九年级数学正多边形的画法
正多边形九年级知识点

正多边形九年级知识点正多边形是指具有相等边长和相等内角的多边形。
在九年级几何学的学习中,正多边形是一个重要的知识点。
本文将介绍正多边形的定义、性质以及计算方法等相关知识。
1. 正多边形的定义正多边形是指所有边长和所有内角均相等的多边形。
常见的正多边形有正三角形、正四边形、正五边形等。
2. 正多边形的性质2.1 内角和外角和对于任意正多边形而言,其内角和与外角和之和均为360度。
以正五边形为例,其内角和为540度,外角和为360度。
2.2 内角的计算公式对于任意正n边形,其内角的度数可通过公式计算得出:内角度数 = (n - 2) × 180° / n2.3 外角的计算公式对于任意正n边形,其外角的度数可通过公式计算得出:外角度数 = 360° / n2.4 对边形和旋转对称性正多边形具有对边形,即对于任意一条边,其对边与其平行且长度相等。
而且,正多边形具有旋转对称性,即以任意顶点为中心旋转一定的角度后,其余顶点落在对应的位置上,形状保持不变。
3. 正多边形的计算3.1 边长的计算由于正多边形的边长相等,可以通过已知的其他参数计算出边长。
例如,已知正五边形的内角度数为108°,则可以使用内角度数计算公式来求得边长:边长 = (正五边形的内角度数所对应的直径长度) × (正五边形的外接圆半径)3.2 面积的计算正多边形的面积可以通过边长和高的计算公式得出。
例如,已知正六边形的边长为a,则可以使用边长和高的计算公式来求得面积:面积 = (正六边形的边长) × (正六边形的高) × 1/24. 正多边形的应用正多边形的概念和性质在实际生活中有广泛应用。
例如,建筑设计中常常使用正多边形来构建稳定和美观的结构;工程测量中可以通过正多边形的性质来计算建筑物的面积等。
总结:正多边形是九年级几何学中的一个重要知识点。
通过本文的介绍,我们了解到正多边形的定义和性质,以及计算边长和面积的方法。
九年级数学正多边形和圆2

你能尺规作出正四边形、正八边形吗?
A
D
·O
B
C
只要作出已知⊙O的互 相垂直的直径即得圆 内接正方形,再过圆 心作各边的垂线与⊙O 相交,或作各中心角 的角平分线与⊙O相交, 即得圆接正八边形, 照此方法依次可作正 十六边形、正三十二
边形、正六十四边 形……
你能尺规作出正六边形、正三角形、正 十二边形吗?
F
E
O
A
·
D
B
C
以半径长在圆 周上截取六段相 等的弧,依次连 结各等分点,则 作出正六边形.
先作出正六边
形,则可作正三 角形,正十二边 形,正二十四边
形………
说说作正多边形的方法有哪些?
归纳
(1)用量角器等分圆周作正n边形;
(2)用尺规作正方形及由此扩展作正八边 形, 用尺规作正六边形及由此扩展作正12边 形、正三角形.
7.两个正三角形的内切圆的半径分别为12 和18,则它们的周长之比为2﹕—3———,面积之 比为4-﹕---9--------.
C
B
你能用以上方法画出正四边形、正五 边形、正六边形吗?
