超小型仿生扑翼飞行器扑翼结构有限元分析
仿蝴蝶微型扑翼机飞行原理及扑翼机构研究(已处理)

仿蝴蝶微型扑翼机飞行原理及扑翼机构研究摘要微扑翼飞行器Flapping-wing micro aerial vehicles模仿鸟类或昆虫的飞行原理,具有体积小、重量轻、隐身性好等优点,被广泛使用到军用和民用领域。
本文以仿蝴蝶微型扑翼机为研究对象,首先分析凤蝶的飞行参数,在此基础上,建立了仿蝴蝶扑翼机的参数化模型,研究了仿蝴蝶扑翼机的流体和扑翼机构的运动特性。
(1)对凤蝶的扑翼飞行和微观形态进行了整理和分析,获得了凤蝶扑翼飞行的尺寸参数及运动参数,为仿蝴蝶扑翼机的数值建模和机构分析提供了数据参考。
(2)以流体仿真软件 FLUENT 为平台,采用参数化语言,建立了仿蝴蝶流体分析模型,针对解决流场的动边界这一难点,采用动网格技术,对翼型的流体动力学性能进行研究。
流体仿真结果表明:涡流是产生高升力的主要原因;在大翼展、低频率扑动前提下,扑翼幅值与产生的升力和推力成正比。
(3)以平面四杆机构为基础,用解析法设计了具有急回特性的扑翼机构,并以 solidworks 软件为平台,建立了扑翼机构的三维模型,进行了扑翼机构的运动仿真,将仿真结果与解析法设计的扑翼机构的运动特性进行比较,验证了解析法设计急回特性的扑翼机构的可行性和可靠性。
关键词:微扑翼飞行器,流体力学仿真,动网格技术,急回特性,运动仿真IAbstractFlapping-wing micro aerial vehicles mimic birds or insect flight principle, hasthe advantage of small volume, light weight, good stealth ability, etc., is widely usedin military and civil fields. Papilio is chosen to research the flapping wing flight andflight mechanism in this paper. The parametric language is used to constructedbutterfly wing model to carry on motion analysis and the design of theflapping-wing mechanism1 Researched and analyzed the flapping wing flight and micro-morphology ofthe papilio, obtained its dimension parameter and motion parameter,provided datareferences for the numerical modeling and mechanical modeling of the bionicornithopter 2The imitating butterfly fluid simulation mode is based on theparameterized modeling method on FLUENT software platform, to solve the flowfield of the moving boundary this problem, using the dynamic mesh technique,research on hydrodynamic performance of airfoil. Fluid simulation results show:eddy current is the main cause of high lift; in the large span, the low frequency,flutter premise, flapping amplitude is proportional to lift and thrust s generated3Based on the analytical method design the plane four-bar linkage, usingquick-return characteristics to design flapping-wing mechanism, and make motionanalyses. Established the three-dimensional model of the flapping wing, and mademotion simulation on solidworks software. The research results revealthat theflapping-wing mechanism motion analysis which is compared withthree-dimensional model simulated analysis is feasible and