第六章概率分布解读

合集下载

教育与心理统计学第六章:概率分布

教育与心理统计学第六章:概率分布
生活中有很多这样的事例
举例:
1、我们队将可能赢得今晚的这场比赛。 2、今天下午下雨的机会有40%。 3、这个冬天的周末我很可能有个约会。 4、我有50比50的机会通过今年的英语四
级考试。
概率的分类
1、后验概率(empirical definition of Probability)
以随机事件A在大量重复试验中出现的稳定频率值作 为随机事件A的概率估计值,这样求得的概率称为 后验概率。
进行推论,从而确定推论正确或错误的概率。
一、正态分布及渐近正态分布
(一)样本平均数的分布
1、总体分布为正态, δ2已知,样本平均数 的分布为正 态分布
标准误,即样本均数的标准差,是描述均数抽样分布的 离散程度及衡量均数抽样误差大小的尺度,反映的是 样本均数之间的变异。
标准误用来衡量抽样误差。标准误越小,表明样本统计 量与总体参数的值越接近,样本对总体越有代表性, 用样本统计量推断总体参数的可靠度越大。
第六章 概率分布
第一节 概率的基本概念 第二节 正态分布 第三节 二项分布 第四节 样本分布
第一节 概率的基本概念
一、什么是概率 随机现象(或随机事件)——在心理学研究中,通过实
验、问卷调查所获得的数据,常因主试、被试、施测 条件等因素的随机变化而呈现出不确定性,即使是相 同的被试在相同的观测条件下,多次重复测量结果也 还是上下波动,我们一般都无法事先确定每一次测量 的结果。 概率(probability):随机事件出现可能性大小的客观 指标
2、计算概率时 ,每一个正态分布都需要有自己 的正态概率分布表,这种表格是无穷多的
3、若能将一般的正态分布转化为标准正态分布, 计算概率时只需要查一张表
(三)标准正态分布表的编制与使用

第六章概率分析

第六章概率分析

T 70 65 60 56
正态分布表的应用
①将原始数据整理为次数 分布表; ②计算各组上限以下累加 次数; ③计算各组中点以下累加 次数; ④计算各组中点以下累积 比率; ⑤查正态分布表,将概率 转化为Z分数; ⑥将正态化以后的Z值进行 线性转换:T=10Z+50
140135130125-
120115110105100959085807570-
122
117 112 107 102 97 92 87 82 77 72
28
16 16 8 9 8 7 6 6 5 5
0.14
-0.17 -0.40 -0.59 -0.73 -0.90 -1.06 -1.25 -1.46 -1.70 -2.12
51
48 46 44 43 41 39 38 35 33 29

分析:包括两种情况:先抽一黑球、后抽一白球;
先抽一白球、后抽一黑球。
3 2 2 3 P 0.48 5 5 5 5
例4
一枚硬币掷3次,或三枚硬币各掷一次,问出现两
次或两次以上H的概率是多少?
解:可能出现的情况有:HHH HHT HTH THH TTH
THT HTT TTT共8种。每种情况出现的概率,为

根据随机变量的取值是否连续,可将随机变量分为
离散型随机变量与连续型随机变量。

当随机变量只取孤立的数值,这种随机变量称为离
散型随机变量。如投掷一枚硬币4次,几次正面朝上?因 取值只能为0、1、2、3、4,故为离散型随机变量。
离散分布与连续分布

离散型随机变量的概率分布称作离散分布。连续分
布是指连续型随机变量的概率分布,即测量数据的概率 分布。心理统计学中最常用的连续型分布是正态分布。

第六章 概率论基础知识

第六章 概率论基础知识

• 事实上,若事件A相对于事件B是独立的,即P(A|B)=P(A),那么,当
P(A)>0时,有P(B|A)= 独立的。
P( AB) P( A)
=
P( A) P( B) =P(B)即事件B相对于事件A也是 P( A)
• 若两事件A,B满足P(AB)=P(A)P(B),则称A,B相互独立。若四对事件
{A,B},{ A ,B},{A, B },{ A , B }中有一对是相互独立的,则另外三对 也是相互独立的。任意两个事件A、B,满足下列条件之一,就称为相 互独立的随机事件: ⑴P(A|B)=P(A)且P(B)>0; ⑵P(B︱A)=P(B)且P(A)>0。 对任意两个相互独立的事件A、B,有 P(AB)=P(AB)=P(A|B)P(B)=P(A)P(B)
P A 乙 P 乙

