复数运算习题
复数练习题(有答案)百度文库(1)

一、复数选择题L 在复平面内,复数公(i 为虚数单位)对应的点的坐标为() A. (3,4)B. (—4,3)C. -*2 .已知复数z =」一,其中i 为虚数单位,则lzl=() 1-z A. 1 B.旦 C. 72z 2 3 .复数z = i-(l + i )在复平面上对应的点位于() A.第一象限B.第二象限C.第三象限4 . i 是虚数单位,复数匕虫=() *-Z A. -y/3-iB. -y/3+i c. V3-;5 .已知复数z= '〃— 为纯虚数,则实数加=< )/A. -1B. 0C. 16 .若复数z 满足(l + i )z = 3 + i (其中i 是虚数单位),复数z 的共挽复数为则()A. Z 的实部是1B. Z 的虚部是1C.同=逐D.复数£在复平而内对应的点在第四象限7 .已知复数z (l + 2i ) = 3—i (其中i 是虚数单位),则z 在复平面内对应点在() A.第一象限B.第二象限C.第三象限D.第四象限8 .已知i 为虚数单位,则复数 3 的虚部是()3 + i 3 3. 1 1 . A. ---B. — — IC. ——D. — — /55559 .已知。
为正实数,复数1+5(i 为虚数单位)的模为2,则。
的值为() A.B. 1C. 2D. 310 .已知复数z = |l+i|-i (i 为虚数单位),则2=() A. 1B. -V2-ZC. y/2-iD. G + i11 .若复数z 满足z (2+i ) = U ,则复数z 的虚部为()D. 2D.第四象限D. 6 + »D. 0或1H. ---D. -- 1l ・一5 5 5 12 .若复数?=匕°_,则Z =()3 + 4i4 3 2 A- -B. -C.一5 5513 .复数z = (2—i)(l + 2i),则z 的共聊复数彳=() A. 4 + 3iB. 3-4zc. 3 + 4i14 .复数z = 1-2,(其中/•为虚数单位),则|z+3i|=()A. 5B, 72 C. 2D.庄15 .题目文件丢失!二、多选题16 . i 是虚数单位,下列说法中正确的有() A,若复数Z 满足ze=O,则Z = OB.若复数&,均满足|马+马|=|。
复数练习题附答案

复数练习题附答案复数是数学中的一个基本概念,它拓展了实数的概念,允许我们处理像-1的平方根这样的数。
复数可以表示为a + bi的形式,其中a和b是实数,i是虚数单位,满足i^2 = -1。
下面是一些复数的练习题,以及它们的答案。
练习题1:计算以下复数的加法:\[ (3 + 4i) + (1 - 2i) \]答案1:首先分别将实部和虚部相加:\[ 3 + 1 = 4 \]\[ 4i - 2i = 2i \]所以,结果是 \( 4 + 2i \)。
练习题2:计算以下复数的乘法:\[ (2 + 3i) \times (1 - 4i) \]答案2:使用分配律:\[ 2 \times 1 + 2 \times (-4i) + 3i \times 1 + 3i \times (-4i) \]\[ = 2 - 8i + 3i - 12i^2 \]由于 \( i^2 = -1 \),所以:\[ = 2 - 5i + 12 \]结果是 \( 14 - 5i \)。
练习题3:求复数 \( z = 3 - 2i \) 的共轭复数。
答案3:共轭复数是将虚部的符号改变得到的数,所以:\[ \bar{z} = 3 + 2i \]练习题4:求复数 \( z = 2 + i \) 的模(magnitude)。
答案4:复数的模定义为:\[ |z| = \sqrt{a^2 + b^2} \]其中 \( a \) 和 \( b \) 分别是复数的实部和虚部。
所以:\[ |2 + i| = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5} \] 练习题5:求复数 \( z = 1 + i \) 的逆。
答案5:复数的逆通过公式 \( \frac{1}{z} =\frac{\bar{z}}{|z|^2} \) 计算。
首先求模:\[ |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \]然后求共轭复数:\[ \bar{z} = 1 - i \]最后求逆:\[ \frac{1}{1 + i} = \frac{1 - i}{2} \]因为 \( |1 + i|^2 = 2 \)。
复数的四则运算同步练习题

复数的四则运算同步练习题一、选择题1. 若复数z 满足z +i -3=3-i ,则z 等于 ( D )A .0B .2iC .6D .6-2i2. 复数i +i 2在复平面内表示的点在( B )A .第一象限B .第二象限C .第三象限D .第四象限3. 复数z 1=3+i ,z 2=-1-i ,则z 1-z 2等于( C )A .2B .2+2iC .4+2iD .4-2i4. 设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( D )A .1+iB .2+IC .3D .-2-i5. 已知|z |=3,且z +3i 是纯虚数,则z 等于( B )A .-3iB .3iC .±3iD .4i6. 复数-i +1i等于( A ) A .-2i i C .0 D .2i7. i 为虚数单位,1i +1i 3+1i 5+1i 7等于( A ) A .0 B .2i C .-2i D .4i8. 若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( D )A .a =1,b =1B .a =-1,b =1C .a =-1,b =-1D .a =1,b =-19. 在复平面内,复数i 1+i+(1+3i)2对应的点位于( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10. 设复数z 的共轭复数是z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( A )C .-43D .-3411. 若z =1+2i i,则复数z 等于( D ) A .-2-i B .-2+I C .2-i D .2+i12.复数11z i =-的共轭复数是( B ) A .i 2121+ B .i 2121- C .i -1 D .i +1 13.=++-i i i 1)21)(1(( C ) A .i --2 B .i +-2 C .i -2 D .i +214. 若复数z 1=1+i ,z 2=3-i ,则z 1·z 2等于( A )A .4+2iB .2+iC .2+2iD .3+i15. 