reliable Keyword: Flapping-wing micro aerial vehicles, fluid dynamics simulation,dynamic mesh, quick-return characteristics, motion simulationII南昌航空大学硕士学位论文目录目录摘要 IAbstract II第1章绪论11.1 引言.11.2 微型扑翼飞行器的研究现状及分析21.2.1 国外研究现状..31.2.2 国内研究现状..51.3 本文的研究目的及意义..71.3.1 微型扑翼飞行器的研究目的..71.3.2 拟解决的技术问题71.4 本文的内容安排..8第2章昆虫扑翼飞行原理及蝴蝶翅形态结构92.1 昆虫扑翼飞行原理.92.1.1 雷诺数..92.1.2 昆虫的飞行机理..102.1.3 蝴蝶的飞行机理..132.2 蝴蝶翅形态结构142.2.1 蝴蝶翅气动外形特质142.2.2 蝴蝶翅三维形状测量152.2.3 自由飞行时蝴蝶翅形态结构16 2.3 蝴蝶翅微观形态172.3.1 翅的表观结构182.3.2 翅的断面结构192.4 本章小结19第3章仿生扑翼模型的流场分析21 3.1 FLUENT软件简介..213.1.1 FLUENT软件求解步骤..21III南昌航空大学硕士学位论文目录3.1.2 求解控制方程223.2 翼型的流场数值计算.233.2.1 翼型建模及网格化.233.2.2 翼型的流场计算..243.3 翅翼拍动中流场的数值模拟.27 3.3.1 动网格技术.273.3.2 动态数值分析283.3.3 拍打振幅对扑翼运动的影响313.4 本章小结32第4章扑翼机构设计及建模分析334.1 扑翼机构的设计.334.1.1 扑翼机构总体设计要求..334.1.2 扑翼的实现方案..344.2 扑翼机构的运动尺度综合..354.2.1 扑翼机构方案确定.364.2.2 构件尺寸确定374.3 按解析法设计急回特性的扑翼机构..374.3.1 扑翼机构设计374.3.2 扑翼机构分析424.4 扑翼机构建模.464.4.1 零件三维建模464.4.2 零件装配与运动仿真474.5 本章小结49第5章结论与展望505.1 结论..505.2 展望..50参考文献..52攻读硕士学位期间发表的学术论文及参加的科研情况.56一、攻读硕士学位期间发表的论文..56二、攻读硕士学位期间参加的科研情况56致谢57IV南昌航空大学硕士学位论文第一章绪论第 1 章绪论1.1 引言微型扑翼飞行器Flapping-wing micro aerial vehicles以其优良的机动性、低噪音、低成本、携带方便、操作简单、可执行多种任务等功能,不论在军用还是民[1]用领域都具有十分重要、极其广泛的用途。
扑翼飞行器翅翼结构设计与气动性能研究

扑翼飞行器翅翼结构设计与气动性能研究摘要:由于扑翼飞行器在众多领域中具有不可估量的发展前景,是世界许多科研机构重点研发对象。
为提高飞行器的飞行性能,分析不同鸟类的分析特点,运用Solidsworks软件构建出单段式、两段式、三段式和拍式四翼单段式的翅翼模型,然后在Fluent软件中进行三维模型瞬态气动性能分析,采用UDF自定义函数和动网格进行仿真模拟计算,得到了不同翅翼的升力系数、阻力系数和升阻比,并对翅翼表面压力场进行分析。
由此可知,翅翼自由度越大,翅翼表面相对最大压力值随着翅翼自由度增加而增大,相对最小压力值随着减小。
关键词:扑翼飞行器,翅翼结构,Fluent,气动性能Abstract:A flapping wing aircraft has an immeasurable development prospect in many fields, which is a key research and development object of many scientific research institutions in the world. In order to improve the flight performance of the aircraft the flighting characteristics of different birds was analyzed, and the single section, two-stage, three-stage and beat type four wing single section wing models was constructed by Solidsworks. Then, the transient aerodynamic performance of the three-dimensional model was analyzed in fluent software. The UDF function and dynamic grid were used to simulate and calculate the lift coefficient of different