0.08 0.5714 0.14
• 4.随机事件的独立性
设A,B是两个事件,一般而言P(A)P(A|B),这表示事件B的发生对事件 A的发生的概率有影响,只有当P(A)=P(A|B)时才可以认为B的发生与 否对A的发生毫无影响,就称两事件是独立的.其直观意义也比较明确: 若无论事件B的发生与否,对事件A的概率都没有影响,那么,事件A对于 事件B是独立的。由于从“A相对于B独立”,推导出“B相对于A独 立”,所以,只要P(A|B)= P(A)成立,我们就说,A与B是相互独立的。
表6-2 分布计算表
离散型随机变量
X的取值
-1
2
3
X的概率 1/6
1/2
1/3
2.离散随机变量的累积概率
P(X≤x)的概率,称为随机变量X(小于等于x)的累积概率,在例1中,随机 变量X≤2的累积概率为P(X≤2)=2/3。

第六章 6.2 马尔可夫链的概率分布

第六章 6.2 马尔可夫链的概率分布
0 .6 5 P = 0 .1 5 0 .1 2 0 .2 8 0 .6 7 0 .3 6 0 .0 7 0 .1 8 0 .5 2
如果个体当前收入等级为3,试分析经过三代后个体收 入等级转变为2的可能性,进一步分析经过n代后个体 收入等级的概率分布,并具体计算n=10时,个体收入 等级的概率分布。
i
= ∑ P ( X 0 = i, X n = j )
i
= ∑ P( X 0 = i) ⋅ P( X n = j X 0 = i)
i
= ∑ q p (0)
(0) i (n) ij i
n ≥ 0, i, j ∈ S
对于齐次马尔可夫链,上述结论可表示为
q
(n)
=q P , n≥0
(0) n
有限维分布 定理6.2.2 马尔可夫链X的有限维分布由其初始分 布和一步转移概率所完全确定. 证明 对∀n ≥ 1, ∀0 ≤ t1 < t2 < ⋯ < tn , i1 , i2 , ⋯, in , i ∈ S
i
= ∑ P ( X 0 = i, X t1 = i1 , X t2 = i2 ,⋯ , X tn = in )
i
= ∑ P ( X 0 = i ) ⋅ P( X t1 = i1 X 0 = i ) ⋅ P ( X t2 = i2 X 0 = i, X t1 = i1 )
i
⋅⋯ ⋅ P ( X tn = in X 0 = i , X t1 = i1 ,⋯ , X tn−1 = in −1 )
(2) 其中p02 为两步转移概率,是两步转移概率
矩阵中第一行第三列元素.
(2) 而P = P2
= 5 9 3 9 1 6 3 9 7 18 5 12 1 9 5 18 5 12

