大学物理A(上)静电学部分习题解答A

合集下载

大学物理课后习题答案

大学物理课后习题答案

第九章 静电场 (Electrostatic Field)二、计算题9.7 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得()()()()022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x εεεε⋅-⋅-+=⇒+=π-π+π-π+即:2610(3x x x m -+=⇒=±。

因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m9.8 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如题图9.4所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ 处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220R QR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R QE E x π==θθεθd cos 2cos d d 202RQE E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j R Q j E i E E y x202επ-=+=9.9如图9.5所示,一电荷线密度为λ的无限长带电直导线垂直纸面通过A 点;附近有一电量为Q 的均匀带电球体,其球心位于O 点。

AOP ∆是边长为a 的等边三角形。

已知P 处场强方向垂直于OP ,求:λ和Q 间的关系。

大学物理静电学题库及答案

大学物理静电学题库及答案

一、选择题:(每题3分)1、 在坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零?(A) x 轴上x >1.(B) x 轴上0<x <1.(C) x 轴上x <0. (D) y 轴上y >0.(E) y 轴上y <0.[ ]2、一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零.(C) 处处不为零. (D) 无法判定 .[]3、在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为:(A) 2012a Q επ. (B) 206a Qεπ.(C) 203a Q επ. (D) 20a Qεπ. [ ]4、电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图放置,则其x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]σ(D)5、设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ](B)x6、设有一“无限大”均匀带负电荷的平面.取x 轴垂直带电平面,坐标原点位于带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]7、关于电场强度定义式0/q F E=,下列说法中哪个是正确的?(A) 场强E 的大小与试探电荷q 0的大小成反比.(B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变.(C) 试探电荷受力F 的方向就是场强E的方向.(D) 若场中某点不放试探电荷q 0,则F =0,从而E=0. [ ]8、将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大.(B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]9、下面列出的真空中静电场的场强公式,其中哪个是正确的? (A) 点电荷q 的电场:204rq E επ=.(r 为点电荷到场点的距离)(B) “无限长”均匀带电直线(电荷线密度λ)的电场:r r E302ελπ=(r为带电直线到场点的垂直于直线的矢量)(C) “无限大”均匀带电平面(电荷面密度σ)的电场:02εσ=E(D) 半径为R 的均匀带电球面(电荷面密度σ)外的电场:r rR E302εσ= (r为球心到场点的矢量)10、下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同.(C) 场强可由q F E /=定出,其中q 为试验电荷,q 可正、可负,F试验电荷所受的电场力.P 0(D) 以上说法都不正确. [ ]11、一电场强度为E 的均匀电场,E 的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2. (C) 2πR2E . (D) 0. []12、已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定:(A) 高斯面上各点场强均为零. (B) 穿过高斯面上每一面元的电场强度通量均为零.(C) 穿过整个高斯面的电场强度通量为零. (D) 以上说法都不对. [ ]13、一点电荷,放在球形高斯面的中心处.下列哪一种情况,通过高斯面的电场强度通量发生变化:(A) 将另一点电荷放在高斯面外. (B) 将另一点电荷放进高斯面内. (C) 将球心处的点电荷移开,但仍在高斯面内.(D) 将高斯面半径缩小. [ ]14、点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]15、半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:[ ]qE O r (D) E ∝1/r 216、半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为: [ ]17、半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ ]18、半径为R 的均匀带电球面,若其电荷面密度为σ,则在距离球面R 处的电场强度大小为:(A)εσ. (B) 02εσ.(C) 04εσ. (D) 08εσ. [ ]19、高斯定理⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场.