A
A
D
F
E
·O
B
E
O·
A
O ·
D
90°
72°
60°
B
C
C
D
B
C
; 微信账号购买 / 微信账号出售
;
那人仔细查看了一番地上的脚印,突然说:“那是我自己的脚印呀!” 神笑了:“现在你知道了,既然你在最低潮、最悲观的阶段,都能够背负我走过去,那你现在还需要我吗?” 120、简单的精彩 地质考察队在大山里发现了一个罕见的山洞。洞内地形非常曲折,大洞套小洞 ,变化无穷,还有深潭和峭壁,甚为奇险
初三数学教案-九年级数学画正多边形1 精品

初三几何教案第七章:圆第36课时:画正多边形(一)教学目标:1、使学生了解用量角器等分圆心角来等分圆,从而可以作出圆内接或圆外切正多边形.2、使学生会用尺规作圆内接正方形和正六边形,在这个基础上能作圆内接正八边形、正三角形、正十二边形.3、通过画图培养学生的画图能力;4、通过画正方形到会画正八边形,通过画六边形到画三角形、正十二边形,培养学生观察、抽象、迁移能力.5、通过画图中需减小积累误差的思考与操作,培养学生解决实际问题的能力.教学重点:(1)用量角器等分圆心角来等分圆,然后作出圆内接或圆外切正多边形;(2)用尺规作圆内接正方形和正六边形.教学难点:准确作图.教学过程:一、新课引入:前几课我们学习了正多边形的定义、概念、性质、判定,尤其学习了正多边形与圆关系的两个定理,而后我们又学习了正多边形的有关计算,本堂课我们一起学习画正多边形.二、新课讲解:由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之一,前面已学习了正多边形和圆的关系的第一个定理,即把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形;过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形,所以想到只要知道外接圆半径R或内切圆半径r n,画出圆来,然后n等分圆周就能画出所需的正n边形.n等分圆周的方法有两种,一种是量角器法,这一种方法简单易学,它是一种常用的方法.其根据是因为相等的圆心角所对弧相等,所以使用量角器等分圆心角,可以达到把圆任意等分的目的,由于学生已具备使用量角器的能力,所以只要讲明根据,让学生动手操作即可.另一种方法是用尺规等分圆周法,其实质也是等分圆心角,但尺规不能任意等分圆,只适用于一些特殊情况,其中重点是正方形和正六边形的作法,这是因为正八边形、正三角形、正十二边形都是由此作基础而画出来的.由于尺规作图在理论上准确,但在实际操作中有误差积累,如何减少误差使图形趋于准确?这是一个锻炼学生解决问题的好时机,应让学生亲手实验、观察对比,从而得出结论.(三)重点、难点的学习与目标完成过程复习提问:1.哪位同学记得正多边形与圆关系的第一个定理?(安排中下生回答)2.哪位同学记得在同圆或等圆中,相等的圆心角所对的弧有什么性质?(安排中下生回答:相等的圆心角所对的弧相等)现在我们要画半径为R的正n边形,从正多边形与圆关系的第一个定理中,你有什么启发?(安排学生相互讨论后,让中等生回答:只要把半径为R的圆n等分,依次连结n个等分点就得正n边形)那么怎样把半径为R的圆n等分呢?从刚才复习的第二问题中,你又受到什么启发?大家相互间讨论.(安排中等生回答:把360°的圆心角n等分)如果要作半径2cm的正九边形,你打算如何作呢?大家互相讨论看看.(安排中等生回答:先画半径2cm的圆,然后把360°的圆心角9等份,每一份40°),用什么工具可得到40°角呢?(安排中下生回答:量角器)我们本堂课所讲画正多边形的第一种方法就是用量角器等分圆,大家用量角器画出半径为2的内接正九边形.学生在画图实践中必然出现两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个40°的圆心角,然后在圆上依次截取40°圆心角所对弧的等弧,于是得到圆的9等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正九边形的边长误差较大.对此学生必然迷惑不解,在此教师应肯定作法理论上的正确性,然后讲出图形不够准确的原因是由于误差积累的结果,然后引导学生讨论,研究减小误差积累的二个途径:其一,调整圆规两脚间的距离,使之尽可能准确的等于所画正九边形的边长.其二,若有可能,尽可能减少操作次数,减少产生误差的机会.大家想想如何画一个半径为2cm的正方形呢?(安排中下生回答:先画半径2cm的圆,用量角器作90°的圆心角.)