七下《相交线与平行线》同步辅导(含答案 巅峰对决)

合集下载

七年级下册《相交线与平行线》同步训练(含答案 勤学早)

七年级下册《相交线与平行线》同步训练(含答案 勤学早)
!!"
(((((((((((((
第+课时!垂!线
*!如图#直线 $%#&' 相交于点(#若 $%)&'#则 '$(&0 !0(/! ,
+!如上 题 图#若 '%('0,-1#则 $% ! ) !&',
,!点到直线的距离是指!直线外一点到这条直线的垂线段 的长度!!
如图#过点 $#% 分别画(%#($ 的垂线! -点睛.画 线 段 或 射 线 的 垂 线#
((((((((((((((
第一部分!课课清(专题通
第五章!相交线与平行线
)!*!相交线 第*课时!相交线
*!对 顶 角 ! 相 等 ! #邻 补 角 ! 互 补 ! ! +!如 图#直 线 "## 相 交
所 成 的 四 个 角 中# '#0 ! ',!#'& 0!'-!#'#('&0 !*.(/!#''( '.0 !*.(/! !
%+&设 '"#&6,*#'"#$6+*#8,*7+*6*.(/#*6,4/#8 '"#$65+/#8 '%#&6 '"#$65+/)
*-!%+(*0杭州改&如图#直线 $%#&' 相交于点(#() 平分'%('#(* 平分'&()! %#&若'$(&0*/1#求'%(* 的度数, %&&若'%(*0'/1#求'$(& 的度数, %'&请探究'$(& 与'%(* 的数量关系!

人教版七年级下册数学第五章《相交线与平行线》教学设计及同步辅导(含答案)

人教版七年级下册数学第五章《相交线与平行线》教学设计及同步辅导(含答案)

