3-1 第三章 聚合物的溶解

合集下载

第三章 高分子的溶液性质

第三章 高分子的溶液性质

3、高分子溶液的混合自由能 ΔFM= ΔHM-TΔSM=RT(n1ln φ1+n2ln φ2+ χ1n1φ2) 溶液中溶剂的化学位变化和溶质的化学位变化Δμ1、 Δμ2
分别为:
Δμ1 =RT[lnφ1+(1-1/x)φ2+χ1φ22] Δμ2 = RT[lnφ2+(x-1)φ1+xχ1φ12] lnp1/p10= Δμ1/RT= ln(1-φ2)+(1-1/x)φ2+χ1φ22 注意:由高分子溶液蒸汽压p1和纯溶剂蒸汽压p10的测量
4、混合溶剂, δ混= Φ1 δ1 + Φ2 δ2,有时混合溶剂的溶
解能力强于纯溶剂。
第二节 高分子溶液的热力学性质
理想液体的概念:溶液中溶质分子间、溶剂分子 间和溶剂溶质分子间的相互作用能均相等,溶 解过程没有体积的变化,也没有焓的变化。 理想溶液实际上是不存在的,高分子溶液与 理想溶液的偏差在于两个方面:一是溶剂分子 之间、高分子重复单元之间以及溶剂与重复单 元之间的相互作用能都不相等,因此混合热不 为零;二是高分子具有一定的柔顺性,每个分 子本身可以采取许多构象,因此高分子溶液中 分子的排列方式比同样分子数目的小分子溶液 的排列方式多,即其混合熵高于理想溶液的混 合熵。
2、对于真实的高分子在溶液中的排斥体积分为两部分:外排 斥体积和内排斥体积。外排斥体积是由于溶剂与高分子链段的 作用能大于高分子链段之间的作用能,高分子被溶剂化而扩张, 使两个高分子不能相互靠近而引起的;内排斥体积是由于高分 子有一定的粗细,链的一部分不能同时停留在已为链的另一部 分所占据的空间所引起的。当溶液无限稀释时,外排斥体积可 以接近零,而内排斥体积永远不为零。如果链段比较刚性或链 段之间排斥作用比较大,则内排斥体积为正;相反,链相互接 触的两部分体积可以小于它们各自的体积之和,则内排斥体积 为负。这种内排斥体积为负的链称为坍陷线团。

高分子物理第三章习题及解答

高分子物理第三章习题及解答

高分子的溶解溶解与溶胀例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。

这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。

整个过程往往需要较长的时间。

高聚物的聚集态又有非晶态和晶态之分。

非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。

晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。

非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。

例3-2.用热力学原理解释溶解和溶胀。

解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合:上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。

焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。

对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。

但一般来说,高聚物的溶解过程都是增加的,即>0。

显然,要使<0,则要求越小越好,最好为负值或较小的正值。

极性高聚物溶于极性溶剂,常因溶剂化作用而放热。

因此,总小于零,即<0,溶解过程自发进行。

根据晶格理论得=(3-1)式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。

的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。

而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式:=(3-2)式中是体积分数,是溶度参数,下标1和2分别表示溶剂和溶质,是溶液的总体积。

第三章 聚合物溶液

第三章 聚合物溶液

通过共混可以获得原单一组分没有的一些新的综合性能, 并且可通过混合组分的调配(调节各组分的相对含量)来获得 所需性能的材料。
3.2 聚 合 物 浓 溶 液
绝大多数聚合物共混体系中,不同聚合物组分间并不能达到热 力学上的完全混溶,往往是各自聚集形成两相或多相的微相分 离结构。但若两种聚合物共混时相容性太差,混合程度(相互 的分散程度)很低时,易出现宏观的相分离,达不到共混的目 的,无实用价值。
(i)溶胀:由于聚合物分子与溶剂分子大小相差悬殊,溶剂分 子向聚合物渗透快,而聚合物分子向溶剂扩散慢,结果溶剂分 子向聚合物分子链间的空隙渗入,使之体积胀大,但整个分子 链还不能做扩散运动,体系表现为两相;
3.1 聚 合 物 的 溶 解
(ii)溶解:随着溶剂分子的不断渗入,聚合物分子链间的空 隙增大,并且渗入的溶剂分子还能使高分子链溶剂化,从而削 弱了分子链间的相互作用,使链段得以运动,直至脱离其他链 段的作用,转入溶解。当所有的高分子都进入溶液后,溶解过 程方告完成。 有些聚合物仅能溶胀或依条件仅停留在溶胀阶段,根据聚合 物在其他条件不变仅延长时间最终能否溶解可将聚合物溶胀可 分为无限溶胀和有限溶胀。
3.1 聚 合 物 的 溶 解
3.1.2 聚合物溶剂的选择 (1)极性相似原则
“相似者相容”,极性-极性;非极性-非极性 (2)溶度参数相近原则: 溶度参数是反映分子间相互作用力大小的一个参数。 定义为单位体积汽化能的平方根。用d来表示。常见溶剂的 溶度参数可查手册。 若难以找到合适的单一溶剂,可选择混合溶剂。混合溶 剂的溶度参数计算如下式: δm = φ1δ1 +φ2δ2 (φ为体积分数)
但是为了获得优良的物理力学性能,往往必须选择物性相差较 大的聚合物相共混。为了改善共混体系的相容性,可加入对两 种聚合物都具有一定相容性的相容剂(增容剂)。 通过共混可带来多方面的好处:(1)改善高分子材料的机械性 能;(2)提高耐老化性能;(3)改善材料的加工性能;(4) 有利于废弃聚合物的再利用。

