3:边长分别是:8,4,4;图形4:边长是:4;图形5:边长分别是:8,4,4;图形6:边长分别是:4,8;图形7:边长分别是:8,8,8;∴凸六边形的周长=8+2×8+8+4×4=32+16(cm);故答案为:32+16.16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.【考点】反比例函数系数k的几何意义.【分析】根据三角形面积间的关系找出2S△ABD=S△BAC,设点A的坐标为(m,),点B 的坐标为(n,),结合CD=k、面积公式以及AB=2AC即可得出关于m、n、k的三元二次方程组,解方程组即可得出结论.【解答】解:∵E是AB的中点,∴S△ABD=2S△ADE,S△BAC=2S△BCE,又∵△BCE的面积是△ADE的面积的2倍,∴2S△ABD=S△BAC.设点A的坐标为(m,),点B的坐标为(n,),则有,解得:,或(舍去).故答案为:.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).【考点】实数的运算;单项式乘多项式;平方差公式;零指数幂.【分析】(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案;(2)直接利用平方差公式计算,进而去括号得出答案.【解答】解:(1)原式=2+9﹣1=2+8;(2)(2+m)(2﹣m)+m(m﹣1)=4﹣m2+m2﹣m=4﹣m.18.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?【考点】扇形统计图;用样本估计总体.【分析】(1)根据扇形统计图可以求得“非常了解”的人数的百分比;(2)根据扇形统计图可以求得对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人.【解答】解:(1)由题意可得,“非常了解”的人数的百分比为:,即“非常了解”的人数的百分比为20%;(2)由题意可得,对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有:1200×=600(人),即对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人.19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)【考点】平行四边形的性质.【分析】(1)先以点P为圆心、PB长为半径作圆,会得到4个格点,再选取合适格点,根据平行四边形的判定作出平行四边形即可;(2)先以点P为圆心、PB长为半径作圆,会得到8个格点,再选取合适格点记作点C,再以AC为直径作圆,该圆与方格网的交点任取一个即为点D,即可得.【解答】解:(1)如图①:.(2)如图②,.21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.【考点】圆周角定理;解直角三角形.【分析】(1)连接DE,由BD是⊙O的直径,得到∠DEB=90°,由于E是AB的中点,得到DA=DB,根据等腰三角形的性质得到∠1=∠B等量代换即可得到结论;(2)g根据等腰三角形的判定定理得到AE=EF=2,推出AB=2AE=4,在Rt△ABC 中,根据勾股定理得到BC==8,设CD=x,则AD=BD=8﹣x,根据勾股定理列方程即可得到结论.【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)15 25 30 千克数40 40 20(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【考点】一元一次不等式的应用;加权平均数.【分析】(1)根据加权平均数的计算公式和三种糖果的单价和克数,列出算式进行计算即可;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据商家计划在什锦糖中加入甲、丙两种糖果共100千克和锦糖的单价每千克至少降低2元,列出不等式进行求解即可.【解答】解:(1)根据题意得:=22(元/千克).答:该什锦糖的单价是22元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据题意得:≤20,解得:x≤20.答:加入丙种糖果20千克.23.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B 在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.【考点】二次函数综合题.【分析】(1)根据A、C两点纵坐标相同,求出点A横坐标即可解决问题.(2)求出点D坐标,然后判断即可.(3)①首先根据EO=2FG,证明BG=2DE,列出方程即可解决问题.②求出直线AE、BO的解析式,求出交点M的横坐标,列出方程即可解决问题.【解答】解:(1)∵C(0,﹣3),AC⊥OC,∴点A纵坐标为﹣3,y=﹣3时,﹣3=x2﹣mx﹣3,解得x=0或m,∴点A坐标(m,﹣3),∴AC=m,∴BE=2AC=2m.(2)∵m=,∴点A坐标(,﹣3),∴直线OA为y=﹣x,∴抛物线解析式为y=x2﹣x﹣3,∴点B坐标(2,3),∴点D纵坐标为3,对于函数y=﹣x,当y=3时,x=﹣,∴点D坐标(﹣,3).