wings. The pressure field on the wing surface was analyzed. It can be seen that the larger the degree of freedom of the wing is, the greater the value of the relative maximum pressure on the surface of the wing increased, while the relative minimum pressure value decreased.Keywords:Flapping wing aircraft, wing structure, Fluent, aerodynamic performance1.绪论微型飞行器(MAV)概念是20世纪90年代才开始提出的,根据其翼型运动方式的不同可以分为3类,分别为固定翼、旋翼和扑翼。
微型扑翼飞行器扑翼运动规律与控制技术研究

摘要摘要微型扑翼飞行器扑翼运动规律与控制技术研究微型扑翼飞行器是一种仿鸟类的飞行器,其相比于固定翼飞行器和旋翼飞行器具有独特的优点,并且在军用和民用领域都具有非常广阔的应用前景,因此微型扑翼飞行器已经成为国际各大机构的研究热点之一。
本文主要对微型扑翼飞行器扑翼的运动模型和控制系统进行了研究,主要研究内容如下:首先,参考固定翼飞机的坐标系理论,定义了微型扑翼飞行器飞行时的坐标系统,建立了飞行时的运动参数和坐标系之间的关系。
并根据欧拉旋转定理,推导出了惯性、机体和机翼坐标系之间的变换矩阵。
其次,研究了微型扑翼飞行器扑翼的运动形式,设计出了刚性和柔性两种扑翼模型,并对这两种扑翼模型的气动力进行了分析和计算,并分析了迎角、扑动倾角、转动时间比等参数对扑翼的气动力的影响。
比较了这两个模型的特点,结果表明刚性扑翼模型具有平飞和驻飞两种飞行方式,两种飞行方式的结合可以极大的提高飞行器的机动性,而柔性扑翼模型由于自身的柔性变形能极大的提高飞行器的气动性能。
对两种扑翼模型在惯性坐标系下的气动力和气动力矩进行了分析,确定了影响飞行器位置和姿态的参数,并推导出了微型扑翼飞行器运动的总微分方程。
最后,根据推导出的微型扑翼飞行器总微分方程,提出了分层控制的方法,将微型扑翼飞行器的控制系统分为三个相对独立的控制层:轨迹规划控制层、位置控制层和姿态控制层,重点研究了位置控制层和姿态控制层控制系统的设计。
确定了以一个周期内的平均气动力和气动力矩代替瞬时气动力和气动力矩的控制方法,针对两种扑翼模型,提出了与之相适应的控制方法,并探讨了神经网络控制和切换控制在驻飞飞行姿态控制中的应用,最后采用MATLAB工具对控制系统进行了仿真分析。
关键词:微型扑翼飞行器,气动特性,运动方程,位置控制,神经网络控制,姿态控制AbstractAbstractThe Flapping Wing Motion Law and Control Technology Research of theMicro Flapping Wing Flight VehicleMicro flapping wing flight vehicle is a kind of imitation bird flying machines,because it is compared with the fixed wing aircraft and rotor wing aircraft has unique advantage,and in the field of military and civilian has very broad application prospects,so the study of the micro flapping wing flight vehicle become to one of the highlights in agro-scientific research in the international institutions.This paper aim at the motion law of flapping wing and the design of control system,The main research content is as follows:First of all,according to the fixed wing aircraft coordinate system theory,the coordinate system of the micro flapping wing flight vehicle was defined,and the relation between movement parameters of the micro flapping wing flight vehicle and the coordinate system has been defined.And according to the euler rotation theory,derived