军考真题数学完整版

合集下载

军考数学高中士兵考军校综合测试卷及答案

军考数学高中士兵考军校综合测试卷及答案

2021年军考-高中学历士兵考军校-数学综合测试卷一.选择题(共9小题)1.设集合2{|}M x x x ==,{|0}N x lgx =,则(M N =)A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]2.函数221(2x y -=的单调递减区间为()A .(-∞,0]B.[0,)+∞C .(-∞D .,)+∞3.设02x π<<,则“2cos x x <”是“cos x x <”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知1t >,2log x t =,3log y t =,5log z t =,则()A .235x y z<<B .523z x y<<C .352y z x <<D .325y x z<<5.若关于x 的不等式3410x ax +-对任意[1x ∈-,1]都成立,则实数a 的取值范围是()A .[4-,3]-B .{3}-C .{3}D .[3,4]6.已知数列{}n a 为等差数列,n S 为其前n 项和,312S =,且1a ,2a ,6a 成等比数列,则10(a =)A .33B .28C .4D .4或287.一段1米长的绳子,将其截为3段,问这三段可以组成三角形的概率是()A .14B .12C .18D .138.2251lim 25n n n n →∞--+的值为()A .15-B .52-C .15D .529.已知圆22:(1)1M x y -+=,圆22:(1)1N x y ++=,直线1l ,2l 分别过圆心M ,N ,且1l 与圆M 相交于A ,B 两点,2l 与圆N 相交于C ,D 两点,点P 是椭圆22149x y +=上任意一点,则PA PB PC PD +的最小值为()A .7B .8C .9D .10二.填空题(共8小题)10.49log 43log 2547lg lg ++=.11.已知22sin 3α=,1cos()3αβ+=-,且α,(0,)2πβ∈,则sin β=.12.若函数3()2()f x x ax a R =--∈在(,0)-∞内有且只有一个零点,则()f x 在[1-,2]上的最小值为.13.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.14.73(1)(1)x x -+的展开式中x 的系数是.15.设数列{}n a 的前n 项和n S 满足11(*)n n n n S S S S n N ++-=∈,且11a =,则n a =.16.已知函数()f x 对任意的x R ∈,都有11()()22f x f x +=-,函数(1)f x +是奇函数,当1122x-时,()2f x x =,则方程1()2f x =-在区间[3-,5]内的所有零点之和为.17.已知点O 为坐标原点,圆22:(1)1M x y -+=,圆22:(2)4N x y ++=,A ,B 分别为圆M 和圆N 上的动点,OAB ∆面积的最大值为.参考答案与解析一.选择题(共9小题)1.【解答】解:由2{|}{0M x x x ===,1},{|0}(0N x lgx ==,1],得{0MN =,1}(0⋃,1][0=,1].故选:A .2.【解答】解:令22t x =-,则1()2t y =,即有y 在t R ∈上递减,由于t 在[0x ∈,)+∞上递增,则由复合函数的单调性,可知,函数y 的单调减区间为:[0,)+∞.故选:B .3.【解答】解:由2x x =得0x =或1x =,作出函数cos y x =和2y x =和y x =的图象如图,则由图象可知当2cos x x <时,2B x x π<<,当cos x x <时,2A x x π<<,AB x x <,∴“2cos x x <”是“cos x x <”的充分不必要条件,故选:A .4.【解答】解:1t >,0lgt ∴>.又0235lg lg lg <<<,2202lgt x lg ∴=>,3303lgt y lg =>,505lgtz lg =>,∴5321225z lg x lg =>,可得52z x >.29138x lg y lg =>.可得23x y >.综上可得:325y x z <<.故选:D .5.【解答】解:令3()41f x x ax =+-,[1x ∈-,1].不等式3410x ax +-对任意[1x ∈-,1]都成立,即()0f x 对任意[1x ∈-,1]都成立,取4a =-,则3()441f x x x =--,此时11()022f -=>,排除A .取3a =,则3()431f x x x =+-,此时1()102f =>,排除CD .故选:B .6.【解答】解:设数列{}n a 为公差为d 的等差数列,当0d =时,312S =,即1312a =,即有1014a a ==;当0d ≠时,1a ,2a ,6a 成等比数列,可得2216a a a =,即2111()(5)a d a a d +=+,化为13d a =,311331212S a d a ∴=+==,11a ∴=,3d =,1019328a ∴=+⨯=.综上可得104a =或28.故选:D .7.【解答】解:设三段长分别为x ,y ,1x y --,则总样本空间为010101x y x y <<⎧⎪<<⎨⎪<+<⎩.其面积为12,能构成三角形的事件的空间为111x y x y x x y y y x y x +>--⎧⎪+-->⎨⎪+-->⎩,其面积为18,则这三段可以组成三角形的概率是118142p ==.故选:A.8.