∵对于函数y=x2﹣x﹣3,x=﹣时,y=3,∴点D在落在抛物线上.(3)①∵∠ACE=∠CEG=∠EGA=90°,∴四边形ECAG是矩形,∴EG=AC=BG,∵FG∥OE,∴OF=FB,∵EG=BG,∴EO=2FG,∵•DE•EO=•GB•GF,∴BG=2DE,∵DE∥AC,∴==,∵点B坐标(2m,2m2﹣3),∴OC=2OE,∴3=2(2m2﹣3),∵m>0,∴m=.②∵A(m,﹣3),B(2m,2m2﹣3),E(0,2m2﹣3),∴直线AE解析式为y=﹣2mx+2m2﹣3,直线OB解析式为y=x,由消去y得到﹣2mx+2m2﹣3=x,解得x=,∴点M横坐标为,∵△AMF的面积=△BFG的面积,∴•(+3)•(m﹣)=•m••(2m2﹣3),整理得到:2m4﹣9m2=0,∵m>0,∴m=.故答案为.24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD 交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.【考点】圆的综合题.【分析】(1)设⊙O切AB于点P,连接OP,由切线的性质可知∠OPB=90°.先由菱形的性质求得∠OBP的度数,然后依据含30°直角三角形的性质证明即可;(2)设GH交BD于点N,连接AC,交BD于点Q.先依据特殊锐角三角函数值求得BD 的长,设⊙O的半径为r,则OB=2r,MB=3r.当点E在AB上时.在Rt△BEM中,依据特殊锐角三角函数值可得到EM的长(用含r的式子表示),由图形的对称性可得到EF、ND、BM的长(用含r的式子表示,从而得到MN=18﹣6r,接下来依据矩形的面积列方程求解即可;当点E在AD边上时.BM=3r,则MD=18﹣3r,最后由MB=3r=12列方程求解即可;(3)先根据题意画出符合题意的图形,①如图4所示,点E在AD上时,可求得DM=r,BM=3r,然后依据BM+MD=18,列方程求解即可;②如图5所示;依据图形的对称性可知得到OB=BD;③如图6所示,可证明D与O重合,从而可求得OB的长;④如图7所示:先求得DM=r,OMB=3r,由BM﹣DM=DB列方程求解即可.【解答】解:(1)如图1所示:设⊙O切AB于点P,连接OP,则∠OPB=90°.∵四边形ABCD为菱形,∴∠ABD=∠ABC=30°.∴OB=2OP.∵OP=OM,∴BO=2OP=2OM.(2)如图2所示:设GH交BD于点N,连接AC,交BD于点Q.∵四边形ABCD是菱形,∴AC⊥BD.∴BD=2BQ=2AB•cos∠ABQ=AB=18.设⊙O的半径为r,则OB=2r,MB=3r.∵EF>HE,∴点E,F,G,H均在菱形的边上.①如图2所示,当点E在AB上时.在Rt△BEM中,EM=BM•tan∠EBM=r.由对称性得:EF=2EM=2r,ND=BM=3r.∴MN=18﹣6r.=EF•MN=2r(18﹣6r)=24.∴S矩形EFGH解得:r1=1,r2=2.当r=1时,EF<HE,∴r=1时,不合题意舍当r=2时,EF>HE,∴⊙O的半径为2.∴BM=3r=6.如图3所示:当点E在AD边上时.BM=3r,则MD=18﹣3r.由对称性可知:NB=MD=6.∴MB=3r=18﹣6=12.解得:r=4.综上所述,⊙O的半径为2或4.(3)解设GH交BD于点N,⊙O的半径为r,则BO=2r.当点E在边BA上时,显然不存在HE或HG与⊙O相切.①如图4所示,点E在AD上时.∵HE与⊙O相切,∴ME=r,DM=r.∴3r+r=18.解得:r=9﹣3.∴OB=18﹣6.②如图5所示;由图形的对称性得:ON=OM,BN=DM.∴OB=BD=9.③如图6所示.∵HG与⊙O相切时,MN=2r.∵BN+MN=BM=3r.∴BN=r.∴DM=FM=GN=BN=r.∴D与O重合.∴BO=BD=18.④如图7所示:∵HE与⊙O相切,∴EM=r,DM=r.∴3r﹣r=18.∴r=9+3.∴OB=2r=18+6.综上所述,当HE或GH与⊙O相切时,OB的长为18﹣6或9或18或18+6.。

浙江省温州市中考数学真题试题(含解析)

浙江省温州市中考数学真题试题(含解析)

2016年浙江省温州市中考数学试卷一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7 B.﹣7 C.3 D.﹣32.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时3.三本相同的书本叠成如图所示的几何体,它的主视图是()A. B. C. D.4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A. B. C. D.5.若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.26.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A. B. C. D.7.六边形的内角和是()A.540° B.720° C.900° D.1080°8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+109.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小 B.一直不变 C.