the transformation matrix of these three coordinate.Secondly,studied the motion form of the micro flapping wing flight vehicle,designed the rigid and flexible flapping wing model,and the aerodynamic force is analyzed and calculated for two flapping wing models.Then analyzed the influence of the flapping angle and the rotation time on the aerodynamic characteristics of flapping wing.The results show the rigid wings has two flight modes,the horizontal flight and hovering flight,which may enhanced flight mobility if they work together,and flexible flapping wing structure can greatly enhance the aerodynamic characteristics of flapping wing because of the flapping wing flexible deformation.The aerodynamic force and moment in inertia coordinate system of two kinds of flapping wing model were analyzed,and the parameters which effect the position and the posture of the micro flapping wing flight vehicle has been determined,and deduced the total differential equation of the micro flapping wing flight vehicle movement.Finally,according to the micro flapping wing flight vehicle total differential equation,吉林大学硕士学位论文It decomposes the global control system into three independent control systems,trajectory planner control system,position control system and posture control system.For the position and the posture control system,a method of average aerodynamic forces and moment is designed.According to two kinds of flapping wing model,put forward the corresponding control method,for the two models of the micro flapping wing flight vehicle position and posture control strategies were studied.The application of artificial neural network and the switching control for micro flying vehicle in hovering flight is discussed.Finally,the control systems are simulated and analyzed by the MATLAB.Key words:micro flapping wing flight vehicle,aerodynamic characteristics,movement rule,position control,neural network control,posture control目录目录第1章绪论 (1)1.1课题的研究背景和意义 (1)1.1.1扑翼飞行器的研究背景 (1)1.1.2研究意义 (2)1.2国内外研究现状 (2)1.2.1国外研究现状 (3)1.2.2国内研究现状 (5)1.3论文的主要工作 (6)第2章扑翼飞行机理和飞行坐标系统 (7)2.1昆虫的飞行机理研究 (7)2.2坐标系定义 (10)2.2.1结构模型 (10)2.2.2坐标系定义 (11)2.3坐标系之间的变换矩阵 (12)2.3.1惯性坐标系和机体坐标系之间的变换矩阵 (12)2.3.2机体坐标系与机翼坐标系的关系 (13)2.4本章小节 (14)第3章扑翼模型及气动力分析 (15)3.1引言 (15)3.2刚性扑翼模型平飞气动力分析 (15)吉林大学硕士学位论文3.2.1刚性扑翼模型平飞飞行方式 (15)3.2.2气动力计算 (16)3.2.3仿真与分析 (18)3.3刚性扑翼模型驻飞气动力分析 (19)3.3.1刚性扑翼模型驻飞飞行方式 (19)3.3.2气动力计算 (21)3.3.3仿真与分析 (22)3.4柔性扑翼模型的气动力分析 (23)3.4.1柔性翼的扑动方式 (23)3.4.2气动力计算 (24)3.4.3仿真与分析 (24)3.5本章小结 (25)第4章微型扑翼飞行器的运动方程 (27)4.1参数关系的建立 (27)4.2微型扑翼飞行器三维空间运动方程的建立 (28)4.2.1平动时的动力学方程 (28)4.2.2转动时的动力学方程 (28)4.3作用在微型扑翼飞行器机体上的力和力矩 (30)4.3.1刚性扑翼模型平飞飞行的力和力矩 (30)4.3.2刚性扑翼模型驻飞飞行的力和力矩 (31)4.3.3柔性扑翼模型的力和力矩 (33)目录4.4本章小结 (35)第5章控制系统设计 (37)5.1引言 (37)5.2刚性扑翼模型平飞飞行控制系统设计 (38)5.2.1刚性扑翼模型平飞位置控制 (38)5.2.2刚性扑翼平飞飞行的姿态控制 (42)5.3刚性扑翼模型驻飞飞行控制系统设计 (44)5.3.1基于切换控制的姿态控制方案 (44)5.3.1基于神经网络的姿态控制方案 (47)5.4柔性扑翼模型飞行控制系统设计 (49)5.4.1柔性扑翼模型位置控制系统 (49)5.4.2柔性扑翼模型姿态控制系统 (52)5.5本章小结 (54)第6章总结与展望 (55)6.1全文总结 (55)6.2展望 (56)参考文献 (57)作者简介及科研成果 (63)致谢 (65)第1章绪论第1章绪论1.1课题的研究背景和意义微型扑翼飞行器是一种仿生类飞行器,同固定翼飞行器相比,固定翼飞行器要产生很大的升力需要很大的表面积和很高的飞行速度,而很高的飞行速度需要发动机提供很大的牵引力,所以固定翼飞行器无法完成低速条件下的稳定飞行,扑翼飞行器所维持飞行所需要的升力和推力均由扑翼的扑动产生,不需要大功率发动机的牵引,因此能够完成低速条件下的飞行。
微扑翼飞行器的仿生结构研究

微扑翼飞行器的仿生结构研究近年来,随着科学技术的不断发展,人们对于仿生学的研究越来越深入。
仿生学是模仿自然生物的形态结构、功能及行为特性,将其应用于解决人类问题的学科。
微扑翼飞行器的仿生结构研究正是仿生学在飞行领域的典型应用之一微扑翼飞行器是指通过翅膀的上下振动来产生升力,并通过对翅膀的控制来完成飞行任务的机器人。
其特点是体积小、质量轻、操纵灵活,可以在狭小的空间中进行灵活的操作,具有很大的应用潜力。
然而,由于微扑翼飞行器的工作原理和结构相对复杂,研究者们需要从仿生学的角度来理解和优化其结构。
在微扑翼飞行器的仿生结构研究中,研究者们主要关注以下几个方面的问题。
首先是翅膀的形态结构。
翅膀是微扑翼飞行器产生升力的关键部件,其形态结构直接影响飞行器的性能。
研究者们通过分析自然界中蝴蝶、蜻蜓等昆虫的翅膀结构,发现其具有独特的纹理和曲线形态,并据此设计出了一系列具有类似形态结构的翅膀。
这些翅膀的形态结构能够降低空气阻力、增加升力,并且能够在不同的工况下实现自适应变形,提高微扑翼飞行器的飞行性能。
其次是翅膀的材料选择。
为了实现仿生结构的设计,研究者们选择了一些具有特殊性能的材料。
例如,由于微扑翼飞行器的要求轻巧,研究者们选择了一些轻质的材料,如石墨烯材料,具有高强度和低密度的特点,使得微扑翼飞行器能够在有限的能量下完成飞行任务。
此外,研究者们还尝试使用可变刚度材料,通过改变翅膀的刚度来调整飞行器的飞行姿态和性能。
最后是翅膀的控制方法。
微扑翼飞行器的控制方法需要考虑多个自由度的问题。
研究者们通过分析昆虫翅膀的运动规律,发现其运动受到肌肉和神经系统的控制。
因此,研究者们提出了一种基于人工神经网络的控制方法,可以模拟昆虫的飞行控制机制,实现对微扑翼飞行器的高灵敏度控制。
综上所述,微扑翼飞行器的仿生结构研究是一项具有挑战性的任务,研究者们通过分析自然界中昆虫的翅膀结构和运动规律,设计出了一系列具有类似结构的翅膀,并开发了相应的控制方法。
微型扑翼飞行器扑翼机构优化设计

杆机构的运动方程为院
蓸 蔀 蓸 蔀 椎 = arctan
a b
- arccos
c
2
2
姨a + b
渊2冤
其中
a = - 2L4L6sin ( 鬃 - 琢 )
渊3冤
b = 2A 2L6 - 2L2L6cos ( 鬃 - 琢 )
c
=
L
2 5
-
A
2 2
-
L
2 4
-
L
2 6
+
2A
2L
4cos
(
鬃
-
琢
)
渊4冤 渊5冤
段的运动学方程为院
22
蓸 蔀 蓸 蔀 姨 tan 鬃- 仔 = 鬃- 仔 = A 1 -L 1 cos兹- L 2 -L 1 sin兹 渊 1 冤
2