【解答】解:222215515limlim 152522n n n n n n n n→∞→∞--==-+-+.9.【解答】解:圆22:(1)1M x y -+=的圆心(1,0)M ,半径为1M r =;圆22:(1)1N x y ++=的圆心为(1,0)N -,半径为1N r =;所以22()()()1PA PB PM MA PM MB PM PM MA MB MA MB PM =++=+++=-,22()()()1PC PD PN NC PN ND PN PN NC ND NC ND PN =++=+++=-,P 为椭圆22149x y +=上的点,∴222221022()89y PA PB PC PD PM PN x y +=+-=+=+;由题意可知,33y -,21088189y ∴+,即PA PB PC PD +的最小值为8.故选:B .二.填空题(共8小题)10.【解答】解:原式71243115310072244log log lg -=++=-++=.故答案为:154.11.【解答】解:22sin 3α=,(0,2πα∈,1cos 3α∴==,α∴,(0,2πβ∈,(0,)αβπ∴+∈,又1cos()3αβ+=-,sin()3αβ∴+=.则11sin sin[()]sin()cos cos()sin ()33βαβααβααβα=+-=+-+=--⨯.故答案为:429.12.【解答】解:3()2()f x x ax a R =--∈,2()3(0)f x x a x ∴'=-<,①当0a 时,2()30f x x a '=->,函数()f x 在(,0)-∞上单调递增,又(0)20f =-<,()f x ∴在(,0)-∞上没有零点;②当0a >时,由2()30f x x a '=->,解得33x <或33x >(舍).()f x ∴在(,)3-∞上单调递增,在(3,0)上单调递减,而(0)20f =-<,要使()f x 在(,0)-∞内有且只有一个零点,3(()()20333f a ∴-=--⨯--=,解得3a =,3()32f x x x =--,2()333(1)(1)f x x x x '=-=+-,[1x ∈-,2],当(1,1)x ∈-时,()0f x '<,()f x 单调递减,当(1,2)x ∈时,()0f x '>,()f x 单调递增.又(1)0f -=,f (1)4=-,f (2)0=,()min f x f ∴=(1)4=-.故答案为:4-.13.【解答】解:根据题意,可得排法共有112654180C C C =种.故答案为:180.14.【解答】解:73(1)(1)x x -+的展开式中x 的系数可这样求得:第一个括号7(1)x -中提供x 时,第二个括号3(1)x +只能提供常数,此时展开式中x 的系数是:1637(1)17C -=;同理可求,第一个括号7(1)x -中提供常数时,第二个括号3(1)x +只能提供x ,此时展开式中x 的系数是7123(1)13C -=-,所以展开式中x 的系数是16371273(1)1(1)14C C -+-=.故答案为:4.15.【解答】解:数列{}n a 的前n 项和n S 满足11(*)n n n n S S S S n N ++-=∈,可得1111n n S S +-=,所以1{}n S 是等差数列,首项为1,公差为1,所以11(1)1nn n S =+-=,1n S n =,1111(1)n a n n n n -=-=--,2n ,(*)n N ∈,所以1,11,2(1)n n a n n n =⎧⎪=-⎨⎪-⎩,故答案为:1,11,2(1)n n n n =⎧⎪-⎨⎪-⎩.16.【解答】解:根据题意,因为函数(1)f x +是奇函数,所以函数(1)f x +的图象关于点(0,0)对称,把函数(1)f x +的图象向右平移1个单位可得函数()f x 的图象,即函数()f x 的图象关于点(1,0))对称,则(2)()f x f x -=-,又因为11()()22f x f x +=-,所以(1)()f x f x -=,从而(2)(1)f x f x -=--,再用x 替换1x -可得(1)()f x f x +=-,所以(2)(1)()f x f x f x +=-+=,即函数()f x 的周期为2,且图象关于直线12x =对称,如图所示,函数()f x 在区间[3-,5]内有8个零点,所有零点之和为12442⨯⨯=.故答案为:4.17.【解答】解:如图以OM 为直径画圆,延长BO 交新圆于E ,AO 交新圆于F 点,连接FE ,NF ,MF ,则MF 与OA 垂直,又MA MO =,F 为AO 的中点,由对称性可得OF OB =,由1sin 2ABO S OA OB AOB ∆=∠,1sin()2EAO S OE OB AOB π∆=-∠1sin 2OE OB AOB =∠,可得2ABO EAO EFO S S S ∆∆∆==,当EFO S ∆最大时,ABO S ∆最大,故转化为在半径为1的圆内接三角形OEF 的面积的最大值,由圆内接三角形A B C '''的面积1sin 2S a b C '''=,2sin a A ''=,2sin b B ''=,3sin sin sin 2sin sin sin 2()3A B C S A B C '+'+''''=,由()sin f x x =,[0x ∈,]π,为凸函数,可得sin sin sin 3sinsin 3332A B C A B C π'+'+''+'+'==,当且仅当3A B C π'''===时,取得等号,可得3sin sin sin 2()23A B C '+'+'=.即三角形OEF 的面积的最大值为.进而得到ABO S ∆最大值为3333242⨯=,故答案为:332。