(B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ] 20、根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. [ ]21、关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷. (B) 如果高斯面内无电荷,则高斯面上E处处为零. (C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零. [ ]22、如图所示,两个同心均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在外球面外面、距离球心为r 处的P 点的场强大小E 为:(A)20214rQ Q επ+. (B)()()2202210144R r Q R r Q -π+-πεε. (C) ()2120214R R Q Q -π+ε. (D) 2024r Q επ. [ ]23、 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A)r0212ελλπ+.(B) ()()20210122R r R r -π+-πελελ.(C) ()20212R r -π+ελλ. (D) 20210122R R ελελπ+π. [ ]24、A 和B 为两个均匀带电球体,A 带电荷+q ,B 带电荷-q ,作一与A 同心的球面S 为高斯面,如图所示.则(A) 通过S 面的电场强度通量为零,S 面上各点的场强为零.(B) 通过S 面的电场强度通量为q / ε0,S 面上场强的大小为20π4rqE ε=.(C) 通过S 面的电场强度通量为(- q ) / ε0,S 面上场强的大小为20π4rqE ε=. (D) 通过S 面的电场强度通量为q / ε0,但S 面上各点的场强不能直接由高斯定理求出. [ ]25、在空间有一非均匀电场,其电场线分布如图所示.在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元∆S 的电场强度通量为∆Φe ,则通过该球面其余部分的电场强度通量为(A) - ∆Φe . (B)e SR Φ∆∆π24. (C) e SSR Φ∆∆∆-π24. (D) 0.[ ]26、半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为: [ ]27、静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ ]28、如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷. (B) 顶点a 、b 处是正电荷,c 、d 处是负电荷. (C) 顶点a 、c 处是正电荷,b 、d 处是负电荷. (D) 顶点a 、b 、c 、d 处都是负电荷. [ ] 29、如图所示,边长为 0.3 m 的正三角形abc ,在顶点a 处有一电荷为10-8 C 的正点电荷,顶点b 处有一电荷为-10-8 C 的负点电荷,则顶点c 处的电场强度的大小E 和电势U 为: (41επ=9³10-9 N m /C 2)(A) E =0,U =0. (B) E =1000 V/m ,U =0.(C) E =1000 V/m ,U =600 V .(D) E =2000 V/m ,U =600 V . [ ]30、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,R Q U 04επ=.(C) 204r Q E επ=,r Q U 04επ= . (D) 204r Q E επ=,RQU 04επ=. [ ]31、关于静电场中某点电势值的正负,下列说法中正确的是:E O r (A) E ∝1/rb a(A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取.(D) 电势值的正负取决于产生电场的电荷的正负. [ ]32、在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为:(A)aQ 034επ .(B) a Q032επ.(C) a Q 06επ. (D) aQ012επ . [ ]33、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A) 半径为R 的均匀带正电球面.(B) 半径为R的均匀带正电球体. (C) 正点电荷.(D) 负点电荷. [ ]34、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A) 半径为R 的均匀带负电球面. (B) 半径为R 的均匀带负电球体. (C) 正点电荷. (D) 负点电荷. [ ]35、一半径为R 的均匀带电球面,带有电荷Q .若规定该球面上的电势值为零,则无限远处的电势将等于 (A)R Q0π4ε. (B) 0.(C) RQ0π4ε-. (D) ∞. [ ]36、 真空中有一点电荷Q ,在与它相距为r 的a 点处有一试验电荷q .现使试验电荷q 从a 点沿半圆弧轨道运动到b 点,如图所示.则电场力对q 作功为(A)24220r r Qq π⋅πε. (B) r r Qq 2420επ. (C) r rQqππ204ε. (D) 0. [ ]37、点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大.(C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. []38、如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q从无穷远处移到三角形的中心O 处,外力所作的功为:(A) a qQ023επ . (B) aqQ 03επ.(C)a qQ 0233επ. (D) aqQ032επ. [ ]39、在已知静电场分布的条件下,任意两点P 1和P 2之间的电势差决定于 (A) P 1和P 2两点的位置. (B) P 1和P 2两点处的电场强度的大小和方向. (C) 试验电荷所带电荷的正负.(D) 试验电荷的电荷大小. [ ]40、如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ ]41、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N . (C) 电势能W M <W N . (D) 电场力的功A >0.[ ]42、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M >E N . (B) 电势U M >U N . (C) 电势能W M <W N . (D) 电场力的功A >0.[ ]43、在电荷为-Q 的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点.a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图所示.则移动过程中电场力做的功为 Aq2q- r(A)⎪⎪⎭⎫ ⎝⎛-π-210114r r Qε. (B) ⎪⎪⎭⎫⎝⎛-π210114r r qQ ε. (C) ⎪⎪⎭⎫⎝⎛-π-210114r r qQ ε. (D) ()1204r r qQ -π-ε [ ]44、带有电荷-q 的一个质点垂直射入开有小孔的两带电平行板之间,如图所示.