已知a +2i i =b +i(a ,b ∈R ),其中i 为虚数单位,则a +b 等于( B )A .-1B .1C .2D .316.若x -2+y i 和3x -i 互为共轭复数,则实数x 与y 的值是( D )A .x =3,y =3B .x =5,y =1C .x =-1,y =-1D .x =-1,y =117.在复平面内,复数i 1+i+(1+3i)2对应的点位于( B ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限18.设i 是虚数单位,_z 是复数z 的共轭复数,若,z?z̅i +2=2z ,则z =( A )(A )1+i (B )1i - (C )1+i - (D )1-i -19.若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为( D )(A)-4 (B )-45 (C )4 (D )4520.设复数z 满足,2)1(i z i =-则z =( A )(A )i +-1 (B )i --1 (C )i +1 (D )i -121.复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为( D )(A) 2+i (B) 2-i (C) 5+i (D) 5-i22.在复平面内,复数(2-i)2对应的点位于( D )A.第一象限B. 第二象限C.第三象限D. 第四象限23.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( C )A.(2,4)B.(2,-4)C.(4,-2)D.(4,2)24.复数的11Z i =-模为( B ) (A )12 (B )2 (C(D )225.()3=( A ) (A )8- (B )8 (C )8i -(D )8i26. i 是虚数单位,3(1)(2)i i i -++等于 ( D )A .1+iB .-1-iC .1+3iD .-1-3i27.设复数z=1,则z 2-2z 等于 ( A )A .-3B .3C .-3iD .3i28.已知i 是虚数单位,则31ii +-=( D )A .1-2i +i D .1+2i29.下面是关于复数21z i =-+的四个命题:其中的真命题为( C )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-30.复数2(1)2i i -=( B ) A 、1 B 、1- C 、i D 、i -31.若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为( A )(A )35i + (B )35i - (C )35i -+ (D )35i --32.设i 为虚数单位,则复数56i i-=( D ) A .6+5i B .6-5i C .-6+5i D .-6-5i 33.复数z 满足:()(2)5z i i --=;则z =( D )34.若(2)a i i b i -=-,其中a 、b R ∈,i 使虚数单位,则22a b +=( D )A .0B .2C . 52D .5 35.复数z =i +i 2+i 3+i 4的值是( B ) A .-1B .0C .1D .i 36.()()221111ii i i -++=+-( D ) A .i B .i - C .1 D .1- 37.复数(1+1i )4的值是 ( D ) A .4iB .-4iC .4D .-4 二、填空题38. 若复数z 1=-1,z 2=2+i 分别对应复平面上的点P 、Q ,则向量PQ →对应的复数是_ _3+i __.39.设复数i 满足i(z +1)=-3+2i(i 为虚数单位),则z 的实部是____1____.40.复数2i -1+3i的虚部是___-12____. 41.已知z 是纯虚数,z +21-i是实数,那么z =___-2i____. 42.已知,43,2121i z i z +=-=则=⋅21z z ___11-2i _____.43.已知复数512i z i =+(i是虚数单位),则_________z =44.若bi a i i +=++)2)(1(,其中,,a b R i ∈为虚数单位,则a b += 4 45.设a b ∈R ,,117i i 12ia b -+=-(i 为虚数单位),则a b +的值为 8 . 46.若 12z a i =+, 234z i =-,且12z z 为纯虚数,则实数a 的值为 38 . 47.已知312i a i--=+(i 是虚数单位),那么a 4= -4 . 48.已知复数z 与(z +2)2-8i 均是纯虚数,则z= -2i .三、解答题49.复平面内有A ,B ,C 三点,点A 对应的复数是2+i ,向量BA →对应的复数是1+2i ,向量BC →对应的复数是3-i ,求C 点在复平面内的坐标.解 ∵AC →=BC →-BA →,∴AC →对应的复数为(3-i)-(1+2i)=2-3i ,设C (x ,y ),则(x +y i)-(2+i)=2-3i ,∴x +y i =(2+i)+(2-3i)=4-2i ,故x =4,y =-2.∴C 点在复平面内的坐标为(4,-2).50.在复平面内A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.(1)求AB →,BC →,AC →对应的复数;(2)判断△ABC 的形状;(3)求△ABC 的面积. 解析: (1)AB →对应的复数为2+i -1=1+i ,BC →对应的复数为-1+2i -(2+i)=-3+i ,AC →对应的复数为-1+2i -1=-2+2i.(2)∵|AB →|=2,|BC →|=10,|AC →|=8=22,∴|AB →|2+|AC →|2=|BC →|2,∴△ABC 为直角三角形.(3)S △ABC =12×2×22=2. 51.已知复数z=1+i,求实数a,b 使得az +2b z =(a +2z)2. 52.已知复数z=1+i ,如果221z az b z z ++-+=1-i,求实数a,b 的值. 解析:由z=1+i 得221z az b z z ++-+=()(2)a b a i i +++=(a +2)-(a +b)i 从而21()1a a b +=⎧⎨-+=-⎩,解得12a b =-⎧⎨=⎩.。
复数练习题(有答案)