画出∠AOB=90°后,方法1,可依次作90°圆心角;方法2,用圆规依次截取等于AB的弧,大家观察有没有更好的方法?(安排中等生回答:将AO与BO边延长交⊙O于C、D).正方形一边所对的圆心角是90°角,不用量角器用尺规能不能做出90°的圆心角呢?用尺规如何作半径为2cm的正方形?(安排中上等生回答,先作半径2cm的圆,然后画两条互相垂直的直径)请同学们用尺规画出半径为2cm的正方形.大家想想看,借助这个图形,能否作出⊙O的内接正八边形?同学们互相研究研究,(安排中上生回答:能,过圆心O作正方形各边的垂线与圆相交即得⊙O的八等分点)为什么?根据什么定理?(安排中上等生回答:垂径定理)还有什么方法?(安排中上等生作各直角的角平分线.)请同学们用此二法在图上画出正八边形.照此方法,同学们想想看,你还能画出边数为几的正多边形?(安排中下生回答:16边形等)综上所述及同学们的画图实践可知:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……大家再思考一个问题:如何画半径为2cm的正六边形呢?你都有哪些方法?大家讨论.方法1.画半径2cm的⊙O,然后用量角器画60°的圆心角,依次画下去即六等分圆周.方法2.画半径2cm的⊙O,然后用量角器画出60°的圆心角,如果有同学想到方法3更好,若无则提示学生:前面在研究正多边形的有关计算时,得到正六边形的半径与边长有一种什么样的数量关系?(安排中下生回答:相等)那么哪位同学可不用量角器,仅用尺规作出半径2cm的圆内接正六边形?(安排一名中等生到黑板画图,其余在下面画图)在学生画图完毕后展示两种不同的画法:其一,在⊙O上依次截取AB=BC=CD=DE=EF,由于误差积累AB≠FA,其二,首先画出⊙O的直径AD,然后分别以A、D为圆心,2cm长为半径画弧交⊙O于B、F、C、E.画出图形比较准确.请同学们用第二种方法画半径3cm的圆内接正六边形(安排学生在练习本上画)如果我们沿用由正方形画正八边形的思路同学们想想看,会画正六边形就应会画正多少边形?(安排中下生回答:正十二边形,正二十四边形…)理论上我们可以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将越来越难画.大家再观察,会画正六边形,除上述正多边形外,还可得到正几边形?(安排中等生回答:正三角形)画半径为2cm的正三角形,尺规作图时必得先画出正六边形吗?哪位同学有好方法?(安排举手同学回答:画出⊙O直径AB,以A为圆心,2cm为半径画弧交⊙O于C、D,连结B、D、C即可)请同学们按此法画半径为2cm的正三角形.请同学们思考一下如何用尺规画半径为2cm的正十二边形?在学生充分讨论研究的多种方案中送出:先作互相垂直的直径,然后分别以直径的四个端点为圆心2cm长为半径画弧,交⊙O的各点即得⊙O的12等分点.引导学生观察∠DOE=∠DOB-∠EOB∠DOB=90°,∠EOB=60°∴∠DOE=30°.∴ DE是⊙O内接正12边形一边.三、课堂小结:这堂课你学了哪些知识?(安排中等生回答:1.用量角器等分圆周作正n边形;2.用尺规作正方形及由此扩展作正八边形、用尺规作正六边形及由此扩展作正12边形、正三角形)四、布置作业教材P.168中练习1、2;P.173中13.。
初中数学——正多边形

初中数学——正多边形
考点一、正多边形和圆
1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
考点二、与正多边形有关的概念
1、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
考点三、正多边形的对称性
1、正多边形的轴对称性
正多边形都是轴对称图形。
一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。
2、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。
考点四、弧长和扇形面积
1、弧长公式
n°的圆心角所对的弧长l 的计算公式为180
r
n l π=2、扇形面积公式
lR R n S 2
13602==π扇其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。
3、圆锥的侧面积
rl r l S ππ=∙=22
1其中l 是圆锥的母线长,r 是圆锥的地面半径。
3.7 正多边形 浙教版数学九年级上册课件1

是
不是
是
探究 2.填写下表.