第三章 聚合反应

第三章 聚合反应

KM 为聚合物稀溶液的特性 其中: 粘数;M为试样的粘均分子量。
M n、M w及M v三者之间的关系为: M n M v M w,只有对单分散试样,才能取等号。
2.聚合物分子量多分散性的表示方法 (1)多分散系数法
Mw 1,其中为多分散系数。 Mn
越大分子量分布越宽, 越小分子量分布越窄 , 对单分散试样 1 。
④ 聚合物、单体组成一般相同。加聚反应从机理上看大部分属于连锁聚 合,二者常替换使用,实际上连锁聚合与加聚反应是从不同角度对聚合 反应的分类,因此也有一些形式上的加聚反应属于逐步聚合机理。
逐步聚合(step polymerization)——其大分子的生成是一个逐步的过程。 其特点是: ① 单体带有两个或两个以上可反应的官能团; ② 伴随聚合往往有小分子化合物析出,聚合物、单体组成一般不同; ③ 聚合物主链往往带有官能团的特征; ④ 逐步聚合机理——大分子的生成是一个逐步的过程,由可反应官能 团相互反应逐步提高聚合度;同样,缩聚反应从机理上看大部分属于逐 步聚合,二者常替换使用,但也有一些缩聚反应属于连锁机理。
其中自由基聚合物产量最大,约占聚合物产量的60%,占热塑性聚 合物的80%。 自由基聚合属于连锁聚合,包含四种基元反应: 链引发(chain initiation)、链增长(chain propagation)、链转移(chain transfer)、链终止(chain termination)。 自由基聚合的链终止通常为双基终止:偶合终止(coupling termination)或歧化终止(disprotionation termination)。 (一) 链引发反应 自由基聚合的活性中心为自由基,其产生可借助力、热、光、辐射 直接作用于单体来产生,但目前工业及科学研究上广泛采用的方法是使 用引发剂(initiator),引发剂是结构上含有弱键的化合物,由其均裂产 生初级自由基(primary radical),加成单体得到单体自由基 (monomer radical),然后进入链增长。

高分子物理(北京化工大学)3-1ppt课件

高分子物理(北京化工大学)3-1ppt课件
高分子是由许多重复单元组成的具有柔性的分子,具有许多独 立运动的单元,所以一个高分子在溶液中可其到若干个小分子 的作用,又不停的改变构象,因此在溶液中的排列方式比同数 量的小分子排列要多得多。因而混合熵比理想溶液大,而蒸汽
压比同数量的小分子溶液小得多。只有当溶液处于 状态或浓
度趋于零时,高分子溶液才体现出理性溶液的性质。
本讲内容: 第一节 高聚物的溶解 •高聚物溶解过程的特点 •高聚物溶解过程的热力学解释 •溶剂的选择
第二节 高分子溶液的热力学性质 •小分子理想溶液的热力学
9
3.1 The solution of polymers 聚合物的溶解
The process of solution 溶解过程
(1) 非晶态聚合物的溶胀和溶解
VMi 0
溶液中溶质分子间,溶剂分子间, 溶质和溶剂分子间的相互作用是 相等的。
溶解过程中没有体积变化,也无 热量变化,溶液的蒸汽压服从 Raoult law.
H
i M
0
M – mixing i - ideal
22
X1
N1 N1 N2
N1 – the mole number of solvent N2 – the mole number of solution
HM 12[1 2 ]2VM
Hildebrand J., Scott R.L., Solubility of Nonelectrolytes, Reinhold Publishing Corporation, New York, Chapter 7 (1949)
1, 2 – 分别为溶剂和高分子的体积分数
The mixing entropy of the ideal solution