先减小后增大 D.先增大后减小二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a= .12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是分.13.方程组的解是.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.15.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是cm.16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(共8小题,满分80分)17.(1)计算: +(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).18.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)15 25 30千克数40 40 20(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?23.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O 与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.2016年浙江省温州市中考数学试卷参考答案与试题解析一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7 B.﹣7 C.3 D.﹣3【考点】有理数的加法.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:(+5)+(﹣2),=+(5﹣2),=3.故选C.2.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时【考点】频数(率)分布直方图.【分析】根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【解答】解:由条形统计图可得,人数最多的一组是4~6小时,频数为22,故选B.3.三本相同的书本叠成如图所示的几何体,它的主视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是.故选:B.4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A. B. C. D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.【解答】解:设甲数为x,乙数为y,根据题意,可列方程组,得:,故选:A.5.若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.2【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,∴x=2.故选:D.6.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A. B. C. D.【考点】概率公式.【分析】由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.【解答】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故选:A.7.六边形的内角和是()A.540° B.720° C.900° D.1080°【考点】多边形内角与外角.【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10【考点】待定系数法求一次函数解析式;矩形的性质.【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.9.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a【考点】翻折变换(折叠问题).【分析】(1)图1,根据折叠得:DE是线段AC的垂直平分线,由中位线定理的推论可知:DE是△ABC的中位线,得出DE的长,即a的长;(2)图2,同理可得:MN是△ABC的中位线,得出MN的长,即b的长;(3)图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【解答】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=×5=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB∴△ACB∽△AGH∴=∴=∴GH=,即c=∵2>>∴b>c>a故选(D)10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小 B.一直不变 C.先减小后增大 D.先增大后减小【考点】动点问题的函数图象.