两平行板之间的电势差为U ,距离为d ,则此带电质点通过电场后它的动能增量等于(A) dqU-. (B) +qU .(C) -qU . (D) qU 21. [ ]45、在匀强电场中,将一负电荷从A 移到B ,如图所示.则: (A) 电场力作正功,负电荷的电势能减少. (B) 电场力作正功,负电荷的电势能增加. (C) 电场力作负功,负电荷的电势能减少.(D) 电场力作负功,负电荷的电势能增加. [ ]46、 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:(A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . [ ]47、电子的质量为m e ,电荷为-e ,绕静止的氢原子核(即质子)作半径为r 的匀速率圆周运动,则电子的速率为 (A) k r m ee . (B) rm ke e . (C) r m k ee 2. (D) rm ke e 2. (式中k =1 / (4πε0) )[ ]48、质量均为m ,相距为r 1的两个电子,由静止开始在电力作用下(忽略重力作用)运动至相距为r 2,此时每一个电子的速率为 (A)⎪⎪⎭⎫⎝⎛-21112r r m ke . (B) ⎪⎪⎭⎫⎝⎛-21112r r m ke . (C) ⎪⎪⎭⎫ ⎝⎛-21112r r m k e . (D) ⎪⎪⎭⎫⎝⎛-2111r r m k e (式中k =1 / (4πε0) ) [ ]49、相距为r 1的两个电子,在重力可忽略的情况下由静止开始运动到相距为r 2,从相距r 1到-q dO U-BE相距r 2期间,两电子系统的下列哪一个量是不变的? (A) 动能总和; (B) 电势能总和;(C) 动量总和; (D) 电相互作用力. [ ]50、一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A) F =0,M = 0. (B) F = 0,M≠0.(C) F ≠0,M =0. (D) F ≠0,M≠0. [ ]51、真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N两点电荷之间的作用力 (A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ ]52、设有一带电油滴,处在带电的水平放置的大平行金属板之间保持稳定,如图所示.若油滴获得了附加的负电荷,为了继续使油滴保持稳定,应采取下面哪个措施?(A) 使两金属板相互靠近些.(B) 改变两极板上电荷的正负极性.(C) 使油滴离正极板远一些.(D) 减小两板间的电势差. [ ]53、正方形的两对角上,各置电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为(A) Q =-22q . (B) Q =-2q .(C) Q =-4q . (D) Q =-2q . [ ]54、电荷之比为1∶3∶5的三个带同号电荷的小球A 、B 、C ,保持在一条直线上,相互间距离比小球直径大得多.若固定A 、C 不动,改变B的位置使B 所受电场力为零时,AB 与BC 的比值为(A) 5. (B) 1/5.(C)5. (D) 1/5. [ ]55、面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) Sq 022ε.(C) 2022S q ε. (D) 202Sq ε. [ ]56、充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系是:(A) F ∝U . (B) F ∝1/U .(C) F ∝1/U 2. (D) F ∝U 2. [ ]-+57、 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则(A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小. (C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ]58、关于高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零. (B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]59、关于静电场中的电位移线,下列说法中,哪一个是正确的? (A) 起自正电荷,止于负电荷,不形成闭合线,不中断. (B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交. (D) 电位移线只出现在有电介质的空间. [ ]60、两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ ]二、填空题(每题4分)61、静电场中某点的电场强度,其大小和方向与__________________________________________________________________相同.62、电荷为-5³10-9 C 的试验电荷放在电场中某点时,受到 20³10-9 N 的向下的力,则该点的电场强度大小为_____________________,方向____________.63、静电场场强的叠加原理的内容是:_________________________________________________________________________________________________________________________________________________________________.q 0P64、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量⎰∙S Ed 的值仅取决于 ,而与 无关.65、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的 电场强度通量为__________________.66、电荷分别为q 1和q 2的两个点电荷单独在空间各点产生的静电场强分别为1E 和2E,空间各点总场强为E =1E +2E.现在作一封闭曲面S ,如图所示,则以下两式分别给出通过S 的电场强度通量 ⎰⋅S E d 1=______________________________,⎰⋅S Ed =________________________________.67、一面积为S 的平面,放在场强为E 的均匀电场中,已知 E 与平面间的夹角为θ(<π/2),则通过该平面的电场强度通量的数值Φe =______________________.68、如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的电场强度通量⎰⋅SS E d =_____________,式中E为_________________处的场强.69、一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(r表示从球心引出的矢径):()r E=______________________(r <R ),()r E=______________________(r >R ).70、一半径为R 的“无限长”均匀带电圆柱面,其电荷面密度为σ.