中心对称 轴对称
对称轴条数
正七边形
× √
7
正八边形
√ √
8
正九边形
× √
9
正十边形
√ √
10
3.用命题的形式概括正n边形的中心对称性和轴对称性, 以及轴对称图形的对称轴的条数.
正多边形都是轴对称图形,一个正n边形共有n条对称轴, 每条对称轴都通过n边形的中心. 边数是偶数的正多边形还是中心对称图形,它的外接圆的 圆心就是对称中心.
B
O
A
C
B
D
O
A
E
F
探究 1.(1)正三角形是轴对称图形吗?如果是,有几条对称轴? 正四边形、正五边形、正六边形呢?由此你能猜测正n边 形有几条对称轴吗?
3条
4条
5条
6条
探究 1.(2)正三角形是中心对称图形吗?正四边形、正五边形、正 六边形呢?由此你能猜测正n边形是否是中心对称图形吗?
不是
第3章 圆的基本性质
3.7 正多边形
一
理解正多边形的概念、正多边形外接圆的概念、圆 的内接正多边形的概念.
会正多边形的相关计算,并能综合运用圆内接正多 边形与圆的性质解决相关问题.
二 这个美丽图案的主体部分由一些多边形构成.你发现这些 多边形有什么特别之处吗?
三
它们都是各边相等,各角也相等的多边形是正多边形. 根据正多边形的边数的不同,分别把它们叫做正三角形、正 方形、正五边形、正六边形等.
顺次连结这n个点,就得到该圆的圆内接正n边形.
例题
例2 如图,已知⊙O,用直尺和圆规作⊙O的内接正六边形.
【分析】如图,设AB是⊙O的内接正六边形的 一条边,连结OA,OB,则∠AOB=60°,所 以△AOB为等边三角形,AB与⊙O的半径相等. 因此,只要以⊙O的半径为半径,从⊙O上任 取一点开始,依次在⊙O上截取五次,就把 ⊙O六等分.也就是说,依次连结这些分点,就 得到所要求作的⊙O的内接正六边形.
第24章圆-正多边形与圆的总结拓展课件 22--23学年沪科版九年级下册数学

∴∠ADF=90°
∴ ∠BDF=∠ADF-∠BDA=90°- 36°=54°
C
F
D
例3.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,
54° .
则∠BDF的度数是________
小结:
1.正n边形的每一个内角等于
A
n 2 180
n
B
E
O
;
2.直径所对的圆周角等于90°;
图形.
正三角形
120°
3条
正四边形
90°
4条
正五边形
72°
5条
正n边形有多少条对称轴? n条
正n边形至少旋转多少度与自身重合?
360
n
正六边形
60°
6条
正七边形
360
7条
7
正八边形
45°
8条
如何画正多边形
3. 如何画正多边形
①用圆规和量角器画正多边形.
360
先任意画出一个圆和一条半径,再计算出该正多边形的中心角的度数,即
1
∴BA= ,
2
2
1
3
根据勾股定理可得:r=a= b 2 b
b
2
2
∴r:b= 3:2
1
B 2 bA
T2
3
b
2 r
T1
O
a
b
例5.如图,有一个圆O和两个正六边形1、 2,其中1的六个顶点都在圆周上,2的六条边都
和圆O相切,(我们称1和2,分别为圆O的内接正六边形和外切正六边形).
和圆O相切,(我们称1和2,分别为圆O的内接正六边形和外切正六边形).
九年级上册数学课件《正多边形和圆》正多边形的画法

O
二、探究新知
问题 4 你能画一个边长为 1.5 cm 的正六边形吗? 方法 2 用量角器画一个 60 的圆心角,它对着一段弧,然后在圆上依 次截取与这条弧相等的弧,就得到圆的六个等分点,顺次连接各分点,即 可得到正六边形.