201年武警部队院校招生统一考数学试题

201年武警部队院校招生统一考数学试题

201年武警部队院校招生统一考数学试题201年武警部队院校招生统一考数学试题题目一:函数与方程1. 已知函数f(x) = 3x^2 - 4x + 1,求f(2)的值。

2. 已知函数f(x) = ax^2 + bx + c,若f(1) = 3, f(2) = 7, f(3) = 12,请求a, b, c的值。

题目二:概率与统计1. 有一枚偏重的硬币,正面朝上的概率为2/3,反面朝上的概率为1/3。

现在将这枚硬币投掷3次,请计算至少出现一次正面的概率是多少?2. 有一批零件,每个零件有瑕疵的概率为1/5。

现从中随机抽取6个零件,求最多有一个瑕疵的概率是多少?题目三:立体几何1. 在空间直角坐标系中,给定四个点A(1, 2, 3),B(3, -1, 4),C(-2, 2, 1),D(0, -3, 2),求四边形ABCD的面积。

2. 在一个立方体中,一条对角线的两个端点分别为A和B。

已知A点的坐标为(2, 3, 4),请问B点的坐标是多少?题目四:数列与数学归纳法1. 设数列an的通项公式为an = 3n^2 + 2n - 1,请求a1, a2, a3的值。

2. 设数列bn的前n项和的公式为Sn = n(n + 1)/2,请用数学归纳法证明这个公式。

题目五:解析几何1. 已知四边形ABCD的对角线AC和BD相交于点O,且AO:OC = 2:1,BO:OD = 3:1。

若AB = 6cm,求CD的长度。

2. 已知三角形ABC的顶点A(2, 3),B(4, 0),C(-1, 1),求三角形ABC的周长。

以上是201年武警部队院校招生统一考数学试题。

希望可以帮到你!。

军考真题数学【完整版】

军考真题数学【完整版】

2017年军考真题士兵高中数学试题关键词:军考真题,德方军考,大学生士兵考军校,军考数学,军考资料 一、单项选择(每小题4分,共36分).1. 设集合A={y|y=2x ,x ∈R},B={x|x 2﹣1<0},则A ∪B=( )A .(﹣1,1)B .(0,1)C .(﹣1,+∞)D .(0,+∞)2. 已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为(log a 2)+6,则a 的值为( )A .B .C .2D .43. 设a b 、是向量,则||=||a b 是|+|=|-|a b a b 的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.已知421353=2,4,25a b c ==,则( )A .b<a<cB .a<b<cC .b<c<aD . c<a<b 5. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A .B .C .D .6. 设数列{a n }是首项为a 1、公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .C .﹣2D .﹣7. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .B .C .D .18. 已知A ,B ,C 点在球O 的球面上,∠BAC=90°,AB=AC=2.球心O 到平面ABC 的距离为1,则球O 的表面积为( )A .12πB .16πC .36πD .20π9. 已知2017ln f x x x =+()(),0'2018f x =(),则0x =( ) A. 2e B.1 C. ln 2 D. e二、填空题(每小题4分,共32分)10. 设向量,,且,则m=.12. 已知A、B为双曲线E的左右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为.13. 已知函数f(x)=,则f(f())= .14. 在的展开式中x7的项的系数是.15. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是_______。

2022年军考高中学历层次士兵考学数学专项练习测试卷及答案

2022年军考高中学历层次士兵考学数学专项练习测试卷及答案

(1,
1)

又由点 (1, 1) 在圆 x2 y2 4 的内部,
故对于任意的实数 a ,直线与圆相交, 即当 a 0 时,直线 (a 1)x (a 1) y 2a 0(a R) 与圆 x2 y2 4 相交,反之不一定成立,
故“ a 0 ”是直线 (a 1)x (a 1) y 2a 0(a R) 与圆 x2 y2 4 相交的充分而不必要条件, 故选: A . 3.【解答】解:圆心 (0, 0) 到直线的距离为 d | k | ,
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
11.以 M (4,3) 为圆心 r 为半径的圆与直线 2x y 5 0 相离的充要条件是 ( )
A. 0 r 2
B. 0 r 5
C. 0 r 2 5
D. 0 r 10
第 2页(共 6页)
参考答案与详解
1.【解答】解:根据题意,圆 C : x2 y2 5 的圆心为 (0, 0) ,半径 r 5 ,
3(x1 x2 ) 2( y1 y2 ) 0 ,
直线 AB 的斜率为 k y1 y2 3 ,
x1 x2
2
直线 AB 的方程为 y 1 3 (x 1) , 22
即 3x 2y 4 0 .
由于 P 在椭圆内,故成立. 故选: B .
9.【解答】解: F1(c, 0) , F2 (c, 0) ,直线 l : y x c ,
2 故a 1 .
4 故选: B .
7.【解答】解:设 A(x1 , y1) , B(x2 , y2 ) , M (x, y) ,
M 是线段 AB 的中点, x1 x2 2x , y1 y2 2 y ,