该圆柱面内、外场强分布为(r表示在垂直于圆柱面的平面上,从轴线处引出的矢径):()r E=______________________(r <R ),()r E=______________________(r >R ).71、在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S 2、S 3,则通过这些闭合面的电场强度通量分别是:Φ1=________,Φ2=___________,Φ3=__________72、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量⎰∙S Ed 的值仅取决于 ,而与 无关.73、一闭合面包围着一个电偶极子,则通过此闭合面的电场强度通量Φe =_________________.74、图中曲线表示一种球对称性静电场的电势分布,r表示离对称中心的距离.这是____________________________________________的电场.75、一半径为R 的均匀带电球面,其电荷面密度为σ.若规定无穷远处为电势零点,则该球面上的电势U =____________________.76、电荷分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R ,则b 点处的电势U =___________ .77、描述静电场性质的两个基本物理量是______________;它们的定义式是________________和__________________________________________.78、静电场中某点的电势,其数值等于______________________________ 或_______________________________________.79、一点电荷q =10-9 C ,A 、B 、C 三点分别距离该点电荷10 cm 、20 cm 、30 cm .若选B 点的电势为零,则A 点的电势为______________,C 点的电势为________________.(真空介电常量ε0=8.85³10-12 C 2²N -1²m -2)80、电荷为-Q 的点电荷,置于圆心O 处,b 、c 、d 为同一圆周上的不同点,如图所示.现将试验电荷+q 0从图中a 点分别沿ab 、ac 、ad 路径移到相应的b 、c 、d 各点,设移动过程中电场力所作的功分别用A 1、1 23q 13qbA 2、A 3表示,则三者的大小的关系是______________________.(填>,<,=)81、如图所示,在一个点电荷的电场中分别作三个电势不同的等势面A ,B ,C .已知U A >U B >U C ,且U A -U B =U B -U C ,则相邻两等势面之间的距离的关系是:R B -R A ______ R C -R B . (填<,=,>)82、一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e =________________________.83、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b点,外力所作的功A =______________.84、真空中电荷分别为q 1和q 2的两个点电荷,当它们相距为r 时,该电荷系统的相互作用电势能W =________________.(设当两个点电荷相距无穷远时电势能为零)85、在静电场中,一质子(带电荷e =1.6³10-19 C)沿四分之一的圆弧轨道从A 点移到B 点(如图),电场力作功8.0³10-15 J .则当质子沿四分之三的圆弧轨道从B 点回到A 点时,电场力作功A =____________________.设A 点电势为零,则B 点电势U =____________________.86、静电力作功的特点是________________________________________________________________________________,因而静电力属于_________________力.87、静电场的环路定理的数学表示式为:______________________.该式的物理意义是:__________________________________________________________________________________________________________.该定理表明,静电场是____________________________________场.88、一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距rA处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e =________________________.89、 图示为某静电场的等势面图,在图中画出该电场的电场线.90、图中所示以O 为心的各圆弧为静电场的等势(位)线图,已知U 1<U 2<U 3,在图上画出a 、b 两点的电场强度的方向,并 比较它们的大小.E a ________ E b (填<、=、>).91、一质量为m ,电荷为q 的粒子,从电势为U A 的A 点,在电场力作用下运动到电势为U B 的B 点.若粒子到达B 点时的速率为v B ,则它在A 点时的速率v A=___________________________.92、一质量为m 、电荷为q 的小球,在电场力作用下,从电势为U 的a 点,移动到电势为零的b 点.若已知小球在b 点的速率为v b ,则小球在a 点的速率v a= ______________________.93、一质子和一α粒子进入到同一电场中,两者的加速度之比,a p ∶a α=________________.94、带有N 个电子的一个油滴,其质量为m ,电子的电荷大小为e .在重力场中由静止开始下落(重力加速度为g ),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向为__________________,大小为_____________.OU U95、在静电场中有一立方形均匀导体,边长为a .已知立方导体中心O 处的电势为U 0,则立方体顶点A 的电势为____________. 