【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【解答】解:在RT△ABC中,∵∠ACB=90°,AC=4,BC=2,∴AB===2,设PD=x,AB边上的高为h,h==,∵PD∥BC,∴=,∴AD=2x,AP=x,∴S1+S2=•2x•x+(2﹣1﹣x)•=x2﹣2x+4﹣=(x﹣1)2+3﹣,∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.故选C.二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a= a(a﹣3).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是37 分.【考点】中位数.【分析】直接利用中位数的定义分析得出答案.【解答】解:数据按从小到大排列为:32,35,36,38,38,40,则这组数据的中位数是:(36+38)÷2=37.故答案为:37.13.方程组的解是.【考点】二元一次方程组的解.【分析】由于y的系数互为相反数,直接用加减法解答即可.【解答】解:解方程组,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,∴,故答案为:.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=46 度.【考点】旋转的性质.【分析】先根据三角形外角的性质求出∠ACA′=67°,再由△ABC绕点C按顺时针方向旋转至△A′B′C,得到△ABC≌△A′B′C,证明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°,故答案为:46.15.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是(32+16)cm.【考点】七巧板.【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【解答】解:如图所示:图形1:边长分别是:16,8,8;图形2:边长分别是:16,8,8;图形3:边长分别是:8,4,4;图形4:边长是:4;图形5:边长分别是:8,4,4;图形6:边长分别是:4,8;图形7:边长分别是:8,8,8;∴凸六边形的周长=8+2×8+8+4×4=32+16(cm);故答案为:32+16.16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.【考点】反比例函数系数k的几何意义.【分析】根据三角形面积间的关系找出2S△ABD=S△BAC,设点A的坐标为(m,),点B的坐标为(n,),结合CD=k、面积公式以及AB=2AC即可得出关于m、n、k的三元二次方程组,解方程组即可得出结论.【解答】解:∵E是AB的中点,∴S△ABD=2S△ADE,S△BAC=2S△BCE,又∵△BCE的面积是△ADE的面积的2倍,∴2S△ABD=S△BAC.设点A的坐标为(m,),点B的坐标为(n,),则有,解得:,或(舍去).故答案为:.三、解答题(共8小题,满分80分)17.(1)计算: +(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).【考点】实数的运算;单项式乘多项式;平方差公式;零指数幂.【分析】(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案;(2)直接利用平方差公式计算,进而去括号得出答案.【解答】解:(1)原式=2+9﹣1=2+8;(2)(2+m)(2﹣m)+m(m﹣1)=4﹣m2+m2﹣m=4﹣m.18.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?【考点】扇形统计图;用样本估计总体.【分析】(1)根据扇形统计图可以求得“非常了解”的人数的百分比;(2)根据扇形统计图可以求得对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人.【解答】解:(1)由题意可得,“非常了解”的人数的百分比为:,即“非常了解”的人数的百分比为20%;(2)由题意可得,对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有:1200×=600(人),即对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人.19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE 即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)【考点】平行四边形的性质.【分析】(1)先以点P为圆心、PB长为半径作圆,会得到4个格点,再选取合适格点,根据平行四边形的判定作出平行四边形即可;(2)先以点P为圆心、PB长为半径作圆,会得到8个格点,再选取合适格点记作点C,再以AC为直径作圆,该圆与方格网的交点任取一个即为点D,即可得.【解答】解:(1)如图①:.(2)如图②,.21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.【考点】圆周角定理;解直角三角形.