2022年军队文职人员招聘(数学1)考试题库(完整版)

2022年军队文职人员招聘(数学1)考试题库(完整版)

2022年军队文职人员招聘(数学1)考试题库(完整版)一、单选题1.袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回的取2次,则第二次取到新球的概率是()。

A、3/5B、3/4C、2/4D、3/10答案:A2.A、AB、BC、CD、D答案:D3.A、0.4B、0.6C、0.5D、0.3答案:A解析:4.设函数,则f(x)有()。

A、1个可去间断点,1个跳跃间断点B、1个可去间断点,1个无穷间断点C、2个跳跃间断点D、2个无穷间断点答案:A解析:根据函数的定义知,x=0及x=1时,f(x)无定义,故x=0和x=1是函数的间断点。

因同理故x=0是可去间断点,x=1是跳跃间断点。

5.A、AB、BC、CD、D答案:A 解析:6.A、AB、BC、CD、D答案:D解析:7.A、连续,偏导数存在B、连续,偏导数不存在C、不连续,偏导数存在D、不连续,偏导数不存在答案:C解析:8.A、P(X≤λ)=P(X≥λ)B、P(X≥λ)=P(X≤-λ)C、D、答案:B9.设E(X)=1,E(Y)=2,D(X)=1,D(Y)=4,ρXY=0.6,则E(2X-Y +1)2=()。

A、5.6B、4.8C、2.4D、4.2答案:D解析:10.已知两直线的方程L1:(x-1)/1=(y-2)/0=(z-3)/(-1),L2:(x+2)/2=(y-1)/1=z/1,则过L1且与L2平行的平面方程为()。

A、(x-1)-3(y-2)+(z+3)=0B、(x+1)+3(y-2)+(z-3)=0C、(x-1)-3(y-2)+(z-3)=0D、(x-1)+3(y-2)+(z-3)=0答案:C解析:11.设随机变量X,Y相互独立,它们的分布函数为Fx(x),FY(y),则Z=max{X,Y)的分布函数为().A、AB、BC、CD、D答案:B解析:FZ(z)=P(Z≤z)=P(max{X,Y}≤z)=P(X≤z,Y≤z)=P(X≤z)P(Y≤z)-FX(z)F Y(z),选(B).12.设,,则()。

军考真题数学【完整版】可打印.doc

军考真题数学【完整版】可打印.doc

2017年军考真题 士兵高中数学试题关键词:军考真题,德方军考,大学生士兵考军校,军考数学,军考资料一、单项选择(每小题4分,共36分).1. 设集合A={y|y=2x ,x ∈R},B={x|x 2﹣1<0},则A ∪B=( ) A .(﹣1,1)B .(0,1)C .(﹣1,+∞)D .(0,+∞)2. 已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为(log a 2)+6,则a 的值为( ) A .B .C .2D .43. 设a b 、是向量,则||=||a b 是|+|=|-|a b a b 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件4.已知421353=2,4,25a b c ==,则( ) A .b<a<cB .a<b<cC .b<c<aD . c<a<b5. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A .B .C .D .6. 设数列{a n }是首项为a 1、公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1=( ) A .2 B .C .﹣2D .﹣7. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A .B .C .D .18. 已知A ,B ,C 点在球O 的球面上,∠BAC=90°,AB=AC=2.球心O 到平面ABC 的距离为1,则球O 的表面积为( )A .12πB .16πC .36πD .20π9. 已知2017ln f x x x =+()(),0'2018f x =(),则0x =( ) A. 2eB.1C. ln 2D. e二、填空题(每小题4分,共32分) 10. 设向量,,且,则m= .12. 已知A、B为双曲线E的左右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为.13. 已知函数f(x)=,则f(f())= .14. 在的展开式中x7的项的系数是.15. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是_______。

军考真题数学【完整版】doc

军考真题数学【完整版】doc

军考真题数学【完整版】.doc 军考真题数学【完整版】军考是一项严格的选拔考试,其中数学科目是考生们必须要面对的难关之一。

为了帮助考生更好地应对数学考试,我们为大家准备了一套军考数学完整版真题。

一、选择题1.若a + b = c,且a、b、c均为正整数,则下列哪个选项是正确的? A. a= b + c B. b = a + c C. c = a + b D. a = b - c2.某公司在2019年1月1日的账上有720万元,到2019年12月31日,账上的金额增加到1200万元。

