第六章 概率分布
教育与心理统计学第六章:概率分布

举例:
1、我们队将可能赢得今晚的这场比赛。 2、今天下午下雨的机会有40%。 3、这个冬天的周末我很可能有个约会。 4、我有50比50的机会通过今年的英语四
级考试。
概率的分类
1、后验概率(empirical definition of Probability)
以随机事件A在大量重复试验中出现的稳定频率值作 为随机事件A的概率估计值,这样求得的概率称为 后验概率。
进行推论,从而确定推论正确或错误的概率。
一、正态分布及渐近正态分布
(一)样本平均数的分布
1、总体分布为正态, δ2已知,样本平均数 的分布为正 态分布
标准误,即样本均数的标准差,是描述均数抽样分布的 离散程度及衡量均数抽样误差大小的尺度,反映的是 样本均数之间的变异。
标准误用来衡量抽样误差。标准误越小,表明样本统计 量与总体参数的值越接近,样本对总体越有代表性, 用样本统计量推断总体参数的可靠度越大。
第六章 概率分布
第一节 概率的基本概念 第二节 正态分布 第三节 二项分布 第四节 样本分布
第一节 概率的基本概念
一、什么是概率 随机现象(或随机事件)——在心理学研究中,通过实
验、问卷调查所获得的数据,常因主试、被试、施测 条件等因素的随机变化而呈现出不确定性,即使是相 同的被试在相同的观测条件下,多次重复测量结果也 还是上下波动,我们一般都无法事先确定每一次测量 的结果。 概率(probability):随机事件出现可能性大小的客观 指标
2、计算概率时 ,每一个正态分布都需要有自己 的正态概率分布表,这种表格是无穷多的
3、若能将一般的正态分布转化为标准正态分布, 计算概率时只需要查一张表
(三)标准正态分布表的编制与使用
第六章概率分析

T 70 65 60 56
正态分布表的应用
①将原始数据整理为次数 分布表; ②计算各组上限以下累加 次数; ③计算各组中点以下累加 次数; ④计算各组中点以下累积 比率; ⑤查正态分布表,将概率 转化为Z分数; ⑥将正态化以后的Z值进行 线性转换:T=10Z+50
140135130125-
120115110105100959085807570-
122
117 112 107 102 97 92 87 82 77 72
28
16 16 8 9 8 7 6 6 5 5
0.14
-0.17 -0.40 -0.59 -0.73 -0.90 -1.06 -1.25 -1.46 -1.70 -2.12
51
48 46 44 43 41 39 38 35 33 29
分析:包括两种情况:先抽一黑球、后抽一白球;
先抽一白球、后抽一黑球。
3 2 2 3 P 0.48 5 5 5 5
例4
一枚硬币掷3次,或三枚硬币各掷一次,问出现两
次或两次以上H的概率是多少?
解:可能出现的情况有:HHH HHT HTH THH TTH
THT HTT TTT共8种。每种情况出现的概率,为
根据随机变量的取值是否连续,可将随机变量分为
离散型随机变量与连续型随机变量。
当随机变量只取孤立的数值,这种随机变量称为离
散型随机变量。如投掷一枚硬币4次,几次正面朝上?因 取值只能为0、1、2、3、4,故为离散型随机变量。
离散分布与连续分布
离散型随机变量的概率分布称作离散分布。连续分
布是指连续型随机变量的概率分布,即测量数据的概率 分布。心理统计学中最常用的连续型分布是正态分布。
第六章 6.2 马尔可夫链的概率分布

如果个体当前收入等级为3,试分析经过三代后个体收 入等级转变为2的可能性,进一步分析经过n代后个体 收入等级的概率分布,并具体计算n=10时,个体收入 等级的概率分布。
i
= ∑ P ( X 0 = i, X n = j )
i
= ∑ P( X 0 = i) ⋅ P( X n = j X 0 = i)
i
= ∑ q p (0)
(0) i (n) ij i
n ≥ 0, i, j ∈ S
对于齐次马尔可夫链,上述结论可表示为
q
(n)
=q P , n≥0
(0) n
有限维分布 定理6.2.2 马尔可夫链X的有限维分布由其初始分 布和一步转移概率所完全确定. 证明 对∀n ≥ 1, ∀0 ≤ t1 < t2 < ⋯ < tn , i1 , i2 , ⋯, in , i ∈ S
i
= ∑ P ( X 0 = i, X t1 = i1 , X t2 = i2 ,⋯ , X tn = in )
i
= ∑ P ( X 0 = i ) ⋅ P( X t1 = i1 X 0 = i ) ⋅ P ( X t2 = i2 X 0 = i, X t1 = i1 )
i
⋅⋯ ⋅ P ( X tn = in X 0 = i , X t1 = i1 ,⋯ , X tn−1 = in −1 )
(2) 其中p02 为两步转移概率,是两步转移概率
矩阵中第一行第三列元素.