复数练习题(有答案)一、单选题1.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i --B .22i +C .22i -+D .22i +或22i -+2.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)-B .(1,2)C .(2,1)-D .(1,2)--4.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆.5.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2-B .1-C .1D .26.向量1OZ ,2OZ ,分别对应非零复数z 1,z 2,若1OZ ⊥2OZ ,则12Z Z 是( ) A .负实数 B .纯虚数C .正实数D .虚数a +b i(a ,b ∈R ,a ≠0)7.设复数z 满足i 3i z z --=,则z 的虚部为( ) A .2i -B .2iC .2-D .28.已知复数z 满足()1i 1z +=,则z 的虚部为( ) A .12-B .1i 2-C .12 D .1i 29.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( ) A .2- B .2C .i -D .1-10.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.在复平面内O 为坐标原点,复数()1i 43i z =-+,27i z =+对应的点分别为12,Z Z ,则12Z OZ ∠的大小为( )A .3πB .23π C .34π D .56π12.若(-3a +b i)-(2b +a i)=3-5i ,a ,b ∈R ,则a +b =( ) A .75B .-115C .-185D .513.已知复数23i z =-,则()1i z +=( ) A .3i - B .3+3i - C .3i + D .3i -+ 14.若复数z 在复平面内对应的点为(1,1),则其共轭复数z 的虚部是( ) A .iB .i -C .1D .1-15.已知复数z 满足()1i 2i z -=(其中i 为虚数单位),则z =( ) ABC .12D .216.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( )A .15-B .15C .1i 5-D .1i 517.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件18.下列关于复数的命题中(其中i 为虚数单位),说法正确的是( ) A .若复数1z ,2z 的模相等,则1z ,2z 是共轭复数B .已知复数1z ,2z ,3z ,若()()2212230z z z z -+-=,则123z z z ==C .若关于x 的方程()21i 14i 0x ax +++-=(a ∈R )有实根,则52a =-D .12i +是关于x 的方程20x px q ++=的一个根,其中,p q 为实数,则5q = 19.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件 20.已知复数12i1iz -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .筹四象限二、填空题21.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________.22.已知i 是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.23.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________ 24.若复数z 满足i 3i=iz -+,则z =________. 25.已知复数3i (2i)z =⋅-,则z 的虚部为__________. 26.若()1i 1i z +=-,则z =_______27.计算:3i1i+=-___________. 28.设z C ∈,且1i 0z z +--=,则i z +的最小值为________.29.设复数i 12z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为________.30.已知复数z 满足()1i 42i -=+z ,则z =_________.31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.32.计算cos 40isin 40cos10isin10________.33.已知复数12,z z ,满足121z z ==,且12z z +=,则12z z =________.34.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.35.把复数z 的共轭复数记作z ,已知()12i 43i z +=+(其中i 是虚数单位),则z =______.36.若复数22(9)(23)i z m m m =-++-是纯虚数,其中m ∈R ,则|z |=________. 37.已知复数z 满足2i z +∈R ,4zz-是纯虚数,则z 的共轭复数z =______. 38.设i 是虚数单位,复数z =,则z =___________. 39.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________. 40.若i 为虚数单位,复数z 满足42ii 12iz --=+,则z =___________. 三、解答题41.把下列复数表示成代数形式: (1)554cos33isin ππ⎛⎫+ ⎪⎝⎭;(2)77cos 44isinππ⎫+⎪⎭42.设复数3cos isin z θθ=+.求函数()tan arg 02y z πθθ⎛⎫=-<< ⎪⎝⎭的最大值以及对应的θ值.43.(1)若复数22(56)(3)i z m m m m =-++-表示实数,求实数m 的值 ;(2)若复数22(56)(3)i z m m m m =-++-表示纯虚数,求实数m 的值. 44.已知复数()()211i z a a a R =-++∈.(1)若复数z 是虚数,求实数a 的值; (2)若复数z 是纯虚数,求实数a 的值.45.已知复平面内正方形的三个顶点所对应的复数分别是12i +,2i -+,12i --,求第四个顶点所对应的复数.【参考答案】一、单选题 1.D 2.A 3.D 4.D 5.B 6.B 7.C 8.A 9.D 10.D 11.C 12.B 13.B 14.D15.A 16.A 17.A 18.D 19.B 20.C 二、填空题21.1##1+2223.12或12##12-或122425.-2 26.i2728. 29.()34-,30.13i + 31.i -3212i33.12- 3435.2i +##i 2+ 36.12 37.22i +##2i 2+38.39.2i -+ 40.1 三、解答题41.