则该公司在2019年的平均每月增加金额是多少?A. 40万元B. 60万元C. 80万元D. 100万元3.若x = 2,y = 3,则下列哪个选项是正确的? A. x + y = 6 B. x - y =1 C. xy = 6 D. x/y = 2/34.若一个圆的半径为r,则其直径是多少? A. r B. 2r C. 3r D. 4r5.若a = 2^2 + 3^2,b = 4^2 + 5^2,则下列哪个选项是正确的? A. a > bB. a < bC. a = bD. 无法比较二、填空题1.一辆汽车从A地到B地,全程共1000公里。

第一个100公里的路程行驶时间为2小时,第二个100公里的路程行驶时间为2.5小时,以此类推。

若一直以相同的速度行驶,到达B地需要多少小时?答:20小时2.若x = 1/2 + 1/3 + 1/4 + 1/5,则x的值是多少?答:47/603.若a、b是正整数,且满足a/b = 5/6,则a和b的最大公约数是多少?答:54.若一个长方形的长是2x,宽是3x,且面积为48,则x的值是多少?答:25.若x + y = 10,且xy = 16,则x和y的值分别是多少?答:4和6三、计算题1.已知正整数a、b、c满足a + b = 15,b + c = 18,c + a = 21。

武警院校招生统考-部队士兵考军校数学军考真题详解

武警院校招生统考-部队士兵考军校数学军考真题详解

二〇一五年武警部队院校招生统一考试士兵本科数学真题与详解一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知全集为R ,集合{|13}{0246}A x x B =-<=≤,,,,,则A B 等于( ) A .{02}, B .{102}-,, C .{|02}x x ≤≤ D .{|12}x x -≤≤ 2.在等比数列{}n a 中,已知31815243⋅⋅=a a a ,则3911=a a ( )A .3B .9C .27D .813.设232555322555a b c ===(),(),(),则、、a b c 的大小关系是( )A .>>b c aB .>>a b cC .>>c a bD .>>a c b4.不等式1021x x -+≤的解集是()A .11]2(,- B .11]2[,- C .112(-,)[,)∞-+∞D .112(-,][,)∞-+∞5.复数Z 满足12i Z i +=(),则复数Z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A .33!⨯B .333!⨯()C .43!()D .9! 7.若l 、m 、n 是互不相同的空间直线, α、β是不重合的平面,则下列命题中为真命题的是( )A .若α⊥l ,∥βl ,则β⊥aB .若β⊥a ,α⊂l ,则β⊥lC .若⊥l n ,⊥m n ,则∥l mD .若a β∥,α⊂l ,β⊂n ,则∥l n8. 将边长为a 的正方形ABCD 沿对角线AC 折起,使=BD a ,则三棱锥D -ABC 的体积为( )A .36aB .312aC 3D 39.过坐标原点且与点1)的距离都等于1的两条直线的夹角为( )A .090B .045C .030D .06010.已知点23A -(,)在抛物线2:2=C y px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B . 1-C .34-D .12-二、填空题:本大题共5小题,每小题5分,共25分. 11.若函数2143()=-++kx f x kx kx 的定义域为R ,则实数k 的取值范围是_______.12.已知向量a 、b 满足0⋅=a b ,||1||2a b ==,,则|2|a b -= _______.13. 若[]sin 242θθππ∈=,,,则sin θ=_______. 14.在5611()()-+-x x 的展开式中,含3x 的项的系数是_______. 15.椭圆2244+=x y 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______.三、解答题:本大题共7小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分,(1)和(2)分别为6分和4分)已知函数21()=-x f x 的反函数为1()-f x ,4()log (31)=+g x x (1)用定义证明 1()-f x 在定义域上的单调性; (2)若1f x g x -≤()(),求x 的取值集合D . 17.(本小题满分10分,其中(1)和(2)各5分)在ABC △中,内角A B C ,,所对的边分别为a b c ,,,已知sin a c B C -,.(1)求cos A 的值; (2)求cos 26A π-()的值. 18.(本小题满分10分,其中(1)和(2)分别为4分和6分)已知{}n a 是递增的等差数列,24a a ,是方程2560-+=x x 的根. (1)求{}n a 的通项公式;(2)求数列{}2n na 的前n 项和. 19.(本小题满分10分,(1)和(2)分别为4分和6分)已知向量cos sin cos sin 0a b ααβββα==<<<π(,),(,),. (1)若||2-=a b ,求证:⊥a b ;(2)设01c =(,),若+=a b c ,求α和β的值.20.(本小题满分10分,(1)和(2)分别为4分和6分)骰子(六个面上分别标以数1,2,3,4,5,6)每抛掷一次,各个面上的概率均等.(1)连续抛掷2次,求向上的数之和为6的概率;(2)连续抛掷5次,求向上的数为奇数恰好出现3次的概率.21.(本小题满分12分,(1)和(2)分别为5分和7分)如图,在四棱锥-PDC底面ABCD,P ABCD中,底面ABCD是正方形,侧面⊥PD DC PDC E是PC的中点.=∠=,,90(1)求证:∥PA平面EDB;(2)若⊥PB平面EFD.EF PB于点F,求证⊥22.(本小题满分13分,其中(1)和(2)分别为5分和8分)双曲线C的中心在坐标原点,右焦点为0),渐近线为=y.(1)求双曲线C的标准方程;(2)设直线:1A B两点,则当k为何值时,以AB为直径的圆=+l y kx与双曲线C交于、过原点?〖答案与详解〗一、选择题 1.【答案】A【详解】集合{|13}{0246}A x x B =-<=≤,,,,,则=A B {02},. 【点评】考查集合的交集运算.(详见《军考突破》中1-1-10) 2.