【分析】(1)连接DE,由BD是⊙O的直径,得到∠DEB=90°,由于E是AB的中点,得到DA=DB,根据等腰三角形的性质得到∠1=∠B等量代换即可得到结论;(2)g根据等腰三角形的判定定理得到AE=EF=2,推出AB=2AE=4,在Rt△ABC中,根据勾股定理得到BC==8,设CD=x,则AD=BD=8﹣x,根据勾股定理列方程即可得到结论.【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)15 25 30千克数40 40 20(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【考点】一元一次不等式的应用;加权平均数.【分析】(1)根据加权平均数的计算公式和三种糖果的单价和克数,列出算式进行计算即可;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据商家计划在什锦糖中加入甲、丙两种糖果共100千克和锦糖的单价每千克至少降低2元,列出不等式进行求解即可.【解答】解:(1)根据题意得:=22(元/千克).答:该什锦糖的单价是22元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据题意得:≤20,解得:x≤20.答:加入丙种糖果20千克.23.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.【考点】二次函数综合题.【分析】(1)根据A、C两点纵坐标相同,求出点A横坐标即可解决问题.(2)求出点D坐标,然后判断即可.(3)①首先根据EO=2FG,证明BG=2DE,列出方程即可解决问题.②求出直线AE、BO的解析式,求出交点M的横坐标,列出方程即可解决问题.【解答】解:(1)∵C(0,﹣3),AC⊥OC,∴点A纵坐标为﹣3,y=﹣3时,﹣3=x2﹣mx﹣3,解得x=0或m,∴点A坐标(m,﹣3),∴AC=m,∴BE=2AC=2m.(2)∵m=,∴点A坐标(,﹣3),∴直线OA为y=﹣x,∴抛物线解析式为y=x2﹣x﹣3,∴点B坐标(2,3),∴点D纵坐标为3,对于函数y=﹣x,当y=3时,x=﹣,∴点D坐标(﹣,3).∵对于函数y=x2﹣x﹣3,x=﹣时,y=3,∴点D在落在抛物线上.(3)①∵∠ACE=∠CEG=∠EGA=90°,∴四边形ECAG是矩形,∴EG=AC=BG,∵FG∥OE,∴OF=FB,∵EG=BG,∴EO=2FG,∵•DE•EO=•GB•GF,∴BG=2DE,∵DE∥AC,∴==,∵点B坐标(2m,2m2﹣3),∴OC=2OE,∴3=2(2m2﹣3),∵m>0,∴m=.②∵A(m,﹣3),B(2m,2m2﹣3),E(0,2m2﹣3),∴直线AE解析式为y=﹣2mx+2m2﹣3,直线OB解析式为y=x,由消去y得到﹣2mx+2m2﹣3=x,解得x=,∴点M横坐标为,∵△AMF的面积=△BF G的面积,∴•(+3)•(m﹣)=•m••(2m2﹣3),整理得到:2m4﹣9m2=0,∵m>0,∴m=.故答案为.24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O 与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.【考点】圆的综合题.【分析】(1)设⊙O切AB于点P,连接OP,由切线的性质可知∠OPB=90°.先由菱形的性质求得∠OBP的度数,然后依据含30°直角三角形的性质证明即可;(2)设GH交BD于点N,连接AC,交BD于点Q.先依据特殊锐角三角函数值求得BD的长,设⊙O的半径为r,则OB=2r,MB=3r.当点E在AB上时.在Rt△BEM中,依据特殊锐角三角函数值可得到EM的长(用含r的式子表示),由图形的对称性可得到EF、ND、BM的长(用含r的式子表示,从而得到MN=18﹣6r,接下来依据矩形的面积列方程求解即可;当点E在AD边上时.BM=3r,则MD=18﹣3r,最后由MB=3r=12列方程求解即可;(3)先根据题意画出符合题意的图形,①如图4所示,点E在AD上时,可求得DM=r,BM=3r,然后依据BM+MD=18,列方程求解即可;②如图5所示;依据图形的对称性可知得到OB=BD;③如图6所示,可证明D与O重合,从而可求得OB的长;④如图7所示:先求得DM=r,OMB=3r,由BM﹣DM=DB列方程求解即可.【解答】解:(1)如图1所示:设⊙O切AB于点P,连接OP,则∠OPB=90°.∵四边形ABCD为菱形,∴∠ABD=∠ABC=30°.∴OB=2OP.∵OP=OM,∴BO=2OP=2OM.(2)如图2所示:设GH交BD于点N,连接AC,交BD于点Q.∵四边形ABCD是菱形,∴AC⊥BD.∴BD=2BQ=2AB•cos∠ABQ=AB=18.设⊙O的半径为r,则OB=2r,MB=3r.∵EF>HE,∴点E,F,G,H均在菱形的边上.①如图2所示,当点E在AB上时.在Rt△BEM中,EM=BM•tan∠EBM=r.由对称性得:EF=2EM=2r,ND=BM=3r.∴MN=18﹣6r.∴S矩形EFGH=EF•MN=2r(18﹣6r)=24.解得:r1=1,r2=2.当r=1时,EF<HE,∴r=1时,不合题意舍当r=2时,EF>HE,∴⊙O的半径为2.∴BM=3r=6.如图3所示:当点E在AD边上时.BM=3r,则MD=18﹣3r.由对称性可知:NB=MD=6.∴MB=3r=18﹣6=12.解得:r=4.综上所述,⊙O的半径为2或4.(3)解设GH交BD于点N,⊙O的半径为r,则BO=2r.