(1)2-【解析】 【分析】根据复数的运算及三角函数诱导公式求解即可. (1) 因为51coscos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭,5sinsin 2sin 333ππππ⎛⎫=-=-= ⎪⎝⎭所以5514cos 42332isinππ⎛⎫⎛⎫+==- ⎪ ⎪ ⎪⎝⎭⎝⎭(2)因为7coscos 2cos 444ππππ⎛⎫=-= ⎪⎝⎭,7sinsin 2sin 444ππππ⎛⎫=-=-= ⎪⎝⎭所以77cos 44isinππ⎫⎫+==⎪⎪⎪⎭⎭42.3πθ=时,函数y【解析】 【分析】由3cos isin z θθ=+求得()1arg 3tg z tg θ=,再由两角差的正切建立关于tg θ的函数,()2arg 3y tg z tg tg θθθ=-=+,再由基本不等式法求解. 【详解】 解:解:由02πθ<<得0tg θ>.由3cos isin z θθ=+得sin 1(arg )3cos 3tg z tg θθθ==. 故213(arg )113tg tg y tg z tg θθθθ-=-=+23tg tg θθ=+∵3tg tg θθ+≥∴23tg tg θθ≤+当且仅当302tg tg πθθθ⎛⎫=<< ⎪⎝⎭时,即tg θ=时,上式取等号. 所以当3πθ=时,函数y43.(1)0m =或3;(2)2m = 【解析】 【分析】(1)由虚部为0直接求解即可;(2)由实部为0,虚部不为0直接求解即可. 【详解】(1)由复数22(56)(3)i z m m m m =-++-表示实数,可得230m m -=,解得0m =或3;(2)由复数22(56)(3)i z m m m m =-++-表示纯虚数,可得2256030m m m m ⎧-+=⎨-≠⎩,解得2m =. 44.(1)1a ≠-; (2)1. 【解析】 【分析】(1)根据虚数的概念求解即可;(2)根据纯虚数的概念由虚部不为0,实部为0建立关系式求解即可. (1)因为()()211i z a a a R =-++∈是虚数,所以10a +≠,解得1a ≠-, (2)因为()()211i z a a a R =-++∈是纯虚数,所以21010a a ⎧-=⎨+≠⎩,解得1a =.45.2i - 【解析】 【分析】根据复数的几何意义以及正方形的性质进行求解即可. 【详解】设复数12i +,2i -+,12i --对应的点分别为,,A B C 则(1,2)A ,(2,1)B -,(1,2)C --,所以()()3,1,1,3AB BC =--=-,所以033·AB BC =-+=,所以90ABC ∠=︒ 设第四个点为(,)D x y ,则按照,,,A B C D 的顺序才能构成正方形, 所以AB DC =,即(3-,1)(1x -=--,2)y -- 即1321x y --=-⎧⎨--=-⎩,解得21x y =⎧⎨=-⎩,则(2,1)D -,对应的复数为2i -, 故答案为:2i -。
复数练习题含答案

复数练习题含答案一、单选题1.已知m 为实数,则“1m =”是“复数()211i z m m =-++为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( )A .一B .二C .三D .四4.复数(2i 的虚部为( )A .2B .C .2-D .05.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .AB C =B .A B =C .()S A B ⋂=∅D .SSABC6.若0a <,则a 的三角形式为( ) A .()cos0isin0a + B .()cos isin a ππ+ C .()cos isin a ππ-+ D .()cos isin a ππ-- 7.复数(sin 10°+icos 10°)(sin 10°+icos 10°)的三角形式是( )A .sin 30°+icos 30°B .cos 160°+isin 160°C .cos 30°+isin 30°D .sin 160°+icos 160°8.下列命题正确的是( )①若复数z 满足2z ∈R ,则z R ∈; ②若复数z 满足i R z∈,则z 是纯虚数;③若复数12,z z 满足12=z z ,则12=±z z ; ④若复数12,z z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .①③9.已知复数13i z a =-,22i z =+(i 为虚数单位),若12z z 是纯虚数,则实数=a ( ) A .32-B .32C .6-D .610.已知复数12i1iz -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .筹四象限11.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1 B .1- C .i D .i - 12.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( )AB .5CD .213.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i --B .22i +C .22i -+D .22i +或22i -+14.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12- B .1i 2C .32- D .3i 2-15.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 16.已知复数i(1i)z =-,则其共轭复数z =( )A .1i --B .1i -+C .1i -D .1i +17.已知z1,z 2∈C ,|z 1+z 2|=|z 1|=2,|z 2|=2,则|z 1-z 2|等于( ) A .1 B .12 C .2 D .18.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i19.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件20.若复数i (2i)z m m =++在复平面内对应的点在第二象限,则实数m 的取值范围是( ) A .(1,0)- B .(0,1) C .(,0)-∞ D .(1,)-+∞二、填空题21.已知复数z =(,a b ∈R 且0,0a b ≠≠)的模等于1,则12b a b++的最小值为______.22.