【答案】B【详解】根据等比数列性质,由31815243⋅⋅=a a a ,得5583=a ,83=a ,则329971197811119a a a a a a a a a ====(). 【点评】考查等比数列的性质.(详见《军考突破》中3-3-4) 3.【答案】D【详解】由25x y =()为减函数且3255>,得32552255b c =<=()(),再由250y x x =>()为增函数且3255>,得22553255a c =>=()(),所以、、a b c 的大小关系是>>a c b .另法:将232555322555a b c ===(),(),(),同时5次方,得5253523928245255125525a b c ======(),(),(),显然有55545208125125125a cb =>=>=, 则、、a bc 的大小关系是>>a c b . 【点评】考查函数的单调性.(详见《军考突破》中2-5-5) 4.【答案】A【详解】不等式1021x x -+≤的零点为112、-,用根轴法(零点分段法)如图:解集是11]2(,-. 【点评】考查分式不等式解法,涉及序轴标根法.(详见《军考突破》中6-3-1) 5.【答案】A【详解】复数Z 满足12i Z i +=(),即2222212222111121i i i i i i Z i i i i i --+=====+++--()()(),则复数Z 对应点为11(,),是在复平面内的一象限.【点评】考查复数的运算.(详见《军考突破》中9-2-3)6.【答案】C【详解】第一步,分别将每一家捆绑,有33!()种方法;第二步,再将三个全排列,有3!种方法.所以每家人坐在一起,则不同的做法为43!(). 【点评】考查排列问题的基本计算方法—捆绑法.((详见《军考突破》中7-1-4)中)7.【答案】A【详解】根据两平面垂直的判定定理,由α⊥l ,∥βl ,能够推出β⊥a .【点评】考查平面与平面垂直的判定.(详见《军考突破》中10-2-3). 8.【答案】D【详解】由题意,如图在三棱锥-D ABC 中,側棱长===DA DC BD a,====OA OB OC OD ,从而可知高为OD ,底面积212∆=ABC S a ,则三棱锥D-ABC 的体积为231132=⨯=V a .【点评】考查三棱锥的体积的求法.(详见《军考突破》中10-4-2)9.【答案】D【详解】如下图,过坐标原点且与点1的距离都等于1的两条直线的夹角为00223060∠=∠=⨯=AOB AOP .【点评】考查从圆外一点出发的圆的两条切线的夹角.(详见《军考突破》中11-2-3) 10.【答案】C 【详解】由题意,抛物线2:2=C y px 的准线方程为:2=-x ,所以C 的焦点为20F (,),直线AF 的斜率为033224k -==---().【点评】考查抛物线的准线方程与焦点坐标,以及过两点的斜率公式.(详见《军考突破》中12-3-3) 二、填空题 11.【答案】304k <≤ 【详解】∵函数2143()=-++kx f x kx kx 的定义域为R ,∴0=k 或204120k k k ≠⎧⎨∆=-<⎩(),∴304k <≤. 【点评】考查函数的定义域的求法.(详见《军考突破》中2-5-1) 12.【答案】【详解】∵向量a 、b 满足0⋅=a b ,||1,||2==a b ,∴22|2|4422-=+-⋅=a b a b a b . 【点评】考查向量模的求法.(详见《军考突破》中5-1-6) 13.【答案】34【详解】由[]sin 242θθππ∈=,,,∴sin cos sin cos θθθθ+=-=∴1113sin 2224θ====(((. 【点评】考查三角恒等式的应用变形.(详见《军考突破》中4-2-2)14.【答案】30-【详解】展开式中含有3x 的项为:333333356102030(-)(-)+=--=-C x C x x x x ,∴含3x 的项的系数为30-.【点评】考查二项展开式的通项.(详见《军考突破》中7-2-2) 15.【答案】1625【详解】如图,设等腰直角三角形∆AMN 的底边20MN t t =>(),则椭圆2244+=x y 上点N 的坐标为2t t -(,),从而有22244t t -+=(),解得45=t ,所以∆AMN 的面积是21625=t .【点评】考查椭圆的标准方程及顶点坐标,以及三角形的面积公式.(详见《军考突破》中12-1-4) 三、解答题 16.【详解】(1)函数21()=-x f x 的值域为1+∞(-,), 由21=-x y ,解得2log 1x y =+(),∴12log 11f x x x -=+>-()()(). 任取121-<<x x ,111122122221()log 1log 1log 1x f x f x x x x --+-=+-+=+()()(). ∵121-<<x x∴12011<+<+x x , ∴121011+<<+x x . ∴1221log 01+<+x x ,可得1112f x f x --<()(), 故1()-f x 在定义域1+∞(-,)上为单调增函数. (2)∵1f x g x -≤()(),即2log 1x +()4log 31x +≤(),即2log 1x +()4log 31x +≤() ∴210310131x x x x +>⎧⎪+>⎨⎪++⎩≤(),解之得01x ≤≤,∴x 的取值集合为[01],=D .【点评】考查反函数和函数的单调性及对数不等的解法.(详见《军考突破》中2-5-5,2-5-7,6-3-4) 17.【详解】(1)在ABC △中,由正弦定理sin sin =b cB C,及已知条件sin =B C可得=b又∵,-=a c ∴2=a c由余弦定理222222cos 2+-===b c a A bc . (2)在ABC △中,由(1)知cos =A,可得sin =A又221cos 22cos 114=-=-=-A A .sin 22sin cos 2===A A A ∴cos 2cos2cos sin 2sin 666A A A πππ-=⋅+⋅()1142=-=【点评】考查正弦定理与余弦定理.(详见《军考突破》中4-5-1、4-5-2) 18.【详解】 (1)方程2560-+=x x 的两根为1223x x ==, 由题意得2423a a ==,设等差数列{}n a 的公差为d ,则42122-==a a d ∴211222122n a a n d n n =+-=+-⨯=+()(). (2)设数列{}2nn a 的前n 项和为n S ,由(1)知1222++=n n n a n . 