96、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.97、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势 ______________.(填增大、不变、减小)98、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U ' =________________ .99、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.100、A 、B 两个导体球,相距甚远,因此均可看成是孤立的.其中A 球原来带电,B 球不带电,现用一根细长导线将两球连接,则球上分配的电荷与球半径成______比.101、如图所示,两同心导体球壳,内球壳带电荷+q ,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为: 内表面___________ ; 外表面___________ .102、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增大、不变、减小)103、一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度σ =______________.104、一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =______________.105、一平行板电容器,上极板带正电,下极板带负电,其间充满相对介电常量为εr = 2的各向同性均匀电介质,如图所示.在图上大致画出电介质内任一点P 处自由电荷产生的场强 0E, 束缚电荷产生的场强E '和总场强E.106、两个点电荷在真空中相距d 1 = 7 cm 时的相互作用力与在煤油中相距d 2 = 5cm时的相互作用力相等,则煤油的相对介电常量εr =___________________.107、如图所示,平行板电容器中充有各向同性均匀电介质.图中画出两组带有箭头的线分别表示电场线、电位移线.则其中(1)为__________________线,(2)为__________________线.108、一个半径为R 的薄金属球壳,带有电荷q ,壳内充满相对介电常量为εr 的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势 U = ________________________________.109、一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ ,则介质中电位移的大小D =____________,电场强度的大小E =____________________.110、一个半径为R 的薄金属球壳,带有电荷q ,壳内真空,壳外是无限大的相对介电常量为εr 的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势 U =____________________________.111、一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场能量是原来的___________ 倍.112、一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常(1)(2)量为εr的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的_________倍;电场能量是原来的_________倍.113、在相对介电常量为εr的各向同性的电介质中,电位移矢量与场强之间的关系是___________________ .114、分子的正负电荷中心重合的电介质叫做_______________ 电介质.在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.115、一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ,则介质中电位移的大小D =____________,电场强度的大小E =____________________.116、一平行板电容器充电后切断电源,若使二极板间距离增加,则二极板间场强_________________,电容____________________.(填增大或减小或不变) 117、一个孤立导体,当它带有电荷q而电势为U时,则定义该导体的电容为C =______________,它是表征导体的________________的物理量.118、一个孤立导体,当它带有电荷q而电势为U时,则定义该导体的电容为C =______________,它是表征导体的________________的物理量.119、两个空气电容器1和2,并联后接在电压恒定的直流Array电源上,如图所示.今有一块各向同性均匀电介质板缓慢地插入电容器1中,则电容器组的总电荷将__________,电容器组储存的电能将__________.(填增大,减小或不变)120、真空中均匀带电的球面和球体,如果两者的半径和总电荷都相等,则带电球面的电场能量W1与带电球体的电场能量W2相比,W1________ W2 (填<、=、>).三、计算题:(每题10分)121、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.122、用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心O 点的电场强度.123、如图所示,一长为10 cm 的均匀带正电细杆,其电荷为1.5³10-8 C ,试求在杆的延长线上距杆的端点5 cm 处的P 点的电场强度.(41επ=9³109 N ²m 2/C 2 )124、真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:Ex =bx , E y =0 , E z =0.常量b =1000 N/(C ²m).试求通过该高斯面的电通量125、真空中有一半径为R 的圆平面.在通过圆心O 与平面垂直的轴线上一点P 处,有一电荷为q 的点电荷.O 、P 间距离为h ,如图所示.试求通过该圆平面的电场强度通量.126、若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85³10-12C 2 / N ²m 2 )127、如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?128、一带有电荷q =3³10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6³10-5 J ,粒子动能的增量为4.5³10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?Lq PqdEq。