已知i 是虚数单位,则202220221i 1i 1i ⎛⎫+⎛⎫+= ⎪ ⎪ ⎪--⎝⎭⎝⎭________.23.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 24.已知复数z 满足211iz -=+,则z 的最小值为___________; 25.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________.26.设i 是虚数单位,若复数z =1+2i ,则复数z 的模为__________. 27.计算:()()12i 34i 2i-+=+_________.28.定义12,C z z ∈,221212121(||||)4z z z z z z ⊕=+--,121212i(i )z z z z z z ⊗=⊕+⊕.若134i z =+,21z =+,则12||z z ⊗=___________.29.设i 为虚数单位,若复数(1i)(i)a -+的实部与虚部相等,其中a 是实数,则|1i |-+=a ________.30.若复数()2i m m m -+为纯虚数,则实数m 的值为________.31.设i 是虚数单位,复数z =,则z =___________.32.甲、乙、丙、丁四人对复数z 的陈述如下(i 为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________. 33.计算cos 40isin 40cos10isin10________.34.已知4cosisin1212z ππ⎛⎫=+ ⎪⎝⎭,则1z 的辐角主值为________. 35.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.36.已知复数21ii z +=,则z =______. 37.方程()()2223256i 0x x x x --+-+=的实数解x =________.38.若z 1=2-i ,z 2=-12+2i ,则z 1,z 2在复平面上所对应的点为Z 1,Z 2,这两点之间的距离为________. 39.若i 是虚数单位,则复数310i3i =-________.(写成最简结果) 40.已知复数z =,则复数z 的虚部为__________. 三、解答题41.设复数z =log 2(m 2-3m -3)+ilog 2(m -2)(m ∈R ),对应的向量为OZ .(1)若OZ 的终点Z 在虚轴上,求实数m 的值及|OZ |; (2)若OZ 的终点Z 在第二象限内,求m 的取值范围. 42.根据要求完成下列问题:(1)已知复数1z 在复平面内对应的点在第四象限,1||1z =,且111z z +=,求1z ;(2)已知复数225(15i)3(2i)12im z m =-+-+-为纯虚数,求实数m 的值. 43.在复数集C 内方程610x -=有六个根分别为123456ωωωωωω,,,,, (1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A ,B ,C ,D ,E ,F ;求多边形ABCDEF 的面积 . 44.已知z 为复数,1i z -为实数,i1z-为纯虚数,求复数z . 45.数列{}n a 满足1112,1n n n a a a a +-==+,试研究数列{}n a 的周期性.【参考答案】一、单选题1.C2.A3.B4.C5.D6.C7.B8.B9.A10.C11.B12.A13.D14.C15.D16.C17.D18.D19.B20.A二、填空题21.72223.1241##1-25.12627.43i-##3i4-+ 28.352930.131.32.2 3312i 34.2312π353637.2 3839.13i +##3i 1+ 40.三、解答题41.(1)m =4,|1OZ =(2)4m ⎫∈⎪⎪⎝⎭. 【解析】 【分析】(1)显然是复数z 的实部为0,即可求解; (2)z 的实部为负数,虚部为正数即可. (1)因为OZ 的终点z 在虚轴上,所以复数z 的实部为0, 则有log 2(m 2-3m -3)=0,所以m 2-3m -3=1, 所以m =4或m =-1; 因为20m -> ,所以m =4, 此时z =i ,()0,1OZ =,1OZ = ; (2)因为OZ 的终点Z 在第二象限内,则有()()2222log 330log 2033020m m m m m m ⎧--<⎪⎪->⎨-->⎪⎪->⎩4m << ,所以4m ⎫∈⎪⎪⎝⎭42.(1)112z = (2)2m =- 【解析】 【分析】(1)设1i z a b =+,由题设可得关于,a b 的方程组,求出其解后可得1z . (2)根据复数的四则运算可求2z ,根据其为纯虚数可求实数m 的值. (1)设1i z a b =+(a b R ∈、),由题意得22121a b a ⎧+=⎨=⎩,解得12a =,b =∵复数1z 在复平面内对应的点在第四象限,∴b =112z =; (2)()()()()2222515i 32i 6253i 12im z m m m m m =-+-+=--+---,依题意得260m m --=,解得3m =或2m =-, 又∵22530m m --≠,∴3m ≠且12m ≠-, ∴2m =-.43.(1)12345611111,1,2222ωωωωωω==-=-=-=+=-【解析】 【分析】(1)原式可因式分解为22(1)(1)(1)(1)0x x x x x x -+++-+=,令21=0x x ++,设i,,x a b a b R =+∈可求解出21=0x x ++的两个虚根,同理可求解21=0x x -+的两个虚根,即得解;(2)六个点构成的图形为正六边形,边长为1,计算即可 (1)由题意,610x -=22(1)(1)(1)(1)0x x x x x x ∴-+++-+=当21=0x x ++时,设i,,x a b a b R =+∈故222(i)i 1=+1(2)i=0a b a b a b a ab b ++++-+++,所以22+1=2=0a b a ab b -++ 解得:13,2a b =-=±,即13i 2x =-± 当21=0x x -+时,设i,,x c d c d R =+∈ 故222(i)i 1=1(2)i=0c d c d c d c cd d +--+--++- 所以221=2=0c d c cd d --+- 解得:13,2c d ==±,即13i 2x =±故:123456131313131,1,i,i,i,i 2222ωωωωωω==-=-+=--=+=- (2)六个根对应的点分别为A ,B ,C ,D ,E ,F , 其中13131313(1,0),(1,0),(,),(,),(,),(,)2222A B C D E F ----- 在复平面中描出这六个点如图所示:六个点构成的图形为正六边形,边长为1 故233361S ==44.1i z =+ 【解析】 【分析】i z a b =+(,R a b ∈),代入1i z -化简由其为实数可求出a ,再代入i1z-化简由其为纯虚数可求出b ,从而可求出复数z 【详解】设i z a b =+(,R a b ∈),所以1(1)i(1)i i iz a b b a --+==--, 因为1iz -为实数,所以10a -=,得1a =, 所以()()()()i 1i i ()()i i 1i 1i 1i 1i 222a b z a b a b a b a b a b +++-++-+====+---+, 因为i1z-为纯虚数, 所以02a b -=且02a b+≠, 所以1a b ==, 所以1i z =+ 45.