第六章 6.4 转移概率的极限与平稳分布

第六章 6.4 转移概率的极限与平稳分布

(v) (nd j r v)
ij
jj
v1
除n时,p(jjn) 0. 仅当v ld j r时,
n
f p (ld j r ) ((nl )d j )
ij
jj
l 0
l 0,1, ,n有
p(nd j r v) jj
0)
n
即 p f p (nd j r) ij
(ld j r ) ((nl )d j )
一个平稳分布,如果有
j i pij , iS
或矩阵形式为
=P
jS
其中 ={1,2, }, P ( pij )为X的转移概率矩阵。
显然 若概率分布{ j , j S}是齐次马氏链X
的平稳分布,则也有
j
p , (n) i ij
j S, n 1, 2,
iS
或矩阵形式为
=Pn
总之,:当马氏链X={X n, n 0,1, }为不可约的遍历链时,
事实上若上式对某个j成立严格不等式则两边事实上若上式对某个j成立严格不等式则两边关于j求和得证极限满足条首先反复利用可以得到ikkjikkjikkj又由于转移概率一致有界因此令n又由于转移概率一致有界因此令nlimli最后证的唯一性唯一性得证例643设在任意一天里人的情绪是快乐的一般的和忧郁的
6.4 转移概率的极限与平稳分布
(n)不存在
jj
综上,转移概率的极限有不同的情况,为此,关于转 移概率极限问题的讨论做以下假设:
总假定 j是正常返且i是非常返 或者 j和i属于同一个正常返类
又考虑到,当j为正常返周期态时,lim n
p(jjn)不存在,
但是状态转移遵从周期链原则,为此, 一般讨论以下 形式的极限
lim

《概率与数理统计》第06章 - 样本及抽样分布

《概率与数理统计》第06章 - 样本及抽样分布

(3)g( x1, x2 ,L xn )是统计量g(X1, X2 ,L Xn )的观察值
几个常见统计量
样本平均值
X
1 n
n i 1
Xi
它反映了 总体均值 的信息
样本方差
S 2
1 n1
n i 1
(Xi
X )2
它反映了总体 方差的信息
n
1
1
n
X
2 i
i 1
nX
2
样本标准差
S
1 n
n
1
(
i 1
X
i
是来自总体的一个样本,则
(1) E( X ) E( X ) ,
(2) D( X ) D( X ) 2 n ,
n
(3) E(S 2 ) D( X ) 2
矩估计法的 理论根据
若总体X的k阶矩E( X k ) k存在,则
(4) Ak
1 n
n i 1
Xik
p k
k 1, 2,L .
(3)证明:E(S2 )
定义 设X1 , X2 ,L , Xn是来自总体X的一个样本, g( X1 , X 2 ,L , X n )是X1 , X 2 ,L , X n的函数,若g 中不含未知参数,则g( X1 , X 2 ,L , X n )称是一 个统计量.
请注意 :
(1)X1, X2 ,L
X
是样本,也是随机变量
n
(2)统计量是随机变量的函数,故也是随机变量
1
e
(
xi 2
2
)2
2
n
( xi )2
1
e i1 2 2
n
2
第二节
抽样分布