(2) 而P = P2
= 5 9 3 9 1 6 3 9 7 18 5 12 1 9 5 18 5 12
概率与概率分布

第六章概率与概率分布推论统计研究如何依据样本资料对总体性质作出推断,这是以概率论为基础的。
通过概率论,可以知道在一定条件下,总体的各种抽样结果所具有的概率特性。
然后,推论统计依据这些概率特性,研究在发生了某种抽样结果的情况下总体参数是什么,或者对社会研究中提出的某种假设进行检定。
学习推论统计必须首先对概率论有所了解。
第一节概率论1.随机现象和随机事件概率是与随机现象相联系的一个概念。
所谓随机现象,是指事先不能精确预言其结果的现象。
随机现象具有非确定性,但内中也有一定的规律性。
例如,事先我们虽不能准确预言一个婴儿出生后的性别,但大量观察,我们会发现妇女生男生女的可能性几乎一样大,都是0.5,这就是概率。
随机现象具有在一定条件下呈现多种可能结果的特性。
但由于到底出现哪种结果,却又无法事先预言。
因此,人们把随机现象的结果以及这些结果的集合体称作随机事件,简称事件。
当随机事件发生的可能性能用数量大小表示出来时,我们就得到了概率。
在统计学中,我们把类似掷一枚硬币的行为(或对某一随机现象进行观察)称之为随机试验。
随机试验必须符合以下三个条件:①它可以在相同条件下重复进行;②试验的所有结果事先已知;③每次试验只出现这些可能结果中的一个,但不能预先断定出现哪个结果。
随机试验的每一个可能的结果,称为基本事件(或称样本点);所有可能出现的基本事件的集合,称为样本空间,记为Ω。
随机事件(可记为A、B、C等)如果仅含样本空间中的一个样本点,该事件称为简单事件;随机事件如果含样本空间中的一个以上的样本点,该事件称为复合事件。
换言之,复合事件是样本空间Ω的某个子集。
随机事件有两种极端的情况:一种是必然会出现的结果,称为必然事件;另一种是不可能出现的结果,称为不可能事件。
从样本空间来看,必然事件是由其全部基本事件组成的,可记为S;不可能事件则不含任何基本事件,可记为Φ。
2.事件之间的关系客观事物之间总是存在着一定的关系,随机事件之间也不例外。
统计学习题 第六章 概率与概率分布

第六章 概率与概率分布第一节 概率论随机现象与随机事件·事件之间的关系(事件和、事件积、事件的包含与相等、互斥事件、对立事件、互相独立事件)·先验概率与古典法·经验概率与频率法第二节 概率的数学性质概率的数学性质(非负性、加法规则、乘法规则)·排列与样本点的计数·运用概率方法进行统计推断的前提第三节 概率分布、期望值与变异数概率分布的定义·离散型随机变量及其概率分布·连续型随机变量及其概率分布·分布函数·数学期望与变异数一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设( 机会均等 )。
2.分布函数)(x F 和)(x P 或 )(x 的关系,就像向上累计频数和频率的关系一样。
所不同的是,)(x F 累计的是( 概率 )。
3.如果A 和B ( 互斥 ),总合有P(A/B)=P 〔B/A 〕=0。
4.( 大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。
5.抽样推断中,判断一个样本估计量是否优良的标准是( 无偏性 )、( 一致性 )、( 有效性 )。
6.抽样设计的主要标准有( 最小抽样误差原则 )和( 最少经济费用原则 )。
7.在抽样中,遵守( 随机原则 )是计算抽样误差的先决条件。
8.抽样平均误差和总体标志变动的大小成( 正比 ),与样本容量的平方根成( 反比 )。
如果其他条件不变,抽样平均误差要减小到原来的1/4,则样本容量应( 增大到16倍 )。
9.若事件A 和事件B 不能同时发生,则称A 和B 是( 互斥 )事件。
10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是( 1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。
二、单项选择1.古典概率的特点应为(A )A 、基本事件是有限个,并且是等可能的;B 、基本事件是无限个,并且是等可能的;C 、基本事件是有限个,但可以是具有不同的可能性;D 、基本事件是无限的,但可以是具有不同的可能性。