周期为4 【解析】 【分析】根据通项公式,写出特征方程为210x +=,由方程根的情况求出数列{}n a 的周期. 【详解】数列{}n a 的递归函数为()11x f x x -=+,其特征方程为210x +=. 因为Δ=01440-⨯=-<,解得:i,i m k ==-()1i 36arg arg arg i 1i 24a mc a kc ππ--⎛⎫⎛⎫==-== ⎪ ⎪-+⎝⎭⎝⎭所以数列{}n a 是周期4T =的周期函数.。
复数练习题(有答案)

复数练习题(有答案)1.复数选择题1.若复数 $z=1+i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1-i$。
答案:C2.若复数 $z=1-i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1+i$。
答案:D3.在复平面内,复数 $z=3+4i$ 对应的点的坐标为()解析:$z$ 对应的点的坐标为 $(3,4)$。
答案:A4.已知复数 $z=\frac{1}{1+i}$,则 $z$ 的共轭复数为()解析:$\bar{z}=\frac{1}{1-i}=\frac{1+i}{2}$。
答案:B5.已知复数 $z=\frac{3-2i}{5}$,则 $z$ 的虚部是()解析:$z$ 的虚部为$\operatorname{Im}(z)=\frac{-2}{5}$。
答案:C6.已知复数 $z$ 满足 $z(1+i)=1-i$,则复数 $z$ 对应的点在直线 $y=-\frac{1}{2}x$ 上。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=\frac{-1}{2}+\frac{1}{2}i$,对应的点在直线 $y=-\frac{1}{2}x$ 上。
答案:A7.已知复数 $z$ 满足 $z^2=2i$,则 $z\cdot\bar{z}$ 的值为$4$。
解析:$z\cdot\bar{z}=|z|^2=2$,$z^2\cdot\bar{z}^2=(2i)(-2i)=-4$,因此 $z\cdot\bar{z}=\sqrt{-4}=2i$,$|z\cdot\bar{z}|=2$,所以 $z\cdot\bar{z}=4$。
答案:B8.已知复数 $z$ 满足 $z(1-i)=2i$,则在复平面内 $z$ 对应的点位于第二象限。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=-\frac{2}{2i}-i=-1-i$,对应的点在第二象限。
答案:B9.满足 $i^3\cdot z=1-3i$ 的复数 $z$ 的共轭复数是 $3+i$。
复数练习题含答案

复数练习题含答案一、单选题1.复数z 满足(1i)23i z -=-,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.若0a <,则a 的三角形式为( )A .()cos0isin0a +B .()cos isin a ππ+C .()cos isin a ππ-+D .()cos isin a ππ--3.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2- B .1- C .1 D .2 4.设||(12i)34i z -=+,则z 的共轭复数对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限7.下列命题:①若i 0a b +=,则0a b ;②i 22i 2x y x y +=+⇔==;③若y R ∈,且()()211i 0y y ---=,则1y =.其中正确命题的个数为( )A .0个B .1个C .2个D .3个8.在复平面中,复数z 对应的点的坐标为(1,2),则复数iz 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9.复数 21(1)i 1z a a =+--是实数,则实数a 的值为( ) A .1或-1 B .1 C .-1D .0或-110.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i --B .2i -+C .2i -D .2i +11.已知z 1,z 2∈C ,|z 1+z 2|=|z 1|=2,|z 2|=2,则|z 1-z 2|等于( ) A .1 B .12 C .2 D .12.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( )A .-2B .-1C .1D .213.若(-3a +b i)-(2b +a i)=3-5i ,a ,b ∈R ,则a +b =( ) A .75B .-115C .-185D .514.已知12z i =-,则(i)z z -的模长为( ) A .4BC .2D .1015.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( )A .15-B .15C .1i 5-D .1i 516.复数z 满足:23i 3=+-z z ,则z =( ) A .5BC .10D17.下列关于复数的命题中(其中i 为虚数单位),说法正确的是( ) A .若复数1z ,2z 的模相等,则1z ,2z 是共轭复数B .已知复数1z ,2z ,3z ,若()()2212230z z z z -+-=,则123z z z ==C .若关于x 的方程()21i 14i 0x ax +++-=(a ∈R )有实根,则52a =-D .12i +是关于x 的方程20x px q ++=的一个根,其中,p q 为实数,则5q = 18.