23134122222①+++=++++n n n n n S 34121341222222②++++=++++n n n n n S ①-②得3412131112242222()+++=++++-n n n n S 34123111242222()+++=++++-n n n 34123111242222()+++=++++-n n n 34123111242222()+++=++++-n n n ∴1422++=-n n n S . 【点评】考查由n S 求n a 和裂项相消法求数列的前n 项的和.(详见《军考突破》中3-4-1、3-4-7) 19.【详解】(1)由题意2||2-=a b ,即22()-=a b∴22-22⋅+=a a b b∵向量cos sin a αα=(,),cos sin b ββ=(,)0βα<<<π,.∴2222=||||11=2++=+a b a b ∴0⋅=a b ,∴⊥a b .(2)∵cos sin a b αα+=+(,)cos sin ββ=(,)cos cos sin sin αβαβ++=(,)01)(,∴cos cos 0sin sin 1αβαβ+=⎧⎨+=⎩∴cos cos sin sin 1αβαβ=-⎧⎨+=⎩∵0βα<<<π ∴1sin sin 2αβαβ=π-⎧⎪⎨==⎪⎩∴566αβππ==,. 【点评】考查向量平行及向量的数量积的运算.(详见《军考突破》中5-1-6、5-1-8)20.【详解】(1)设A 表示事件“抛掷2次,求向上的数之和为6”向上的数之和为6的结果有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)5种 连续抛掷2次总的结果共有6×6=36种,∴5A 36()=P . (2)设B 表示事件“抛掷5次,求向上的数为奇数恰好出现3次”. 每次抛掷向上的数为奇数和偶数的概率都是12可看作5次独立重复试验中,事件“向上的数为奇数” 恰好出现3次. 则3325511105B 3C 1223216P P ==⨯⨯-==()()()(). ∴连续抛掷5次,向上的数为奇数恰好出现3次的概率为516. 【点评】考查独立重复试验的概率.(详见《军考突破》中8-1-6) 21.【详解】(1)在正方形ABCD 中,连接AC 交BD 于O ,连接EO. 因为ABCD 是正方形,所以O 为AC 的中点. 又因为E 为PC 的中点,所以EO//PA.∵⊄PA 平面EDB ,⊂EO 平面EDB ,∴∥PA 平面EDB .(2)∵平面⊥PDC 平面ABCD ,且平面PDC 平面=ABCD CD , 在平面ABCD 中,⊥BC DC∴⊥BC 平面PDC , 又∵⊂DE 平面PDC ,∴⊥BC DE又∵=PD DC ,E 是PC 的中点, ∴⊥PC DE在平面PBC 中,,=BC PC C∴⊥DE 平面PBC , ∴⊥PB DE又∵⊥EF PB ,且在平面EFD 中,,=DE EF E∴⊥PB 平面EFD .【点评】考查平面与平面平行和直线与平面垂直的判定.(详见《军考突破》中10-2-2、10-2-3) 22.【详解】(1)由题意可知bc a==,∵222+=a b c∴22113a b ==,,∴双曲线的标准方程为2231-=x y . (2)由22131=+⎧⎨-=⎩y kx x y得223220k x kx ---=()由230-≠k 且0∆>,得<k ≠k ,设1122A x y B x y (,),(,) ∵以AB 为直径的圆过原点, ∴⊥OA OB ,∴0⋅=OA OB ,即12120+=x x y y 又∵1212222233k x x x x k k +=-=--,∴2121212121111y y kx k x k x x k x x =++=+++=()()()∴22103+=-k ,解得1=±k .故当1=±k 时,以AB 为直径的圆过原点.【点评】考查双曲线的标准方程和直线与双曲线相交的问题.(详见《军考突破》中12-2-4、12-4-5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年军考真题
士兵高中数学试题
关键词:军考真题,德方军考,大学生士兵考军校,军考数学,军考资料
一、单项选择(每小题4分,共36分).
1. 设集合A={y|y=2x ,x ∈R},B={x|x2﹣1<0},则A ∪B=( )
A.(﹣1,1) B .(0,1)
C.(﹣1,+∞) D .(0,+∞) 2. 已知函数f (x )=a x +log a x (a >0且a≠1)在[1,2]上的最大值与最小值之和为(log a 2)+6,则a的值为
( ) A. ﻩ B .ﻩ C.2
D.4 3. 设a b 、
是向量,则||=||a b 是|+|=|-|a b a b 的( ) A.充分不必要条件 B.必要不充分条件
C.充要条件ﻩﻩ
D.既不充分也不必要条件
4.已知421353=2,4,25a b c ==,则( )
A.b<a<c
B.a<b<cﻩC.b<c<a ﻩ
D . c<a<b 5. 设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB的面积
为( )
A .
B.ﻩ C.ﻩ D.
6. 设数列{a n }是首项为a 1、公差为-1的等差数列,S n 为其前n 项和,若S 1,S2,S 4成等比数列,则a1=( )
A.2ﻩ B.ﻩ C.﹣2
D .﹣
7. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )
A .
B.ﻩ
C.
D.1
8. 已知A,B ,C 点在球O 的球面上,∠BA C=90°,AB=AC =2.球心O 到平面AB C的距离为1,则球O 的表面积为( )
A.12π
B .16πﻩ
C .36π
D.20π 9. 已知2017ln f x x x =+()(),0'2018f x =(
),则0x =( ) A. 2e ﻩB.1ﻩ C. ln 2 ﻩﻩ D. e
二、填空题(每小题4分,共32分)
10. 设向量,
,且,则m= . 11. 设t anα,tanβ是方程x 2﹣3x+2=0的两个根,则tan (α+β)的值为 .
12. 已知A 、B 为双曲线E 的左右顶点,点M在E上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为 .
13. 已知函数f (x)=
,则f(f())= . 14. 在的展开式中x 7的项的系数是 .
15. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是_______。