大学物理习题参考解答上静电场环路定理_电势能_电势和电势差

大学物理习题参考解答上静电场环路定理_电势能_电势和电势差

02. 如图所示, CDEF 是一矩形,边长分别为 l 和 2l 。在 DC 延长线上 CA l 处的 A 点有点电荷 q ,在 CF 的中点 B 点有点电荷 q ,若使单位正电荷从 C 点沿 CDEF 路径运动到 F 点,则电场
力所作的功等于:
【D】
(A)
q 4ol
5 1; 5l
(B)
q 4ol
三 判断题
09. 静电场中某点电势值的正负取决于电势零点的选取。
【对】
10. 在已知静电场分布的条件下,任意两点 P1 和 P2 之间的电势差决定于 P1 和 P2 两点的位置。【 对 】
11. 正电荷在电势高的地方,电势能也一定高。 12. 电场强度的方向总是指向电势降落最快的方向。
【对】 【对】
1 4 0
4 r12 r1
1 4 0
4 r22 r2
0

——
r1 ' r2 0
XCH
第3页
20XX-3-24
大学物理教程_上_习题集参考解答
r1 r2
—— 外球面带负电
外球面应放掉电荷: Q Q Q Q 4 r22 4 r22
Q
(1
r1 r2
)
4
r22
将 r1 10 cm and r2 20 cm , 8.85 109C / m2 代入上式得到:
13. 静电场的保守性体现在电场强度的环流等于零。
【对】
四 计算题
14. 如图所示, AB 2L , OCD 是以 B 为中心 L 为半径的半圆, A 和 B 两处分别有正负电荷 q 和 q ,试问:
1) 把单位正电荷从 O 沿 OCD 移动到 D ,电场力对它作了多少功?
XCH

大学物理学 第10章_静电场 习题解答 [王玉国 康山林 赵宝群]

大学物理学 第10章_静电场 习题解答 [王玉国 康山林 赵宝群]

q 6 0 q ;如果它包含 q 所在 24 0
2 2
对于边长 a 的正方形,如果它不包含 q 所在的顶点,则 e 顶点则 e 0 .
(3) 因为通过半径为 R 的圆平面的电通量等于通过半径为 R x 的球冠面的电通 量,而球冠面积*
S 2π( R 2 x 2 )[1
P R q r P'
2q a O a 3q a
+Q q a
R
d

题 10-10 图
题 10-11 图
题 10-12 图
10-12 如图所示.试验电荷 q , 在点电荷 Q 产生的电场中,沿半径为 R 的整个圆弧 的 3/4 圆弧轨道由 a 点移到 d 点的过程中电场力做功多大?从 d 点移到无穷远处的过程中, 电场力做功为多少? 解:因为在点电荷 Q 产生的电场中, U a U d 。故试验电荷 q 在点电荷 Q 产生的电 场中, 沿半径为 R 的整个圆弧的 3/4 圆弧轨道由 a 点移到 d 点的过程中电场力做功 Aad 0 ; 从 d 点移到无穷远处的过程中,电场力做功为
q0 2.0 105 C .试求该点电荷所受的电场力。
点电荷所在处产生场强为: d E
dx
4 0 d x
2 l
。整个杆上电荷在该点的场强为:
E
4 0
d x
0
dxLeabharlann 2l4 0 d d l
点电荷 q0 所受的电场力大小为:
F
方向:沿 x 轴负向
A q U d U qU d
[或另解: A
qQ 4 0 R
]


R
qE d r

大学物理静电学综合练习题(含答案)

大学物理静电学综合练习题(含答案)

解:利用高斯定理
r

a : E1
=
Qr 4 0a 3
;r

a : E2
=
Q 4 0r 2
we
=
1 E 2 , 2
W
=
0a
1 2

0
E12
dV
+
a
1 2
ቤተ መጻሕፍቲ ባይዱ
0
E
2 2
dV
=
3Q 2 20 0a
12.一个半径为 R1 的金属球带有正电荷 Q ,球外包围着一层同心的相对介电常数为 r 的均 匀 电 介 质 球 壳 层 , 其 内 半 径 为 R1 , 外 半 径 为 R2 , 在 电 介 质 内 的 点 a 距 离 球 心 为
(A) 0 ; (B) − q ; (C) r1 q ; (D) − r1 q 。
r2
r2
4-3
解:球心电势
U0
=
q 4 0r2
+ q 4 0r1
= 0,q = − r1 q r2
10.如图所示,一个封闭的空心导体,观察者 A (测量仪器)和电
荷 Q1 置于导体内,而观察者 B 和电荷 Q2 置于导体外,下列说
解:在圆环上任取一段d l ,d l 到o 点的连线与 x 轴夹角为 ,则d l 段
=
q0q 4 0

1 d

0

q0q 4 0

1 d

0
=
0
或 Ao = q0(Uo − U ) = 0
4.长度为 L 的细玻璃棒,沿着长度方向均匀地分布着电 荷,总电量为 Q ,如图所示。在棒的轴向有一点 P ,离 棒 左 端 的 距 离 为 r , 则 P 点 的 电 势 P•

大学物理上册A-西安交通大学出版社6.静电场中的导体和电介质.