若复数4i1iz =-,则复数z 的模等于( ) AB .2 C.D .419.复数5ii 2iz -=-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限20.已知复数12i1iz -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .筹四象限二、填空题21.定义12,C z z ∈,221212121(||||)4z z z z z z ⊕=+--,121212i(i )z z z z z z ⊗=⊕+⊕.若134i z =+,21z =+,则12||z z ⊗=___________.22.设i 为虚数单位,若复数(1i)(i)a -+的实部与虚部相等,其中a 是实数,则|1i |-+=a ________.23.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________24.已知复数20202023i i z =+(i 为虚数单位),则z 在复平面内对应的点位于第________象限.25.若复数z 满足i 2022i z ⋅=-(i 是虚数单位),则z 的虚部是___________. 26.若复数z 满足i 3i=iz -+,则z =________. 27.已知复数ππsin i cos 33z =+,则z =________. 28.计算:()()12i 34i 2i-+=+_________.29.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12z z =_______. 30.化简:i 是虚数单位,复数()2021i 34i z =+=_________.31.已知i 为虚数单位,复数21iz =-的虚部为___________. 32.复数121i,22i z z =+=-,则12_________.z z -=33.已知复数z 满足()()1i 2i z t t +=∈R,若z =,则t 的值为___________.34.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.35i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.36.设复数()21(1)i m m -++为纯虚数,则实数m 的值为________.37.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________ 38.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________. 39.计算:112i2i-=+___________. 40.设m ∈R ,复数z =(2+i )m 2-3(1+i )m -2(1-i ),若z 为非零实数,则m =________.三、解答题41.设实部为正数的复数z ,满足z =(12i)z +在复平面上对应的点在第一、三象限的角平分线上. (1)求复数z ; (2)若i()1im z m R ⋅+∈+为纯虚数,求实数m 的值. 42.若复平面内单位圆上三点所对应的复数123,,z z z ,满足22z 13z z =且23i i 0z z +-=,求复数123,,z z z .43.已知复数()()()121i z m m m R =++-∈ (1)若z 为纯虚数,求实数m 的值;(2)若z 在复平面内的对应点位于第四象限,求实数m 的取值范围及z 的最小值. 44.已知复数()()()2i 1i 24i z a a a R =--+++∈.(1)若z 在复平面中所对应的点在直线0x y -=上,求a 的值; (2)求2i 7iz --的取值范围.45.已知复数()()222343i z m m m m =--+-+(m R ∈)在复平面上对应的点为Z ,求实数m 取什么值时,点Z : (1)在实轴上; (2)在虚轴上; (3)在第一象限.【参考答案】一、单选题 1.A 2.C 3.B 4.D 5.C 6.D 7.B 8.B10.B 11.D 12.A 13.B 14.B 15.A 16.D 17.D 18.C 19.C 20.C 二、填空题 21.35 2223.12或12##12-或12 24.四 25.2022-2627.128.43i -##3i 4-+ 29.12i -##2i+1- 30.-4+3i##3i-4 31.13233.2或2- 34.[)2,+∞35.1-1- 36.1 37.()0,3 38.③39.43i -##3i 4-+三、解答题41.(1)3i z =-; (2)6m =-. 【解析】 【分析】(1)根据复数的模公式,结合复数乘法的运算法则、第一、三象限的角平分线的性质进行求解即可;(2)根据纯虚数的定义,结合共轭复数的定义、复数除法的运算法则进行求解即可. (1)设i(0,),10,(12i)2(2)i z a b a b R z z a b b a =+>∈∴=+=-++, 由题意得,22223,101a b b a a a b b -=+=⎧⎧∴⎨⎨+==-⎩⎩, 即3i z =-; (2)i i 3i 3(1)i 1i 222m m m m mz ⋅++=++=++++为纯虚数, 30,62mm ∴+=∴=-. 42.答案见解析. 【解析】 【分析】根据复数的几何意义,结合复数的运算求得3z 和2z ,再结合复数的乘除运算,即可求得1z . 【详解】因为单位圆上三点所对应的复数为123,,z z z ,故可设z 1=cos α+isin α,z 2=cos β+isin β,z 3=cos γ+isin γ, 则由23i i 0z z +-=,可得cos sin 0sin cos 10βγβγ-=⎧⎨+-=⎩,利用cos 2β+sin 2β=1,解得1cos 2sin γγ⎧=⎪⎪⎨⎪=⎪⎩z 3故当z3时,z2=-i(z3-1),z1=223zz=1;当z3时,z2=-i(z3-1)z1=223zz==1.43.(1)1-;(2)11,2⎛⎫-⎪⎝⎭.【解析】【分析】(1)利用纯虚数的定义,实部为零,虚部不等于零即可得出.(2)利用复数模的计算公式、几何意义即可得出.(1)()()()121iz m m m R=++-∈为纯虚数,10m∴+=且210m-≠1m∴=-(2)z在复平面内的对应点为(1,21)m m+-由题意:10210mm+>⎧⎨-<⎩,∴112m-<<.即实数m的取值范围是11,2⎛⎫- ⎪⎝⎭.而||z当11(1,)52m=∈-时,||minz44.