高分子物理第三章溶液13要点

高分子物理第三章溶液13要点

而破坏晶格,使溶解得以进行。可在常温下溶解。
3.非极性晶态聚合物 因结晶在常温下不能被破坏,所以 常温下不能溶解。只能升温至熔点以上才能溶解.如
;PE\PP\...
二、高聚物溶液特点
高分子溶液是真溶液
溶解过程比小分子缓慢
几小时——几天甚至几星期
高分子溶液的粘度大得多
比同浓度的小分子溶液粘度大一个或几个数量级 1)分子链由于有内摩擦不易流动 2)大分子链之间作用力使体系相对稳定,不易流动
PVA膜、人造丝
高分子溶液遵循宏观热力学的规律,
但比小分子溶液复杂,达到平衡的时 间特别长。
三、聚合物 溶剂的选择

高聚物/良溶剂体系
良溶剂-链单元间的相互作用力>链单元间的内聚 力, 线团扩张.

高聚物/劣溶剂体系
内聚力使线团收缩,高分子线团塌缩。 当内聚力达到一定程度时,高分子聚集,甚至从溶 剂中沉淀出来。
一、高聚物的溶解过程
高聚物的溶解过程缓慢,包括两个阶段
1 非晶态高聚物的溶解
பைடு நூலகம்
溶胀:溶剂分子渗入高聚物中,聚合物链与溶剂分子大 小相差悬殊,溶剂分子向聚合物渗透快,而聚合物分 子向溶剂扩散慢,结果溶剂分子向聚合物分子链间的 空隙渗入,使之体积胀大,但整个分子链还不能做扩 散运动
溶解:分子链摆脱了其它链段的束缚进入溶液 线性高聚物——溶解
2 结晶高聚物的溶解过程:
结晶的熔融—熔融的高聚物+溶剂—溶解
对同种聚合物而言,结晶使聚合物溶解度降低,结晶度越 高,溶解越困难。
非极性结晶Polymer:
常温下不溶,在Tm附近溶解: 由于非极性晶态聚合物中分子链之间排列紧密, 相互作用强,溶剂分子难以渗入,因此在室温条件下只能微弱溶胀;只 有升温到其熔点附近,使其晶态结构熔化为非晶态,才能溶胀-溶解。

聚合物的溶解解读 PPT

聚合物的溶解解读 PPT


Company Logo
3、混合溶剂的溶度参数
• 当单一溶剂不能完全满足配方要求时,为了控制挥发 度,降低毒性和成本,改善溶解力,工业上常使用混 合溶剂(见表3-4)。混合溶剂的溶解度参数为:
混合 1 1 2 2 3 3
式中Φ1 、Φ2 、 Φ3 分别为三种纯溶剂的体积分数; δ1、δ2 、δ3分别为三种纯溶剂的溶度参数。
Company Logo
• 3)测定聚合物分子量和分子量分布;测定内聚能密度,计算硫 化胶的交联密度等。 • 4)研究高分子在溶液中的形态尺寸(柔顺性,支化情况等)及 其相互作用(包括高分子链段间,链段与溶剂分子间的相互作 用)。
Company Logo
2、高分子浓溶液
• 溶液纺丝: 纺丝液浓度一般在15%以上; • 胶粘剂、涂料: 浓度可达60%以上; • 冻胶和交联聚合物的溶胀体——凝胶,则为半固体状态。 • 塑料工业的增塑体,是一种更浓的溶液,呈固体状态,且具有一定 的机械强度。 • 着重于应用研究,如高分子溶液的流变性能与成型工艺的关系等。
Company Logo
• 影响因素: • 1)分子量越大,溶解速度越慢; 2)温度升高,聚合物的溶解度增大,溶解速度提高。 3)搅拌,双向扩散速度增大,溶解速度提高。 • 对溶解体系进行搅拌或适当加热可缩短溶解时间。
Company Logo
2、结晶聚合物的溶解
• 非晶态聚合物分子链堆砌比较疏松,分子间相互作 用较弱,因此溶剂分子较容易渗入聚合物内部使其 溶胀和溶解。 • 结晶聚合物的晶区部分分子链排列规整,堆砌紧密, 分子间作用力强,溶剂分子很难渗入其内部,因此 其溶解比非晶态聚合物困难。 • 结晶聚合物的晶相是热力学稳定的相态,溶解要经 过两个过程:一是结晶聚合物先熔融成非晶态,其 过程需要吸热;二是熔融聚合物的溶解。

第三章 高分子的溶液性质.