第六章(三)常用连续型随机变量的理论分布

(一)抽样分布的含义与无偏估计量 1、抽样分布的含义:统计推断是以总 体分布和样本抽样分布的理论关系为 基础的。 由总体中随机地抽取若干个体组成样 本,即使每次抽取的样本含量相等, 其统计量也将随样本的不同而有所不 同。因而样本统计量也是随机变量, 也有其概率分布,我们把统计量的概 率分布称为抽样分布。
如果总体是无限总
体,那么可以得到 无限多个随机样本。
随机样本1 2 3
……
无穷个样本
图 总体和样本的关系
如果从容量为N的有限总体抽样,若每次抽取容量为n的 样本,那么一共可以得到 N n个样本(所有可能的样本个数)。 抽样所得到的每一个样本可以计算一个平均数,全部可能 的样本都被抽取后可以得到许多平均数。 如果将抽样所得到的所有可能的样本平均数集合起来便构
正态分布的分位点的定义:
3、正态分布分位点计算
标准正态分布 N (0,1) 密度函数图形为:
x 图中的点 称为标准正态分布的 (1 )% 的分位点,相当于已知
F(x ) p( X x ) 1
求其中的 x
4、单侧概率与双侧概率 •统计学中,把随机变量 x 落在区间 (μ-kσ,μ+kσ)之外的概率称为双侧(两 尾)概率,记作α。 •对应于双侧概率可以求得随机变量x 小于μ-kσ或大于μ+kσ的概率,称为 单侧概率,记作α/2。
2、无偏估计 • 在统计学上,如果所有可能样本的 某一统计数的平均数等于总体的相 应参数,则称该统计数为总体相应 参数的无偏估计值。
• 设有一N=3的总体,具有变量3,4, 5;求得μ=4,σ2=0.6667, σ=0.8165 • 现以n=2作独立的回置抽样,总共得 Nn=32=9个样本。 • 抽样结果列入下表:
概率论与数理统计-第六章

这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi
i 1, 2,
,n
,n
于是 (
) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2
第六章__概率分布

二、正态分布表的编制与使用
• (一)正态分布表的编制与结构
• 正态分布表的结构一般包括三栏
• 第一栏:Z分数单位;
• 第二栏:密度函数或比率数值(y);
• 第三栏:概率值(p)。
• (二)正态分布表的使用
2
3
• 当g2=0时,正态分布的峰度;g2>0时,分布的峰度 比正态分布的峰度低阔;g2<0时,表明分布的峰度比 正态分布的峰度高狭。当N>1000时,g2值才比较可 靠。
• (三)累加次数曲线法
• 正态分布概率曲线和样本的累加频率曲线完全重
合说明样本分布为正态;若偏离,则不符合。
• 四、正态分布理论在测验中的应用
-0.84 -0.525 0 0.84 1.645 2.33
4.160 4.475 5.000 5.840 6.645 7.330
• (三)在能力分组或等级评定时确定人数
• ①将6个标准差除以分组的或等级的数目,做到Z
分数等距;
• ②查正态分布表,从Z求p,即各等级或各组在等
距的情况下应有的比率; • ③将比率乘以欲分组的人数,便得到各等级或分 组该有的人数。
• (二)二项分布
• 二项分布:试验仅有两种不同性质结果的概率分布。也称 两个对立事件的概率分布。
• 二项分布同二项定理有着密切的关系:
n 1 n1 n1 n1 n n (p+q)n =C0 p +C p q + +C pq +C n n n nq
x x n x (p +q)n = Cn pq n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先,查出Z=0至每个Z 值间的面积, 即有Z=1, p=0.3413; Z=2 ,p=0.475
其次,求两个Z值之间的面积,
即有p(1<z<2)=0.475-0.3413=0,用减法求 p。
3)求某个 Z 值以下或以上的面积
解:这样掷硬币可能出现地情况有:HHH、HHT、HTH、THH、 TTH、THT、HTT、TTT共八种。 每种结果可能出现的概率,依概率乘法规则计算: 各为1/8。
1 1 1 1 2 2 2 8
设:P(A)—“HHH”,P(B)—“HHT”,P(C)—
“HTH”,P(D)—“THH”,故:
曲线以最高点向左右两侧缓慢下降,且无限延伸, 但永远不与基线相交。