大学物理上册A-西安交通大学出版社6.静电场中的导体和电介质.

q2 0S
)d
S 。设
C.
(q1 q2 )d 4 0 S
D.
(q1 q2 )d 2 0 S
二、填空题
1.如图所示,距球心 d 处的点电荷 q ,能在原不带电、外半径
为 R1 的空腔导体球壳的内表面感应出电量为
的电荷,而在
导体球壳的外表面会感应出电量为
的电荷;球心 O 处的
电势为
。若用导线把球壳接地,则球心
B. 球体的静电能等于球面的静电能;
C. 球体的静电能大于球面的静电能;
D. 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能。
2.真空中有一组带电导体,某一导体表面电荷面密度为 处,其表面附近的
场强 E 0 ,这场强 E 是由
A. 该处无穷小面元上的电荷产生的;
[] B. 该导体上全部电荷产生的;
第六次 静电场中的导体与电介质
班 级 ___________________
姓 名 ___________________
班内序号 ___________________
一. 选择题
1.真空中有一均匀带电球体和一均匀带电球面,如果它们的半径和所带电量均
相等,则它们的静电能之间的关系是:
[]
A. 球体的静电能小于球面的静电能;
;并联后系统电场能量为
;电场能量增量为

三.计算题
1.如图,平行放置两块面积为 A 、彼此相距为 d 的导体板, 两板分别带有电荷 Q 1 和 Q 2 , 假设每块导体板表面的电荷分
布都是均匀的。求:三个区域电场。
(1)
(2)
d
(3)
3
2.半、外半径分别为 R2 =4.0cm和 R3 =5.0cm,当内球带电荷 Q =3.0×10-8C 时,

《大学物理aⅰ》静电场中的导体和电介质习题、答案及解法(.6.4)

《大学物理aⅰ》静电场中的导体和电介质习题、答案及解法(.6.4)

静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。

在腔内离球心的距离为a 处放一点电荷q +,如图1所示。

用导线把球壳接地后,再把地线撤去。

选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。

参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V RaRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。

设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。

[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ 3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。

设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204r q πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。

1r 2r OPQ+q+aOR 1d 2σ2d 1σ参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==∙+∙=∙=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。

《大学物理学》习题解答静电场中的导体和电介质

《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静电学部分习题解答第11次课(上)1、解:由库仑定律:12214q qF rrπε=代入数据,求得库仑力大小: 3.78NF=2、解:取线元d x ,其电量d q 在P 点场强大小为:"211dd4()2=+-PxEld xλπε211dd d cos04()2==+-Px PxE Eld xλπε()23220011111() 2.4110N/C 44()2-==-=⨯++-⎰lPx ldxEl d l dd xλλπεπε3、解:建立如图坐标;取线元:'22300dd d44q QE lR Rπεπε==由对称性:0xE=()00d d siny yE Ey yE E Eπθ==+⎰⎰d dl Rθ="222200sind42yQ QER Rπθθπεπε=-=-⎰222yQE E j jRπε==-4、解:()()2200d d d dd4242q q x xFL x x L x xλλπεπε''==''+-+-)()()2200d d d dd d cos04242xq q x xF FL x x L x xλλπεπε''===''+-+-()22200d4d ln4342L LxxF xL x xλλπεπε'=='+-⎰⎰()24ln N43xF F i iλπε⎛⎫== ⎪⎝⎭第12次课(上)%1、解:具有面对称性,作闭合圆柱面为高斯面。

e S E dS Φ=⋅⎰⎰=⋅+⋅+⋅⎰⎰⎰⎰⎰⎰12侧S S S E dS E dS E dS1200/ES ES S σε=++=-02S ES σε=02E σε∴=方向如图所示。