2
L3
图 1 优化设计后的扑翼机构的运动简图
其 中 袁兹 是 扑 翼 机 构 的 输 入 角 度 袁鬃 是 扑 翼 机 构 中
四 杆 机 构 的 输 入 角 度 遥第 二 阶 段 运 动 学 方 程 袁也 即 四
得 到 资 金 等 方 面 的 支 持 袁因 此 袁平 台 建 设 和 更 新 速 度 很
叶工 程 力 学 曳课 堂 学 习 过 程 枯 燥 乏 味 袁也 直 接 影 响 着
科技视界sciencetechnologyvisionsciencetechnologyvision科技视界1设计原理为了提高传动性能尧减少摩擦尧便于制造袁应尽量避免机构中出现高副遥在扑翼机构的设计中袁如果杆件的连接均采用转动副袁连接扑翼的杆件的运动难以达到无滞后袁同步对称扑动的要求袁如delfly砖扑翼机构袁右扑翼杆件的扑动相对于左扑翼杆件的扑动存在滞后遥解决扑翼机构不对称扑动的问题袁可以将曲柄机构替换为滑块机构袁将连接左右扑动杆件的转动副替换为移动副遥存在滑块机构及移动副袁并能够使杆件对称扑动的六杆七副一般化铰链遥再由存在滑块机构移动副的再生运动链逆推袁得到衍生机构的运动简图遥在以上所得的满足扑翼机构进本设计条件的几种机构中袁可根据设计者的需要袁进行分析比较袁采用最适合的机构再进行综合和优化设计遥为了保证机构结构的简单可靠袁我们这里采用滑块机构移动副的再生运动链袁进行进一步的优化设计遥由于机构拟采用微型直流电机驱动袁其特性为转速大袁力矩小袁因此扑翼机构的设计还要具有降低转速尧增大力矩的功能遥基于此类特性袁滑块机构移动副的再生运动链机构中增加齿轮减速机构遥为了能够在扑翼机构中预留出齿轮减速机构的位置袁滑块机构的行程会相应地缩小袁为了保证扑翼杆件扑动的角度袁在2尧6扑翼杆件上增加四杆机构袁同时四杆机构的设计也有利于提高输出力矩遥然后袁将2尧6扑翼杆件上的移动副前移袁并在3尧5杆件的复合铰链位置处形成复合运动副遥2机构的优化设计优化设计后的单边扑翼运动简图如图1所示遥其杆件的长度和相应的位置关系在图中用相应的代号表示遥运动简图中袁可以把设计的机构看作由滑块机构和四杆机构通过移动副连接组成遥在对此机构进行运动学研究时袁可以将其分为两个阶段遥第一阶段的运动学方程为院tan鬃仔2蓸蔀鬃仔2蓸蔀a1l1cos兹l22l21sin兹姨l3渊1冤图1优化设计后的扑翼机构的运动简图其中袁兹是扑翼机构的输入角度袁鬃是扑翼机构中四杆机构的输入角度遥第二阶段运动学方程袁也即四杆机构的运动方程为院椎arctanab蓸蔀arccosca2b2姨蓸蔀渊2冤其中a2l4l6sin鬃琢渊3冤b2a2l62l2l6cos鬃琢渊4冤cl25a22l24l262a2l4cos鬃琢渊5冤为了使扑翼机构得到120毅的扑翼角度袁以及使上下扑动呈对称的形态袁基于渊1冤至渊5冤袁可以优化得到最终的各杆件长度以及相应的位置参数袁其参数如表1所示遥表1扑翼机构各杆
超小型仿生扑翼飞行器扑动控制设计

摘要超小型仿生扑翼飞行器(FMAV)是一种模仿鸟类或昆虫飞行的新概念飞行器。
仿生学和空气动力学研究均表明,对于特征尺寸相当于鸟或者昆虫的微型飞行器来说,扑翼飞行要优于固定翼和旋翼飞行器。
本文以采用单曲柄双摇杆驱动机构的超小型仿生扑翼飞行器为研究对象,以提高其运动对称性为目的进行优化设计,为解决该类飞行器在飞行过程中发生向左或者向右倾斜、栽落的问题提出一种新的解决方案。
在对鸟类扑翼飞行生物学原理研究的基础上,从合力作用与分解的角度提出了一种气动力对超小型仿生扑翼飞行器作用的机理,解释了超小型仿生扑翼飞行器在试飞过程中倾斜栽落的力学原因。
同时根据该机理和条带理论计算了超小型仿生扑翼飞行器作一维拍动时上下方向受到的气动力,最后将计算结果与风洞实验所得到的升力曲线进行了比较,二者的结果比较接近。
用ADAMS建立超小型仿生扑翼飞行器虚拟样机,将气动力计算结果加载到虚拟样机上,仿真得到动力学状态下两翼扑动角速度曲线图;位置控制系统应用PID控制技术,借助MATLAB和ADAMS进行联合仿真,结果显示该控制系统设计合理,为超小型仿生扑翼飞行器的研制奠定了基础。
关键词:扑翼飞行器,仿生,PID控制,仿真The Design of Control System for Bionic Flapping-wingMicrominiature Air VehicleABSTRACTBionic Flapping-wing Microminiature Air Vehicle (FMAV) are new conceptual air vehicles that mimic the flying modes of birds and insects. The study of bionics and aerodynamics indicates that the MAV which the characteristic dimension almost equate to bird or insect, the flapping flight is precede to fixed and rotatory MAV.The