标准正态曲线只有一条。
三、正态分布表的编制与使用
标准正态分布函数的数值表;将一般正态分布 化为标准正态分布,通过查表可解决正态分布的 概率计算问题。
(一)正态分布曲线的面积,高度与标准分数
在正态分布中,总次数N 的几何意义是曲线与轴间 所包含的总面积,用 p 表示,且 p 1 。以曲线 中线为界,每边为分布 50%的面积。垂线为曲线 的纵线高度,以 y 表示。 基线是Z分数。 本教材上的标准正态概率 表的编制方法是从 Z=0 开始,逐渐变化Z值,计 算从 Z=0 至某一定值之 间的概率。
1、基本随机变量分布
基本随机变量是一个与随机变量的函数相对应 的。随机变量的函数仍然是随机变量。
2、抽样分布 抽样分布是样本统计量的理论分布,又称随机变 量函数的分布。 抽样是从总体中随机地选取一个样本的过程,每 一个样本都可以计算平均数、方差、标准差、相 关系数等指标,这些指标的概率分布就是抽样分 布。
2 、 X~N(5,102) 求概率
(1) P(5<X<6.2)
(2) P(3.8<X<5)
(3) P(2.9<X<7.1)
(4) P(X>8) (5) P(7.1<X<8)
(三)正态分布中的几个常用值
在 1 , 2 , 3 及其 1.96 , 2.58 范围 内的面积值。(p163) ± 1s:68.26% ± 2s:95.44% ± 3s:99.73% ±1.96s:95% ±2.58s:99%
概率的计算方法: (一)古典概率(先验概率) (二)统计概率(后验概率)
(一)古典概率(先验概率) 在只含有有限个基本事件的试验中,任意事件A 发生的概率定义为:
(二)统计概率(后验概率)
在相同条件下进行n次试验,事件A出现了m次, 如果试验次数n充分大,且事件A出现的频率稳定 在某一数值p附近,则称p为事件A的概率。由于p 也是一抽象的值,常常用n在充分大时的代替。即:
的近似值。
2)内插法——求精确的值,其公式为
3.已知p值求y值
查表法——求近似的y值
例如,求当p=0.30的y值。
查表得,与0.30接近的p值为0.29955,其值为0.28034,
所以y值为0.28034。
练习
1、求P(0<z<2.53)=? P(z>-1.14)=? P(-1.28<z<1.83)=? P(-2.54<z<-.42)=? X~N(100, 152), 求P(x < 115)=?
乙教师和丙教师的评定等级转换过程 以此类推
3)确定查表的p值
p p 值直接查正态曲线表,确定Z值。 Z值的正 4)由
负号以中点以下累积比例决定,若 Fp >0.5, Z 值为正;若 Fp <0.5,Z值为负。 5)学生学习能力的比较。用Z值比较三名学生社交 能力的高低,需根据各位教师评定等级的Z值及 教师人数(k)求其平均数,即 Z Z k ,结 果见表6-3。
,即 p Fp 0.5 。
表6-3 三位学生获得的等级评定结果
(二)确定测验题目的难易程度
1、计算各题目的通过率p
2、用0.5减去通过率p得到 p' ,根据 p'查正态表求
Z值
通过率大于50%,Z值计为负值,通过率小于50%,Z
值为正
3、将Z值加上5,便得到0~10分的难度分数值,进
③用图形来表示:
2、连续分布
定义:如果随机变量可以取连续的数值,则这种 随机变量取值的概率规律称为连续分布。连续分 布的表示方法一般采用概率密度函数来表示。 概率密度函数:当样本的容量及分组逐渐增加时, 次数分布图将趋近于一条稳定而连续的曲线。一 般记为f(x)。 特点:通常用概率密度函数描述随机变量在一段 区间上取值的P。
第六章 概率分布
李金德
第一节 第二节 第三节 第四节
概率的基本概念 正态分布 二项分布 样本分布
第一节 概率的基本概念
一、什么是概率
试验、事件:在相同条件下,对某事物或现象所 进行的观察或实验叫试验,把观察或实验的结果 叫做事件。
试验 抛掷一枚硬币 对某一零件进行检验 试验结果(事件) 正面,反面 合格,不合格
二、概率的基本性质
1、概率的加法定理
两个互不相容事件A、B之和的概率,等于两个事
件概率 之和, P(A+B)=P(A)+P(B) 2、概率的乘法定理 两个独立事件同时出现的概率等于该两事件概率 的乘积, P(AB)=P(A)×P(B)
例3-1:一枚硬币掷三次,或三枚硬币各掷一次, 问出现两次或两次以上H的概率是多少?