2、解:过A 板作闭合圆柱面为高斯面e SE dSΦ=⋅⎰⎰!=⋅+⋅+⋅⎰⎰⎰⎰⎰⎰12侧S S S E dS E dS E dS=+=02010cos 0cos180/3A E S E S S σε00 23AEεσ=-¥同理,过B板作闭合圆柱面为高斯面e SE dSΦ=⋅⎰⎰=⋅+⋅+⋅⎰⎰⎰⎰⎰⎰12侧S S SE dS E dS E dS=+=1020cos0cos0/3BES E S Sσε"0043BEεσ=3、解:取同心球面为高斯面由高斯定理:()24224004d1144d⎧'''=⎪=⋅===⎨⎪'''=⎩⎰∑⎰⎰⎰re i RsSkr r r k r r RE dS E r qkr r r k R r RπππεεππΦ4344krr r REkRr r Rrεε⎧⎪⎪=⎨⎪⎪⎩…4、解:取同轴圆柱形高斯面, 由高斯定理:()()1120020 112 ⎧⎪=⋅===⎨⎪+-⎩∑⎰⎰e i s S r R E dS E rl q l R r R l l R rπλεελλΦ1122020 20 r R E r R r R r R r λπε⎧⎪⎪=⎨⎪⎪⎩'第13、14次课(上)1、解:由点电荷电势公式及电势叠加原理:~2、解:由高斯定理: :—()223230003d d d 448Rr rrRq R r qr q U E r r r RrRπεπεπε∞∞-==+=⎰⎰⎰#01()04=-=O q q U R Rπε01()43=-C q q U R R πε06=-q R πε000()6∴=-=OC O C qq A q U U Rπε()1=⋅=∑⎰⎰e isS E dS qεΦ()3333000413 43==∑i s rq qr q r RR R πεεεπ30 4∴=qr E r R Rπε()1=∑i s qq rR εε20 4∴=q E rRr πε3、解:(1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强相互抵消,BC 段电荷在O 点产生的场强由第11课练习题3可得:220022y Q E E j j j RRλπεπε-==-=(2) AB 段电荷在O 点产生的电势(以无穷远处电势为零) 2100d ln 244RRx U x λλπεπε--==⎰【同理CD 段:2200d ln 244RRx U x λλπεπε==⎰BC 段:3000d 44Rl U R πλλπεε==⎰ 12300ln 224O U U U U λλπεε=++=+4、解:(1) 外球壳内表面均匀带-q ,外内表面均匀带+q 222002d 44R R q q U r rR πεπε∞==⎰¥(2) 外壳接地时,外表面+q 电荷入地,外表面不带电,内表面电荷为-q .20R U =(3) 设此时内球壳带电量为q ' ,外球壳内表面均匀带q '-,外内表面均匀带q q '- 此时电场分布为:)()()120122020 4 4 r RE q r R r R q q r R r πεπε⎧⎪⎪'=⎨⎪'-⎪⎩211222000120211d d 04444R R R R q q q q q qU r r r r R R R πεπεπεπε∞⎛⎫''''--=+=-+= ⎪⎝⎭⎰⎰ 由此/12R q q R '=()22122200202d 444R R q R R q q q qU r r R R πεπεπε∞-''--===⎰第15次课(上)1、(1) 1q 对2q 作用力的大小为2210π41rq q F ε=。

由于静电屏蔽,1q 以及球壳A 和球壳B 上的感应电荷在球壳B 内部空间产生的合和场强为0,故2q 所受合和外力为0,没有加速度;(2) 1q 对2q 作用力的大小为2210π41r q q F ε=, 1q 以及球壳A 的感应电荷对2q 均有作用力,其合力使2q 产生加速度。

,2、(1)对图示封闭面(S)利用高斯定理,有()22010e S σσεΦ=+∆=即 23σσ=-%(2) 取向右为正方向,有3124000002222P E σσσσεεεε=---= 故有 14σσ=3、解:(1) 令A 板左侧电荷面密度为L σ,右侧为R σ,则根据静电感应,C 板右侧电荷面密度为L σ-,B 板左侧电荷面密度为R σ-'显然 ()L R S q σσ+= ①0R AB E σε=方向向右; 0L AC E σε=方向向左 由于A 板为等势体,有 AC AB U U = 即AC AC AB AB E d E d =2100L R d d σσεε= ② ;由①和②有52521.010C/m 0.510C/m L R σσ--=⨯=⨯771.010 C2.010C B R C L q S q S σσ--=-=⨯=-=⨯(2) ()22100() 2.2610V L R A AC AC AC AB AB AB U U E d d U E d d ======⨯σσεε4、 解:设内圆柱面单位长度柱面带电λ,则两柱面间电场分布为:120 2E R rR rλπε=两柱面的电势差为:2121212001d ln 22R R R R R U r U U r R λλπεπε===-⎰由此得 ()012212ln U U R R πελ-=两圆柱面间距轴线垂直距离为r 1和r 2两点的电势差为:()2121012222001112d ln ln 22ln r r r r U U r r U r R r r r R πελλπεπε-===⎰。

相关文档
最新文档