object of study in the paper is FMAV that have driving mechanisms of single-crank and double-rocker, and launched the work surrounding the goal of enhancing the symmetry of the wings’ movement. a new solution of FMAV with driving mechanisms of single-crank and double-rocker often tilt toward the left or the right and fall in the course of flight was proposed in the paper. Based on the biological flight mechanism of birds, a new mechanism of FMAV affected by forces was proposed in view of composition of forces, and the reason of the phenomena in force was explained under the using the new mechanism. The force on wings in a full cycle was computed new mechanism when there was only flapping, and its curve is similar to the curve tunnel test.The whole simulation model of FMAV was established in ADAMS, then the precomputed force was load to the model, and the angular velocity of both wings in aerodynamic situation was gained, which paved the way to the dynamics optimization of the driving mechanisms. The position control system was designed by PID in the paper. The position control mode is research deeply by MATLAB and ADAMS. Results indicate that this position control system is efficient.Key words:FMAV,bionic,PID,simulation超小型仿生扑翼飞行器扑动控制设计厉敏0811051750 引言自古以来,人们就梦想着在天空自由翱翔。
微型扑翼飞行器扑翼气动特性分析

微型扑翼飞行器扑翼气动特性分析作者:刘赫然黄健来源:《山东工业技术》2016年第18期摘要:本文主要是以飞蛾的翅翼作为分析对象,设计了不同结构和形状的蛾翼;通过改变扑翼频率等性能参数,对扑翼的气动特性进行分析;通过利用有限元软件,对翅翼进行单向流固耦合分析;并得出翅翼结构对气动特性的相关影响因素。
关键词:翅翼;有限元分析;流固耦合;气动特性DOI:10.16640/ki.37-1222/t.2016.18.2370 引言近年来,微型扑翼飞行器因其尺寸小、机动性强、隐蔽性好等特点,已经成为国内外研究的热点。
其中在空气动力学方面是扑翼飞行器的研究基础也是研究重点,在国内外学者的研究工作中发现,扑翼飞行器的柔性翅翼对扑翼的气动特性有较大的影响[1-3]。
因此,为了更好的了解扑翼飞行器在低雷诺数下能够稳定灵活的飞行,有必要进行相关的扑翼气动特征分析。
在自然界中,扑翼式生物产生气动力的来源主要有以下三种:(1)主动推升力(通过扑翼的翅翼的自身扑动产生);(2)惯性叠加力(通过飞行时惯性力和自身重量产生);(3)柔性变形力(通过翅翼在扑动时产生柔性变形而产生)。
在这三种产生的推升力均存在一定关系的耦合,而且在主动推升力和柔性变形力的研究中,Dickinson[4]等人利用通过研究昆虫的翅膀动作提出了三种动作模式:尾迹捕捉、旋转环流和延时失速,充分论证了两种力之间的耦合关系。
孙茂[5]等人用数值模拟方法,求解N-S方程研究了昆虫前飞时的气动力和需用功率。
分别就昆虫在不同飞行状态下、不同速度时升力及推力的来源进行了分析,完善了扑翼飞行器的气动机理,同时得出了比功率随飞行速度的变化关系曲线。
本文从仿生学角度出发,建立了仿生翼脉。
通过利用有限元分析软件,对翅翼进行单向流固耦合分析,然后通过改变扑翼特性参数(扑翼攻角、扑翼频率等)实验对比,分析仿生翼脉的不同结构对柔性扑翼气动结构特性的影响。