当点E在边BA上时,显然不存在HE或HG与⊙O相切.①如图4所示,点E在AD上时.∵HE与⊙O相切,∴ME=r,DM=r.∴3r+r=18.解得:r=9﹣3.∴OB=18﹣6.②如图5所示;由图形的对称性得:ON=OM,BN=DM.∴OB=BD=9.③如图6所示.∵HG与⊙O相切时,MN=2r.∵BN+MN=B M=3r.∴BN=r.∴DM=FM=GN=BN=r.∴D与O重合.∴BO=BD=18.④如图7所示:∵HE与⊙O相切,∴EM=r,DM=r.∴3r﹣r=18.∴r=9+3.∴OB=2r=18+6.综上所述,当HE或GH与⊙O相切时,OB的长为18﹣6或9或18或18+6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G FE'C'E A DB C浙江省温州地区2016年初中数学竞赛选拔试卷(检测范围:初中数学竞赛大纲要求所有内容)一、单项选择题(本大题分4小题,每题5分,共20分)1、设二次函数y 1=a (x -x 1)(x -x 2)(a ≠0,x 1≠x 2)的图象与一次函数y 2=dx +e (d ≠0)的图象交于点(x 1,0),若函数y =y 2+y 1的图象与x 轴仅有一个交点,则( ). A .a (x 1-x 2)=d B .a (x 2-x 1)=d C .a (x 1-x 2)2=d D .a (x 1+x 2)2=d2、如图,ΔABC 、ΔEFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当ΔEFG 绕点D 旋转时,线段BM 长的最小值是( ). A .32- B .13+ C .2 D .13-3、一名模型赛车手遥控一辆赛车,先前进1m ,然后原地逆时针旋转α(0°<α<180°),被称为一次操作.若5次操作后,发现赛车回到出发点,则α为( ). A .72° B .108° C .144° D .以上选项均不正确4、方程()y x y xy x +=++322的整数解有( ).A 、3组B 、4组C 、5组D 、6组 二、填空题(本大题分16小题,每题5分,共80分)5、如图,在矩形ABCD 中,AB =64,AD =10,连接BD ,DBC ∠的角平分线BE 交DC 于点E ,现把BCE ∆绕点B 逆时针旋转,记旋转后的BCE ∆为''E BC ∆,当射线'BE 和射线'BC 都与线段AD 相交时,设交点分别为F ,G ,若BFD ∆为等腰三角形,则线段DG 长为 .6、如图,在平面直角坐标系中,点M 是第一象限内一点,过M 的直线分别交x 轴,y 轴的正半轴于A 、B 两点,且M 是AB 的中点.以OM 为直径的⊙P 分别交x 轴,y 轴于C 、D 两点,交直线AB 于点E (位于点M 右下方),连结DE 交OM 于点K .设x OBA =∠tan (0<x <1),y MKOK=,则y 关于x 的函数解析式为 .7、如图,梯形ABCD 的面积为34cm 2,AE=BF ,CE 与DF 相交于O ,OCD∆的面积为11cm 2,则阴影部分的面积为______cm 2.8、如图,四边形ABCD 为正方形,⊙O 过正方形的顶点第5题 第2题 第6题 第7题A 和对角线的交点P ,分别交AB 、AD 于点F 、E .若⊙O 的半径为23,AB =2+1,则EDAE的值为 . 9、已知一个正三角形的三个顶点在一个正方形的边上移动.如果这个内接三角形的最大面积是3.则该正方形的边长为 . 10、在四边形ABCD 中,边AB=x ,BC=CD =4,DA =5,它的对角线AC=y ,其中x ,y 都是整数,∠BAC =∠DAC ,那么x = .11、如果满足 ||x 2-6x -16|-10| = a 的实数x 恰有6个,那么实数a 的值等于 .12、一批救灾物资分别随16列货车从甲站紧急调运到三百多千米以外的乙站,已知每列货车的平均速度都相等,且记为v千米/小时.两列货车实在运行中的间隔不小于225v ⎛⎫⎪⎝⎭千米,这这批救灾物资全部运到目的地最快需要6小时,那么每隔 分钟从甲站向乙站发一趟货车才能使这批货物在6小时内运到.13、已知0≤a-b ≤1,1≤a+b ≤4,那么当a -2b 达到最大值时,8a +2015b 的值等于 .14、在边长为l 的正方形ABCD 中,点M 、N 、O 、P 分别在边AB 、BC 、CD 、DA 上.如果AM=BM ,DP =3AP ,则MN+NO+OP 的最小值是 .15、如图,在四边形纸片ABCD 中,AB=BC ,AD=CD ,∠A =∠C =90°,∠B =150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD =______________. 16、从1,2,…,2008中选出总和为1009000的1004个数,并且这1004个数中的任意两数之和都不等于2009.则这1004个数的平方和为 . 17、已知直角三角形ABC 中,斜边AB 长为2,∠ACB =90°,三角形内一个动点到三个顶点的距离之和的最小值为7,则这个直角三角形的两个锐角大小分别为 , . 18、若实数x 、y 满足:=+-13x x y y -+23,则若设p=x+y ,则p max = ,p min = .19、已知平面上有4个圆叠在一起形成10个区域,其中在外区域的三个圆每个圆有5个区域,在内区域的圆有7个区域.