概率与概率分布

概率与概率分布

第六章概率与概率分布推论统计研究如何依据样本资料对总体性质作出推断,这是以概率论为基础的。

通过概率论,可以知道在一定条件下,总体的各种抽样结果所具有的概率特性。

然后,推论统计依据这些概率特性,研究在发生了某种抽样结果的情况下总体参数是什么,或者对社会研究中提出的某种假设进行检定。

学习推论统计必须首先对概率论有所了解。

第一节概率论1.随机现象和随机事件概率是与随机现象相联系的一个概念。

所谓随机现象,是指事先不能精确预言其结果的现象。

随机现象具有非确定性,但内中也有一定的规律性。

例如,事先我们虽不能准确预言一个婴儿出生后的性别,但大量观察,我们会发现妇女生男生女的可能性几乎一样大,都是0.5,这就是概率。

随机现象具有在一定条件下呈现多种可能结果的特性。

但由于到底出现哪种结果,却又无法事先预言。

因此,人们把随机现象的结果以及这些结果的集合体称作随机事件,简称事件。

当随机事件发生的可能性能用数量大小表示出来时,我们就得到了概率。

在统计学中,我们把类似掷一枚硬币的行为(或对某一随机现象进行观察)称之为随机试验。

随机试验必须符合以下三个条件:①它可以在相同条件下重复进行;②试验的所有结果事先已知;③每次试验只出现这些可能结果中的一个,但不能预先断定出现哪个结果。

随机试验的每一个可能的结果,称为基本事件(或称样本点);所有可能出现的基本事件的集合,称为样本空间,记为Ω。

随机事件(可记为A、B、C等)如果仅含样本空间中的一个样本点,该事件称为简单事件;随机事件如果含样本空间中的一个以上的样本点,该事件称为复合事件。

换言之,复合事件是样本空间Ω的某个子集。

随机事件有两种极端的情况:一种是必然会出现的结果,称为必然事件;另一种是不可能出现的结果,称为不可能事件。

从样本空间来看,必然事件是由其全部基本事件组成的,可记为S;不可能事件则不含任何基本事件,可记为Φ。

2.事件之间的关系客观事物之间总是存在着一定的关系,随机事件之间也不例外。

概率论 第六章 样本及抽样分布

概率论 第六章 样本及抽样分布
函数Fn(x)为 Fn(x)=S(x)/n , -∞<x< +∞。
一般,设 x1,x2, …,xn 是总体F的一个容 量为n的样本值,先将x1,x2, …,xn 按自小到 大的次序排列,并重新编号,设为
x(1) ≤x(2) ≤…≤x(n) 则经验分布函数Fn(x)的观察值为
0,
若x x(1) ,
性质:
(1) limf (t)
1
e ; t2 2
n
2
(2)当n 45时 取t (n) Z .
(三)设X~2(n1), Y~ 2(n2), 且X 与Y相互独立,则随机变量
F X/ n1 Y / n2
则称F服从第一自由度为n1,第二自由 度为n2的F分布,记作
F~F(n1 ,n2)
F分布的分布密度为
2 2
E( X 2 ) D( X ) (E( X ))2
2 2
n
E(S 2 )
E[ 1 n 1
n i 1
(Xi
X
)2 ]
E[
1
n
(
n 1 i1
X
2 i
2
n X )]
1
n
E(
n 1 i1
X
2 i
nX
2
)
1 [E( n 1
n i 1
X
2 i
)
E(n X
2
)]
1[ n 1
n i 1
考察某厂生产的电容器
的使用寿命。在这个试验 中什么是总体,什么是个 体。
解 个体是每一个电容器 的使用寿命;总体X是各个 电容器的使用寿命的集合。
2. 样本
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为样本. 样 本中所包含的个体数称为样本容量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A发生,则事件B就一定不发生,这样的两个 事件为互不相容事件。 加法定理(additive rule):两互不相容事件A、 B之和的概率,等于这两个事件概率之和。即
P( AB) PA PB
P( A1A2 +An ) P A1 P A2 P An
(三)概率的乘法定理 独立事件:一个事件的出现对另一个事件的出
【例】 从52张扑克牌(去掉大小王牌)中有放回地连续抽两
张牌,即抽完第一张后将所抽的牌再放回去,混合好 后再抽第二张。 (1)第一次抽取红桃K第二次抽取方块K的概率是多 少? (2)第一次抽取红桃第二次抽取方块的概率是多少? (3)抽牌两次皆为红色的概率是多少?
【例6-1】一枚硬币掷三次,或三枚硬币各 掷一次,问出现两次或两次以上H的概率是 多少?
方程为
y
1
X 2
e
2 2
2
分布函数与概率密度函数
分布函数F(x)=P(X<x),表示随机变量X的值小于x 的概率。
概率密度f(x)是F(x)在x处的关于x的一阶导数,即变 化率。如果在某一x附近取非常小的一个邻域Δx,那 么,随机变量X落在(x, x+Δx)内的概率约为f(x)Δx, 即P(x<X<x+Δx)≈f(x)Δx。