60
O
二、探究新知
问题 5 你能用尺规作图的方法画出正六边形和正方形吗? 在半径为 R 的圆上依次截取等于 R 的弦,就可以把圆六等分,顺次连 接各分点,即可得到半径为 R 的正六边形.
二、探究新知
问题 5 你能用尺规作图的方法画出正六边形和正方形吗? 在半径为 R 的圆上依次截取等于 R 的弦,就可以把圆六等分,顺次连 接各分点,即可得到半径为 R 的正六边形.
O R
在正六边形的基础上,顺次连接不 相邻的三个分点可得正三角形;过圆心 作各边的垂线与 ⊙O 相交,即可作出圆 内接正十二边形,照此方法依次可作正 二十四边形、正四十八边形……
n
正 n 边形的中心角等于 360 .
n
因为正 n 边形的外角等于 360 ,
n
所以,正多边形的中心角等于外角.
F AO
E D
B
C
设半径为 R ,边长为 a ,边心距为 r ,由勾股定理
得
.
r2 (a)2 = R2 2
F
E
AO
D
rR
BPC
探究新知
问题 你能画一个边长为 1.5 cm 的正六边形吗? 方法 1 用量角器依次画出 60 的圆心角,得到圆的六个等分点,顺次 连接各分点,即可得到正六边形.
O R
二、探究新知
问题 5 你能用尺规作图的方法画出正六边形和正方形吗? 在半径为 R 的圆上依次截取等于 R 的弦,就可以把圆六等分,顺次连 接各分点,即可得到半径为 R 的正六边形.
画正多边形(二)数学教案

画正多边形(二)数学教案
标题:画正多边形(二)数学教案
一、课程目标
1. 学习并理解正多边形的概念和性质。
2. 掌握用直尺和圆规绘制正多边形的方法。
3. 培养学生的空间想象能力和动手操作能力。
二、教学内容
1. 正多边形的基本概念和性质
2. 绘制正多边形的方法
三、教学过程
1. 引入新课:通过回顾上节课的内容,引出正多边形的概念和性质。
2. 新知识讲解:
a. 正多边形的基本概念和性质:包括定义、内角和、外角和等。
b. 绘制正多边形的方法:详细讲解如何使用直尺和圆规绘制正多边形,可以通过演示或让学生自己尝试的方式进行。
3. 实践活动:让学生自己尝试绘制不同数量边的正多边形,巩固所学知识。
4. 总结与复习:总结本节课的主要内容,并对学生的实践活动进行反馈和评价。
四、作业布置
1. 完成课本上的练习题。
2. 自己尝试绘制更多的正多边形。
五、教学反思
分析学生在课堂上的反应和学习效果,思考如何改进教学方法和策略。
六、教学资源
提供一些相关的教具和参考资料,如直尺、圆规、正多边形的实物模型等。
七、拓展阅读
提供一些相关的课外读物或网站,供学生进一步了解正多边形的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业
教材116页练习
; OPE
nrx51ksp
儿,父子俩吃完了饭,那个热情的伙计上来结算饭钱。耿老爹交钱后对他说:“小兄弟啊,你若有空儿,俺想向你打听一些事 情呢!”没有想到这伙计特别爱说话,笑着说:“实不相满,您一进店,俺就听出来是老乡口音了呢。俺有的是空儿,您有什 么想打听的,尽管问俺就是了!”耿老爹就问:“俺记得这儿原来是‘滩头村渡口’啊,怎么现在变成‘滩东渡口’了?‘滩 头村’离这里不远,俺在那个村子里还住过两天呢!”伙计说:“俺当是什么事儿呢。老乡你说的那个‘滩头村’,早在三年 前就已经消失了,是被决堤的黄河水冲没的啊。”耿老爹听了不由地一怔,问:“整个村子全没了?”