现将数字0,1,…,9分别放入10个区域,且使每个圆都有相同的数字和,则数字和S 的取值范围为 .第8题 第10题第15题 第19题x 1x 2x 3x 4 x 5x 6 x 7 x 8 x 9x 1020、已知∠BAC =90°,四边形ADEF 是正方形且边长为1,则CABC AB 111++ 的最大值为 ,简述理由(可列式): .三、分析解答题(本大题分5小题,分值依次为8分、10分、8分、14分、10分,共50分)21、(8分)牛顿和莱布尼茨于17世纪分别独立地创立了积分学.其中有一个重要的概念:定积分.我们规定把函数()x f 中区间[]b a ,(包括a ,b )与x轴围成的面积记作:()⎰ba x x f d .(1).试证:()()x x f k x x kf bab ad d ⎰⎰=;(2).对于任意实数c b a ,,其中(a <c <b ),是否都有:()()()⎰⎰⎰+=bcc abax x f x x f x x f d d d .如没有请举出反例;如有,请证明之.22、(10分)在正方形ABCD 的AB 、AD 边各取点K 、N ,使得AK ·AN =2BK ·DN ,线段CK 、CN 交对角线BD 于点L 、M ,试证:∠BLK =∠DNC =∠BAM .第20题 ABDE F C23、(8分)设AB ,CD 为圆O 的两直径,过B 作PB 垂直AB ,并与CD 延长线相交于点P ,过P 作直线PE ,与圆分别交于E ,F 两点,连AE ,AF 分别与CD 交于G ,H 两点(如图),求证:OG=OH .24、(14分)如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q ,以AQ 为边作Rt ABQ ∆,使∠BAQ =90°,AQ :AB =3:4,作ABQ ∆的外接圆O .点C 在点P 右侧,PC =4,过点C 作直线m ⊥l ,过点O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF =23CD ,以DE ,DF 为邻边作矩形DEGF .设AQ =3x . (1)用关于x 的代数式表示BQ ,DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,①当AP 为何值时,矩形DEGF 是正方形?②作直线BG 交⊙O 于点N ,若BN 的弦心距为1,求AP 的长.第23题25、(10分)有A、B、C三个村庄,各村分别有适龄儿童a、b、c人.今要建立一所小学,使各村学生到校总里程最短.试问:若三村人数不一定相等时学校应建在哪里?初 中 数 学 竞 赛 选 拔 试 卷参 考 答 案一、单项选择题(本大题分4小题,每题5分,共20分)题目 1 2 3 4 答案BDDD二、填空题(本大题分10小题,每题5分,共50分)5、17986、212x y -= 7、12 8、222或 9、332+ 10、4或5 11、10 12、12 13、8 14、 48515、 432+或32+16、1351373940 17、30°,60° 18、2213921539++或19、21≤S ≤25 20、221+;理由:求式=1+BC 1,又EFC BDE ∆∆∽⇒BD ·CF =1,BC 2≥2+2BD ·CF +CF BD ∙4=8∴计算可得为221+三、分析解答题(本大题分5小题,分值依次为8分、10分、14分、10分,共50分)21、(8分)【解】(暂无解答,征求答案) 22、(10分)【解】连结KN 、KM ,将NDC ∆绕点C 顺时针旋转90°得EBC ∆. AB=AD ⇒AK+BK=AN+DN ⇒(AK-AN )2=(DN-BK )2⇒AK 2+AN 2-2AK ·AN =DN 2+BK 2-2ND ·BK (两边同加2AK ·AN )⇒AK 2+AN 2=(DN +BK )2(由AK ·AN =2BK ·DN 可知),结合图可知NK 2=KE 2 ∴EKC NKC ∆∆∽(SSS )∴∠DNC =∠KEC =∠KNC ,且∠KCN =45° ∴B 、C 、M 、K 四点共圆(∠KBN =45°) ∴KM ⊥CN ,∴A 、K 、M 、N 四点共圆 ∴∠KAM =∠KNM =∠DNC ,又∠MDN =45°=∠KCN ∴N 、L 、C 、D 四点共圆,∴∠DNC =∠DLC =∠KLB ∴∠DNC =∠KAM =∠KLB (即∠BLK =∠DNC =∠BAM )23、(8分)【解】24、(14分)【解】23、第23题解25、(10分)∆中最大【解】(I)当三村人数相等时,分以下两种情形(如图):(1)ABC∆中最大角小角大于120°,不妨令∠A≥120°,则学校应建在A村;(2)ABC∆的费马点) 于120°,则学校应建在X点(此点到三边的张角相等,亦称ABC(II)当三村人数不一定相等时,则学校所在地X,可通过物理学的模拟方法求出:在平面上,用三点A、B、C模拟三村,用重物a、b、c模拟相应各村人数,并用细线通过滑轮连接于X点.当出现平衡时,平衡点X就是学校该建的地方.由静力学势能原理可知:AX·a+BX·b+CX·c达最小值,即各村分别有适龄儿童到校总里程最短.当a=b=c时,AX、BX、CX三方向拉力ABC (1)XABC(2)相等且平衡.由对称关系,立得:∠AXB=∠BXC=∠CXA=90°.。

相关文档
最新文档