解:投掷硬币可能出现八种结果(HHH、
HHT、HTH、THH、TTH、THT、HTT、
TTT)。每种结果可能出现的概率,依概率
乘法规则计算:1 1 1 1 各为 1 。
222 8
8
设P(A)代表3次H的概率,P(B)代表 “HHT”这种结果的概率,P(C)代表 “HTH”的概率,P(D)代表“THH”的概 率。依据概率加法规则计算:
(一)后验概率(posterior probability)或
统计概率
随机事件A的频率
W( A)
m n
当n无限增大时,随机事件A的频率会稳定在一
个常数P,这个常数就是随机事件A的概率。
m
P A
lim
n
n
(二)先验概率(prior probability)或古典概 率
古典概率模型要求满足两个条件: ⑴ 实验的所有可能结果(基本事件)是有限
P A B C D P A PB PC PD
1111 1 8888 2
三、概率分布类型
概率分布(probability distribution):对
随机变量取值的概率分布情况用数学方法(函 数)进行描述,一般用概率分布函数进行描述。 概率分布依不同的标准可以分为不同的类型。
(二)经验分布与理论分布 依分布函数的来源,可将概率分布分为经验分布与
理论分布。Байду номын сангаас 经验分布(empirical distribution):根据观察或实验
所获得的数据而编制的次数分布或相对频率分布。 理论分布(theoretical distribution):随机变量概率
分布的函数-数学模型;按某种数学模型计算出的 总体的次数分布。
(一)离散分布与连续分布 离散分布:离散型随机变量的概率分布,即计
数数据的概率分布。常用的离散分布有二项分 布(binomi distribution)、泊松分布 (Poisson distribution)和超几何分布 (hypergeometric distribution)等。
连续分布:连续随机变量的概率分布,即测 量数据的概率分布。常用的连续分布有正态 分布、负指数分布、威布尔分布等。
第六章 概率分布
第一节 第二节 第三节 第四节
概率的基本概念 正态分布 二项分布 抽样分布
第一节 概率的基本概念
一、什么是概率 在心理与教育研究中,大部分现象属于随机现
象,随机现象又称随机事件。 随机是指在一定条件下可能出现也可能不出现
的,表明随机事件出现可能性大小的客观指标 就是概率(probability)。 概率的定义有两种,即后验概率和先验概率。
样本统计量主要有平均数、两平均数之差、 方差、标准差、相关系数、回归系数、百分 比率(或概率)等。
统计量是基本随机变量的函数,故抽样分布 也称随机变量函数的分布。
基本随机变量分布与抽样分布是应用于统计 学上的理论分布,是统计推论的重要依据, 只有对它们真正了解,才能明确各种统计方 法的应用条件及注意问题,并对各种具体方 法有较为深刻的理解。
随机变量概率分布的性质,由它的特征数来 表达。这些特征数主要有期望值(理论平均 数)和方差。
(三)基本随机变量分布与抽样分布 依概率分布所描述的数据特征,可将概率分布
分为基本随机变量分布与抽样分布(sampling distribution)。 基本随机变量分布:随机变量各种不同取值情 况的概率分布,常用的有二项分布、正态分布。 抽样分布:从同一总体内抽取的不同样本的统 计量的概率分布。
现不发生影响。
相关事件或相依事件:事件A的概率随事件B是 否出现而改变,事件B的概率随事件A是否出现 而改变。
乘法定理(product rule):两个独立事件同 时出现的概率等于这两事件概率的乘积。
P( AB) PA PB
P( A1A2 An ) P A1 P A2 P An
概率密度f(x)是X落在x处“单位宽度”内的概率。 “密度”一词可以由此理解。
(二)正态分布的特征
1.正态分布的形式是对称的,其对称轴是经过 平均数点的垂线。
2.正态分布的中央点最高,然后逐渐向两侧下 降,曲线的形式是先向内弯,然后向外弯,拐 点位于正负1个标准差处,曲线两端向靠近基 线处无限延伸,但终不能与基线相交。
第二节 正态分布
正态分布(normal distribution):常态分 布、常态分配,是连续随机变量概率分布的一 种,在数理统计的理论与实际应用中占有最重 要地位的一种理论分布。
棣·莫弗、拉普拉斯、高斯
一、正态分布特征 (一)正态分布曲线函数 正态分布曲线函数又称概率密度函数,其一般
的; ⑵ 每一种可能结果出现的可能性相等。
P( A)
m n
二、概率的基本性质 (一)概率的公理系统 1.任何一个随机事件A的概率都是非负的。
0 ≤ P(A)≤1 2.不可能事件的概率等于零。 3.必然事件的概率等于1。
(二)概率的加法定理 互不相容事件:在一次实验或调查中,若事件
相关文档
最新文档