伙计说:“哦,也不全 是,还剩下一棵被淤泥埋了一半儿的老椿树呢。就是村口那棵挂着‘滩头村’大木牌的老椿树,听说大木牌到现在还挂在树杈 上呢!”耿老爹自言自语地说:“怎么会是这样呢?”就听那伙计又说“嗨,这没了三年的‘滩头村’怎么还老有人惦念着呢! 前几天也有三个人向俺打听‘滩头村’呢。”耿老爹听了不由地一个激灵,心想莫不是俺的三个娃儿还活着,他们也回来了! 于是满怀希望地赶快问道:“可是两男一女?”伙计摇摇头,说:“不,是三兄弟回稷山送故人去了,问俺从这里能不能去得 了‘滩头村’,还说已经听说那个村子只剩下一棵半截子的老椿树了。”耿老爹的脑海里突然之间萌发出来的那一点点希望的 火花,一瞬间就给完全熄灭了。沉默一会儿,他轻轻地长叹一声,说:“唉,人生无常啊,无辜的生灵就这样没了哇!”猛地, 耿老爹脑子一闪又想起来还有需要打听的事情呢,就赶快转头又问已经开始在旁边的饭桌上收拾碗筷的那个伙计:“看小兄弟 你这年龄也有二十多岁了哇,你可听说过,八年前的九、十月间,这个渡口上可曾经发生过什么意外„„”耿老爹的话还没有 说完,那个伙计就好像明白了什么,抢着说:“老乡啊,您是说八年前的九月十六那天上午,在这个渡口上发生的那次船难哇! 唉,那可是一次少见的大事故呢。说起来,那天的黄河,本来风平浪静的。但突然之间,一个巨大的旋风从东南方向一路飞快 地滴溜溜旋转而来,刚好就吹卷到了正在渡河的一艘大渡船上。100多人哪,据说无一人生还„„”那个伙计后面还絮絮叨叨 的说了些什么,耿老爹一个字儿也没有听进去。热情豪爽的张老乡啊!看到耿老爹只顾了掉眼泪不再说话,伙计就识趣儿地停 止了絮叨,端起碗筷送到后面的厨房里去了。尚武掏出手绢为耿老爹擦去眼泪,轻轻地说:“义父,咱们走吧!您不是说了嘛, 前面离黄河边上最近的栈头还有四十多里远的路呢!”耿老爹无声地站起身来。父子俩出了饭店,尚武收拾好棕色大骡吃过的 草料袋,解开拴在拴马桩上的缰绳,扶耿老爹上车坐好,自己
你能尺规作出正六边形、正三角形、正十 二边形吗?
以半径长在圆 周上截取六段相 等的弧,依次连 结各等分点,则 作出正六边形. 先作出正六边 形,则可作正三 角形,正十二边 形,正二十四边 形………
F
E O ·
A
D
B
C
说说作正多边形的方法有哪些?
归纳 (1)用量角器等分圆周作正n边形; (2)用尺规作正方形及由此扩展作正八 边形, 用尺规作正六边形及由此扩展作正 12边形、正三角形.
你能用以上方法画出正四边形、正五边形、 正六边形吗?
A O ·
90°
D
B O
A E
F
E O ·
60°
·
72°
A
D
B
C
C
D
B
C
你能尺规作出正四边形、正八边形吗?
A
D
O ·
பைடு நூலகம்
B
C
只要作出已知⊙O的互相 垂直的直径即得圆内接正 方形,再过圆心作各边的 垂线与⊙O相交,或作各 中心角的角平分线与⊙O 相交,即得圆接正八边形, 照此方法依次可作正十六 边形、正三十二边形、正 六十四边形……
湖北省房县门古中学何群极制作
多姿多彩的正多边形:生活中的正多边形图案
几种常见的正多边形
由于正多边形在生产、生活实际中有广泛 的应用性,所以会画正多边形应是学生必备能 力之一。 怎样画一个正多边形呢? 问题1:已知⊙O的半径为2cm,求作圆的内接 正三角形. A
120 ° O C B
①用量角器度量,使 ∠AOB=∠BOC=∠COA =120°. ②用量角器或30°角的 三角板度量,使 ∠BAO=∠CAO=30°.