第三章 高分子的溶液性质.

第三章高分子的溶液性质高聚物以分子状态分散在溶剂中所形成的均相混合物称为高分子溶液,它是人们在生产实践和科学研究中经常碰到的对象。

高分子溶液的性质随浓度的不同有很大的变化。

就以溶液的粘性和稳定性而言,浓度在1%以下的稀溶液,粘度很小而且很稳定,在没有化学变化的条件下其性质不随时间而变。

纺丝所用的溶液一般在15%以上,属于浓溶液范畴,其粘度较大,稳定性也较差,油漆或胶浆的浓度高达60%,粘度更大。

当溶液浓度变大时高分子链相互接近甚至相互贯穿而使链与链之间产生物理交联点,使体系产生冻胶或凝胶,呈半固体状态而不能流动。

如果在高聚物中加入增塑剂,则是一种更浓的溶液,呈固体状,而且有—定的机械强度。

此外能相容的高聚物共混体系也可看作是一种高分子溶液。

高分子的溶液性质包括很多内容:热力学性质:溶解过程中体系的焓、熵、体积的变化,高分子溶液的渗透压,高分子在溶液中的分子形态与尺寸,高分子与溶剂的相互作用,高分子溶液的相分离等;流体力学性质:高分子溶液的粘度、高分子在溶液中的扩散和沉降等;光学和电学性质:高分子溶液的光散射,折光指数,透明性,偶极矩,介电常数等。

本章将着重讨论高分子溶液的热力学性质和流体力学性质。

第一节高聚物的溶解3.1.1高聚物溶解过程的特点※高聚物的溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。

对于交联的高聚,只能停留在溶胀阶段,不会溶解。

※溶解度与高聚物的分子量有关,分子量大的溶解度小,对交联高聚物来说,交联度大的溶胀度小,交联度小的溶胀度大。

※晶态高聚物的溶解比非晶态高聚物要困难得多:非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。

晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难。

3.1.2 高聚物溶解过程的热力学解释溶解过程是溶质分子和溶剂分子互相混合的过程,在恒温恒压下,这种过程能自发进行的必要条件是Gibbs自由能的变化△F<0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

溶解过程中: ΔSM ﹥0
混合熵永远有利于混合,而混合热可正可负
19
Δ = ΔH M – ΔG GM –T TΔ ΔS SM M = ΔHM M
– ﹤0 –T TΔ ΔS SM M﹤0
聚合物是否能溶解? 取决于ΔHM
ΔHM ﹤0: 极性高聚物溶于极性溶剂中,如果有强烈相 互作用,一般会放热,从而溶解过程自发进行 ΔHM ﹥0: 大多数高聚物溶解时吸热。溶解过程能否自 发进行取决于ΔHM 和TΔSM 的相对大小 ΔHM ﹤ –T ΔSM 能自行溶解 ΔHM 越小越有利于溶解的进行
6
Why to study polymer solution?
具有重要的工业应用价值和理论研究意义
应用
粘合剂
涂料
溶液纺丝
增塑
共混
7
Why to study polymer solution? 研究
高分子溶液是研究单个高分子链结构的最佳方法 溶液的热力学性质 如:混合熵、混合热、混合自由能等 溶液的动力学性质 如:粘度、离心沉降等
稀溶液
高分子的形状和尺寸 如:分子量与分子量分布等 高分子的相互作用 ……
8
How to study polymer solution? • 聚合物的溶解过程 • 溶剂的选择 • 溶解状态:互溶 或 分离 • 溶解热力学
9
第一节 聚合物的溶解
10
第一节 聚合物的溶解
• 溶解过程的特点 • 溶解过程的热力学分析 • 溶剂对聚合物溶解能力的判定
3
3W
What is polymer solution? Why to study polymer solution? How to study polymer solution?
4
What is polymer solution?
传统上
广义上
5