16. 在极坐标系中,直线ρcosθ﹣ρsinθ﹣1=0与圆ρ=2cosθ交于A,B 两点,则|AB|=_______.
17. 已知n 为正偶数,用数学归纳法证明
时,若已假设n=k(k≥2,k为偶数)时命题为真,则还需要用归纳假设再证n= 时等式成立.
三、解答题(共7小题,共82分,解答题应写出文字说明、演算步骤或证明过程)
18.(本小题8分)对任意实数x,不等式﹣9<22361
x px x x +--+<6恒成立,求实数p 的取值范围。

19.(本小题12分)
20、(12分)已知数列{an}中,a1=1,二次函数f(x)=a n•x2+(2﹣n﹣an+1)•x的对称轴为x=.
(1)试证明{2nan}是等差数列,并求{an}通项公式;
(2)设{an}的前n项和为S n,试求使得S n<3成立的n值,并说明理由.
21、(10分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.
22、(12分)已知函数f(x)=ax+bsinx,当时,f(x)取得极小值.
(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=f(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥f(x).则称直线l为曲线S的“上夹线”.试证明:直线l:y=x+2为曲线S:y=ax+bsinx“上夹线”.
23、(14分)已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M的切线PA,PB,切点为A,B.
(1)当切线PA的长度为时,求点P的坐标;
(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.
(3)求线段AB长度的最小值.
24、(14分)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,A
D=CD=,且点M和N分别为B1C和D1D的中点.
(Ⅰ)求证:MN∥平面ABCD
(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;
(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.。

相关文档
最新文档