1 研究对象目前所研究的扑翼飞行器按其特征尺寸形状可以分为仿鸟类扑翼飞行器和仿昆虫扑翼飞行器,由于鸟类的翅膀结构很复杂,通过控制肌肉来控制骨骼以及小羽翼的变化,其动作特征灵活多样,完全模仿其动作难度较大,但昆虫翅翼则不同,它们只在翅翼根部有肌肉,翅翼的状态只能从根部来控制。
仿生微型扑翼飞行器飞行性能计算与分析

(1.西北工业大学 航空学 院,陕西 西安 710072;2.北京空天技术研究所 ,北京 100074)
摘 要 :仿 生微型 扑翼飞行 器是 近年 来 国内外 的研 究热点 ,飞行 性 能计 算是飞行 器总体设 计过程 中的 重要 步骤 。首先分析 了扑翼 飞行器与 常规 固定翼 飞行 器在 性 能估 算方 法方 面 的不 同之 处 ,基 于扑翼 气动计算与风洞实验测量的结果,提 出了扑翼飞行器性能计算方法,并对所研制的扑翼飞行器的平飞 性能 、爬升性 能 、续航性 能进 行 了计 算与分析 。扑翼 的频率在一 定程度 上代表 油 门 ,而频 率和升 力 、推 力均是耦合的关 系。计算结果表 明,在一定频率下,可能存在 2种稳定巡航状 态,一种是 小迎 角大速 度 ,一种是 大迎 角小速度 ,两者对 应 不 同的 功耗 。根 据 飞行 器的参 数 可 以计 算 出上 升性 能和 续航 性 能 ,扑 翼飞行 器的速度 功率特性 曲线为 u 字形 ,通过 作 图法 可求得 曲线 的最 小斜率 为远航 速度 ,U形 曲线的速度 最 小值 为久航 速度 。该飞行性 能计算 方法可 用于评 估仿 生扑翼飞行 器的飞行 能力。
飞行性 能计 算 与分 析是微 型 扑翼 飞行 器总 体设 计 过程 中的重 要步 骤 ,飞行 性 能 计算 主要 用 于检 验 设 计是 否满 足 总体方 案 要求 ,并 进 行相 应 的改进 ,最 终 给 出飞行 器详 细 的性 能指标 。是 使扑 翼 飞行器 具 备 良好 飞行 品质 ,完成 目标 任务 的重 要环 节 。 目前 , 国外类 似领 域 的研究 主要 是生 物学 家对 鸟类 或 昆虫 飞 行做 出 的 孓”j。本 文 首 先 分 析 了扑 翼 飞行 器 与 常 规 固定 翼 飞 行 器 在 性 能 计 算 方 法 方 面 的不 同 之 处 ,根据 当前 常用 的非 定 常 气 动特 性 计 算 和 风 洞 实 验 方法 ,建立 了扑翼 飞行 器性能 计算 方法 ,并 对所 研 制 的一 款扑 翼 飞行器 进行 了性 能计 算与 分析 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
摘要 (1)
ABSTRACT (2)
0 引言 (4)
1 国内外仿生扑翼飞行器研究的发展综述 (6)
1.1 国外研究的现状 (6)
1.2 国内研究的现状 (10)
1.3 课题研究的主要内容 (11)
2 超小型仿生扑翼飞行器扑翼有限元模型的建立 (11)
2.1 有限元分析的概述 (11)
2.1.1 有限元分析的原理 (11)
2.1.2弹性力学基础 (14)
2.2 ANSYS软件的介绍 (21)
2.2.1 前处理模块PREP7 (22)
2.2.2 求解模块SOLUTION (23)
2.2.3 后处理模块POST1和POST26 (24)
2.3 扑翼有限元模型的建立 (24)
2.3.1 超小型仿生扑翼飞行器扑翼几何物理模型的建立 (25)
2.3.2 单元类型的选择 (28)
2.3.3 单元特性的定义 (30)
2.3.4 有限元网格划分 (31)
2.4 本章小结 (32)
3 超小型仿生扑翼飞行器扑翼的静态力学特性讨论 (33)
3.1 超小型仿生扑翼飞行器扑翼的结构线性静力学分析 (33)
3.2 超小型仿生扑翼飞行器扑翼的结构非线性静力学分析 (37)
3.3 初探材料特性对仿生扑翼刚度等性能的影响 (40)
3.4 本章小结 (45)
4 结论 (45)
参考文献 (47)
译文 (50)
原文说明 (60)
摘要
超小型仿生扑翼飞行器是一种模仿鸟类或昆虫飞行的新概念飞行器,在应用技术上超出了传统的飞机设计和气动力的研究范畴,同时开创了微机电系统技术(MEMS)在航空领域的应用。
设计和制造具有良好动力学特性的高效仿生扑翼,是超小型仿生扑翼飞行器研究中的一个关键环节,同时也是目前非常富有挑战性的研究难题。
本文利用有限元的基础理论,对仿照蜻蜓翅翼,设计的仿生扑翼进行结构静力学等内容的分析,研究了超小型仿生扑翼飞行器扑翼的结构特性等。
文中的建模、分析方法及所得结论,为超小型仿生扑翼飞行器扑翼的设计、制作和应用提供了一定的理论依据。
本文基于蜻蜓真实的翅翼样本,利用ANSYS10.0软件,分别建立了仿生扑翼1和仿生扑翼2的几何结构模型,并通过选择适当的单元类型及设定特性参数,完成三维仿生扑翼1和仿生扑翼2的有限元模型。
在此基础上,对超小型仿生扑翼飞行器扑翼进行静态特性分析,分别对仿生扑翼1和仿生扑翼2进行线性和非线性力学分析,比较两种情况下结构的变形及应力等静态性能,并初步探讨了改变材料特性对仿生扑翼刚度变形的影响,总结出仿生扑翼的几何外形和结构布局以及材料都会对扑翼的刚性产生一定的影响。
关键词:超小型飞行器,仿生扑翼,有限元分析。