四、正态分布理论在测验中的应用
(一)化等级评定为连续数据
(二)确定测验题目的难易程度 (三)在能力分组或等级评定时确定人数 (四)T分数或次数分布的正态化
(一)化等级评定为连续数据
1、处理等级评价时面临的问题及其解决思路
问题:
①不同评价者由于各自的标准不同,在对同一个心理
量进行评定时可能给出不同的等级分数,如何综合
例6-2:甲、乙、丙三位教师对100名学生
的学习能力进行等级评定见表6-2。表6-3
是三名同学所获得的评定等级。
试比较三个学生学习能力的高低。
表6-2 3位教师对100名学生学习能力的评定
1)求各等级人数分布的比例值见上表。
2)求比例中点以下的累积比例,即将每一等级值除以2再加上其以下的所 有面积。
p2 0.5000 0.3849 0.1151
2.已知p值求Z值.
1)查表法——求近似的值
例如,求p=0.30时,Z的面积。
正态曲线表中并无p=0.30的Z面积,只有与其接近的两个 p 值, 1 0.29955 p2 0.30234 , 前者与0.30相差0.00045,后者与0.30相差0.00234。可见, 0.29955与0.30更接近,其对应的值0.84,即为p=0.30时Z
例如:求 Z 0.85 以下和 Z 1.76 以上的面积。
首先,查出 Z 0 至每个 Z 值间的面积,
即有 Z 0.85 , 0.3023 Z 1.76 ,p 0.4608 , p
其次,用正态分布一半的面积(0.50)减去所查出的面积, 即有:
p1 0.5000 0.4918 0.0082
第二节 正态分布
一、正态分布
(一)正态分布定义
正态分布也称常态分布,是连续随机变量概率 分布的一种,中间量数次数分布多,两端量数次 数分布少,呈对称型的概率分布。
正态分布的概率密度函数:
x 2 1 2 f ( x) e 2 2 x 1
则称X服从正态分布,记作X~N(,2)
评价各评价者的结果。
②如何比较不同被评者的心理量的差异。
2、转化的前提条件
被评定的心理量是测量数据;
服从正态分布(凭常识),只是人为地在评定时
划分为等级。
3、转化方法——用各等级中点对应的Z分数 代表该等级分数
①根据各等级被评者的数目求出各等级的人数比率。 ②求各等级中点以下的累加比率。
③用累加比率查正态表求Z分数,用Z分数代表各等 级的测量值。 ④求各被评者所得评价等级的测量分数的算术平均 数,即为综合评定分数。
比如说对于一个容量为50的有限总体,其容量为 5的不同样本一共有: 505 = 312,500,000个(允许重复的合),这里的 每一个样本可以计算一个平均数。 故一共有312,500,000个平均数,这些平均数的 分布情况(或分布规律)就是从容量为50的有限
总体中抽取容量为5的样本平均数的抽样分布。
二、标准正态分布
所有正态分布都可以通过Z分数公式转换成标准 正态分布。 标准正态分布是标准差()为1,平均数( )
为0的正态分布,其函数为:
Y 1 e 2
z2 2
标准正态分布的特征:
曲线以z=0为中心,双侧对称。 曲线在z=0处为最高点。
Y 当z=0时, 1 2 e 0=0.39894,这是y的最大值。
概率密度函数演示
(二)经验分布与理论分布
1、经验分布
定义:经验分布是根据观察或实验所获得的数据
而编制的次数分布或相对频率分布。
特点:反映的是一个样本的概率分布。
2、理论分布 定义:理论分布是指根据理论推演出来的随机变 量的概率分布模型。 特点:反映的是总体的概率分布。
(三)基本随机变量分布与抽样分布
投掷一颗骰子
进行一场足球比赛
1,2,3,4,5,6
获胜,失利,平局
基本事件:如果某一随机实验可以分成有限的n种 可能结果,这n种结果之间是互不交叉的,而且
这些结果出现的可能性相等,我们把这n种可能
结果称为基本事件。 概率(Probability):事件在试验中出现的可能 性大小。事件A的概率用P(A)表示。