(1)4a=(2)⎫+∞⎪⎪⎣⎭【解析】【分析】(1)首先根据复数代数形式的乘法运算化简复数z,即可得到复数在复平面内所对应的点的坐标,最后代入直线方程,即可求出a;(2)根据复数代数形式的除法运算化简2i7iz--,再根据复数模的计算公式及二次函数的性质计算可得;(1)解:因为复数()()()2i 1i 24i z a a a R =--+++∈,所以()222i i i 24i 326i z a a a a a =-+-+++=-++,所以z 在复平面内对应的点为()32,6a a -+,因为在复平面内对应的点在直线0x y -=上,即为()3260a a --+=,解得4a =;(2) 解:由[]()232(6)i i 32(6)i2i 72i 72i 7(6)32i 2i 713i i i i a a z a a a a a a -++-++--=--=--=+----=--所以2i 713i iza a --=--==所以当且仅当110a =2i 7i z --的取值范围是⎫+∞⎪⎪⎣⎭45.(1)1m =或3m = (2)1m =-或3m = (3)1m <-或3m > 【解析】 【分析】(1)由题意可得2430m m -+=,从而可求出m 的值, (2)由题意可得2230m m --=,从而可求出m 的值,(3)由题意可得22230430m m m m ⎧-->⎨-+>⎩,解不等式组可求得结果(1)点Z 在实轴上,即复数z 为实数,由2430m m -+=得1m =或3m =, ∴当1m =或3m =时,点Z 在实轴上; (2)点Z 在虚轴上,即复数z 为纯虚数或0,由2230m m --=得1m =-或3m =, ∴当1m =-或3m =时,点Z 在虚轴上; (3)点Z 在第一象限,即复数z 的实部虚部均大于0,由22230430m m m m ⎧-->⎨-+>⎩,即1313m m m m ⎧-⎪⎨⎪⎩或或,解得1m <-或3m >,∴当1m <-或3m >时,点Z 在第一象限.。
复数练习题(有答案)

复数练习题(有答案)1.复数选择题1.若复数 $z=\frac{1}{1-i}$,则 $z$ 的共轭复数为()。
A。
$\frac{1+i}{2}$ B。
$\frac{1-i}{2}$ C。
$\frac{-1+i}{2}$ D。
$\frac{-1-i}{2}$2.已知复数 $z=\frac{11+22i}{1-i(m-m^2i)}$ 为纯虚数,则实数 $m=$()。
A。
$1$ B。
$-1$ C。
$i$ D。
$-i$3.若复数 $z=(2+i)i$(其中 $i$ 为虚数单位),则复数$z$ 的模为()。
A。
$5$4.复数 $z=\frac{3i}{5-2i}$ 的虚部是()。
A。
$\frac{15}{29}$ B。
$\frac{3}{29}$ C。
$-\frac{3}{29}$ D。
$-\frac{15}{29}$5.已知 $2i+1=z\cdot5\left(5-\frac{1}{z}\right)$,则$z=$()。
A。
$1$ B。
$3$ C。
$2$ D。
$-2$6.复数 $z$ 满足 $i\cdot z=1-2i$,$z$ 是 $z$ 的共轭复数,则 $z\cdot z=$()。
A。
$5$ B。
$-5$ C。
$5i$ D。
$-5i$7.已知 $i$ 是虚数单位,则复数 $\frac{4i}{1+i}$ 在复平面内对应的点在()。
A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限8.已知 $i$ 为虚数单位,若复数 $z=5+3i$,则$\frac{z}{i}=$()。
A。
$-3+5i$ B。
$5-3i$ C。
$-5+3i$ D。
$3+5i$9.若复数 $z=\frac{a+i}{1-i}$,$a\in R$,为纯虚数,则$z+a=$()。
A。
$1+2i$ B。
$2i-1$ C。
$2+2i$ D。
$-2i+1$10.已知复数 $z$ 满足 $\frac{z}{2+i}=2-i$,则复数 $z$ 在复平面内对应的点在()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数运算习题
一.选择题(共13小题)
1.(2016•淮南一模)复数的虚部是()
A.i B.﹣i C.1 D.﹣1
2.(2016•眉山模拟)已知i是虚数单位,则复数i(1+i)的共轭复数为()
A.1+i B.l﹣i C.﹣l+i D.﹣l﹣i
3.(2016•黄浦区一模)已知复数z,“z+=0”是“z为纯虚数”的()
A.充分非必要条件B.必要非充分条件。
C.充要条件D.既非充分也不必要条件
4.(2016•临沂一模)复数z为纯虚数,若(3﹣i)z=a+i(i为虚数单位),则实数a的值为()
A.﹣3 B.3 C.﹣D.
5.(2016•广西一模)在复平面内,复数+2i2对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
6.(2016•白山一模)若=a+bi(a,b∈R,i为虚数单位),则a﹣b等于()A.B.1 C.0 D.﹣1
…
7.(2016•衡阳一模)如图,在复平面内,复数z1和z2对应的点分别是A和B,则=()
A.+i B.+i C.﹣﹣i D.﹣﹣i
8.(2016•河西区模拟)已知复数z1=3﹣i,z2=1+i,是z1的共轭复数,则=()A.1+i B.1﹣i C.2+i D.2﹣i
9.(2016•青浦区一模)复数(a∈R,i是虚数单位)在复平面上对应的点不可能位
于()
A.第一象限B.第二象限C.第三象限D.第四象限
~
10.(2015•新课标II)若a为实数且,则a=()
A.﹣4 B.﹣3 C.3 D.4
11.(2015•静安区一模)已知i为虚数单位,图中复平面内的点A表示复数z,则表示复数
的点是()
A.M B.N C.P D.Q
12.(2015•固原校级一模)若复数(i为虚数单位,a∈R)在复平面内对应点在第四象限,则a的取值范围为()
A.{a|a<﹣6} B.C.D.
>
13.(2015•海南模拟)已知i是虚数单位,m∈R,且是纯虚数,则()2011
的值为()
A.i B.﹣i C.1 D.﹣1
二.填空题(共5小题)
14.(2015•曲阜市校级模拟)若=1﹣bi,其中a,b都是实数,i是虚数单位,则
a+b=.
15.(2015秋•启东市校级期末)复数z满足|z﹣2+i|=1,则|z+1﹣2i|的最小值为.
:
16.(2015春•淮安校级期末)定义:若z2=a+bi(a,b∈R,i为虚数单位),则称复数z是复数a+bi的平方根.根据定义,则复数﹣3+4i的平方根是.
17.(2015秋•大丰市校级期末)已知复数z=x+yi(x,y∈R,x≠0)且|z﹣2|=,则的范围为.
18.(2015春•常州期中)设x是纯虚数,y是实数,且2x﹣1+i=y﹣(3﹣y)i,则
|x+y|=.
!。