①极稀溶液——浓度低于1% 热力学稳定体系,性质不随时间变化,粘度小。 分子量的测定一般用极稀溶液 ②稀溶液——浓度在1%-5% ③浓溶液——浓度﹥5% 如: 纺丝液 (10-15%左右,粘度大);油漆 (60%); 高分子/增塑剂体系 (更浓,半固体或固体)
交联度大,溶胀度小;交联度小,溶胀度大
14
聚合物的溶解
Ⅲ 结晶聚合物的溶解
溶解的两个过程: ① 结晶聚合物先熔融,其过程需要吸热 (克服晶格能) ② 熔融聚合物的溶解 9 非极性聚合物:难 9 极性聚合物:易
HDPE,137℃/120℃ 十氢萘 PVA:室温溶于水或乙醇 PA:室温溶于甲苯酚
15
Key points for polymer dissolving
34
练习题: 1. 结晶性非极性高聚物(如聚乙烯和聚丙烯)在 以下什么溶剂中才能溶解? A. 热的强极性溶剂 B. 热的非极性溶剂 C. 高沸点极性溶剂 D. 能与之形成氢键的溶剂 2. 试计算分子量为5万的线形PE的内聚能?并与 C-C键能(346kJ/mol)进行比较。
35
20
Hildebrand equation
21
22
溶度参数δ的测定
溶剂δ :直接计算 聚合物δ :间接测定
(a)粘度法 (b)溶胀法 (c)计算法
23
(a)
24
(b) 溶胀法
25
(c) 计算法
e.g.
26
27
28
29
Why ?
30
31
3.
32Leabharlann 9 非晶态、非极性高分子:适用溶度参数δ相近原则 9 结晶态、非极性高分子:要满足ΔHM<TΔSM 才能溶解
17
3.1.2 溶解过程的热力学分析
Gibbs 混合自由能:G Gibbs 方程:G=H-TS
18
聚合物溶解过程自由能的变化:
Δ = Δ H – T Δ S ΔG GM = Δ H – T Δ SM M M M M
ΔGM ﹤0 ΔGM ﹥0 溶解自发进行的必要条件 不溶解,相分离 –T ΔSM﹤0
溶解的两个过程: ①溶胀: 溶剂分子扩散到聚合物内部,使高分子体积膨胀 ②溶解: 高分子均匀分散到溶剂中,形成完全溶解的分子 分散的均相体系
如:天然橡胶-汽油;PS-苯
分子量大,溶解度小;分子量小,溶解度大
13
聚合物的溶解
Ⅱ 交联聚合物的溶胀平衡
交联聚合物在溶剂中可以发生溶胀,但是由于 交联键的存在,溶胀到一定程度后,就不再继续胀 大,此时达到溶胀平衡,不能再进行溶解
Linear Polymers
线形聚合物 先溶胀,后溶解 交联聚合物 只溶胀,不溶解 结晶聚合物 先熔融,后溶解
16
Cross-linked Polymers
Crystalline Polymers
练习题: 1. 解释为什么尼龙6在室温下可以溶解在某 些溶剂中,而线形聚乙烯在室温下却不能? 2. 尼龙6可以溶解在间甲酚中,是因为尼龙6 可与间甲酚产生( )作用。
第三章 高分子溶液
1
主要内容
前 言 3.1 聚合物的溶解 3.2 柔性链高分子溶液的热力学性质 3.3 高分子溶液的相平衡 3.4 共混聚合物相容性的热力学(自学) 3.5 聚电解质溶液 3.6 聚合物的浓溶液
2
重点和要求: 了解不同聚合物的溶解过程差异;从Flory-Huggins晶 格模型理论出发,所推导出的高分子溶液混合过程的混 合热、混合熵、混合自由能和化学位与小分子理想溶液 的差别及产生差别的原因;θ溶液;相分离及其机理。 教学目的: 通过本章的学习,全面了解由于高分子的长链大分 子的结构特点带来的在溶解过程和溶液热力学参数上的 与小分子的不同,正确判断何时能溶、何时为θ状态、何 时发生相分离;对多组分聚合物组成的溶液体系而言, 由相分离机理不同所带来的织态结构和性能差异。
11
3.1.1 溶解过程的特点
The process of solution
高聚物溶解与小分子的区别
高聚物的结构复杂,分子量大,具有多分散性,形 状多样(线、支化、交联),不同的聚集态(结晶态、 非晶态),所以溶解的影响因素很多,溶解过程比小分 子固体复杂的多。
12
聚合物的溶解
Ⅰ 非晶态聚合物的溶胀和溶解
结晶高分子结晶部分熔融是吸热过程,故升高 T 可促溶
如:聚乙烯: 120℃以上才能溶于四氢萘、对二甲苯等非极性溶剂
9 结晶态、极性高分子:若与溶剂形成氢键,低温亦可溶解
如:尼龙室温溶于甲酸、冰醋酸、浓硫酸、酚类等 涤纶树脂溶于苯酚、间甲酚、邻氯苯酚 聚甲醛溶于六氯丙酮
33
小结:
溶解的特点 溶解的热力学分析 溶解能力的判定
相关文档
最新文档