第五章相交线与平行线知识导航看看我们的课程目标⒈知识与技能⑴知道对顶角、邻补角的意义,能找出图形中一个角的对顶角和邻补角.⑵理解两条直线互相垂直的意义;会经过一点画出和已知直线垂直的直线,会画出三角形的高;了解点到直线的距离的意义.⑶了解同一平面内,两条直线的位置关系有相交与平行两种,与相交线,平行线有关的概念及性质,会用这些概念和性质进行简单的推理和计算.⑷掌握平行线的性质,并且会运用它们进行简单推理和计算.⑸了解平行线的性质和判定的区别.掌握平行线的性质,并且会运用它们进行简单推理和计算.⑹通过具体实例认识平移,理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质.⒉过程与方法⑴经历探索“对顶角相等”的性质,并会用它进行有关的简单推理和计算..⑵经历平行线的画法,总结出平行公理及其推论..⑶经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识.⒊情感态度与价值观⑴理解平行线是用“不相交”这种否定的方式定义的,这种否定的方式包含了对空间的想象..⑵领会数形结合、转化、对比的数学思想和方法,从而提高学生分析问题和解决问题的能力.⑶经历观察、分析、欣赏和画图等活动,促进评价学生空间观念的形成.人教版七下《5.1.1 相交线》同步辅导课前感悟1.如果∠α=110°,那么∠α的补角等于__________________.2.如图,直线EF 与AB 相交于G ,与CD 相交于H , 则∠AGH 的对顶角是___________;∠AGF 与_______是 对顶角.∠AGH 与_______是邻补角,∠GHD 的邻补角 是________. 3.下列说法正确的是 ( ). A . 有公共顶点的两个角是邻补角B . 有公共顶点且相等的两个角是对顶角C . 两条直线相交所得的四个角中的任意两个角不是邻补角就是对顶角D . 相等的两个角一定是对顶角4.互补的两个角中,一个是另一个的2倍,则这两个角中较大的角是( ). A .60° B .90° C .120° D .150° 举一反三【例1】如图,直线AB 和CD 相交于点O ,OE 是射线,则: ⑴∠1的对顶角是________,∠1的邻补角是______. ⑵∠5的对顶角是________,∠3的邻补角是______. 分析 抓住对顶角,邻补角的概念来回答. 解 ⑴∠1的对顶角是∠2,∠1的邻补角是∠5 和∠AOD.⑵∠5的对顶角是∠AOD, ∠3的邻补角是∠BOE. 评注 两条直线相交时,一个角的邻补角有两个,它们是对顶角,不能漏掉其中任何一个.【例2】如图,直线AB ,CD 相交于点O ,OE 平分∠COB,且∠COE=500. 求∠AOC 和∠AOD 的度数.分析 由OE 平分∠COB,且∠COE=500.得∠COE=∠BOE=500,由邻补角定义,得∠AOC=800,由对顶角定义,得∠AOD=1000.【例3】如图,直线AB ,CD ,EF 相交于点O ,∠AOF=4∠FOB ,∠AOC=900,求∠EOC 的度数.分析 由已知可知,∠EOC 和∠AOE 互余,所以求∠EOC 的度数可先求∠AOE 的度数,观察图形可知,∠AOE 和∠BOF 是对顶角,∠BOF 和∠AOF 是邻补角,利用它们的性质和已知条件,本题可解.解 设∠BOF= x 0,则∠AOF=4x 0, 1804=+x x , (邻补角定义)解得x=360,即∠BOF=360.所以∠AOE=∠BOF=360.所以∠EOC=∠AOC-∠AOE=540.第2题 例 1 例 2 例3评注 几何计算题,常用到几何图形中的性质,因此解也要有根有据,另外几何计算题也常得用代数方法达到解题目的.潜能开发5.一个角的两边分别是另一个角的两边的_______,这两个角叫做对顶角.对顶角的性质是 .6.如图,三条直线AB ,CD ,MN 相交于O 点,图中∠CON 的对顶角是 ,邻补角是________________.7.若∠α与∠β是对顶角,∠α=76°,则21∠β= . 8.一个角的补角比它的余角的2倍还多10°,则这个的度数是__________.9.关于对顶角,下列说法正确的是( ). A .有公共顶点的两个角 B . 一个角的两边分别是另一个角的两边延长线C .有公共顶点的且相等的角D .一个角的两边分别是另一个角两边的反向延长线 10.如图,已知直线AB.CD 相交于点O ,OA 平分∠EOC ,∠EOC=70°, 则∠BOD 的度数等于( ).A.30°B.35°C.20°D.40°11.如图,AB 交CD 于O ,OE 是顶点为O 的一条射线,图中的对顶角和邻补角各有( ). A .1组,3组 B .2组,4组 C .2组,6组 D .3组,8组12.如图,三条直线AB,CD,EF 交于一点O,且OF 平分∠DOB,试问:OE 是不是∠AOC 的平分线?为什么?13.如图,直线AB,CD 相交于点O,OE 平分∠BOD,OF 平分∠COE, ∠AOD:∠BOE=4:1, 求∠EOF 的度数. 第6题 第12题第13题14.如图,已知:O 是直线AB 上一点,把直角三角板的直角顶点放在点O ,此时三角板可绕着点O 旋转,请观察在运动过程中,∠AOC 和∠BOD 始终保持什么关系?为什么?15.如图,直线AB 与直线CD 相交于O ,OE 平分∠AOD ,∠BOC =∠BOD -30°,求∠COE 的度数?探究创新16.2条直线相交于一点,有多少对不同的对顶角? 3条直线相交于一点,有多少对不同的对顶角? 4条直线相交于一点,有多少对不同的对顶角? n 条直线相交于一点,有多少对不同的对顶角?A B O C D 第14题第16题 O A BCD E 第15题多彩生活第一个算出地球周长的埃拉托色尼2000多年前,有人用简单的测量工具计算出地球的周长.这个人就是古希腊的埃拉托色尼(约公元前275—前194).埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长.细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子.但是,亚历山大城地面上的直立物却有一段很短的影子.他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成.从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角.按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长.埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几.他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近.这充分反映了埃拉托色尼的学说和智慧.埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著.书中描述了地球的形状、大小和海陆分布.埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学.参考答案1.70 2.∠FGB,∠HGB,∠AGF,∠HGB,∠CHB,∠EHB 3.C 4.C5.反向延长线,对顶角相等 6.∠DOM,∠DON,∠COM 7.3808.100 9.D 10.B 11.C 12.是 13.750 14.互余15.142.5 16.2,6,12,n(n—1)。

部编数学七年级下册第5章相交线与平行线(解析版)含答案

部编数学七年级下册第5章相交线与平行线(解析版)含答案

第5章 相交线与平行线一、单选题1.下面四个图形中,1Ð与2Ð是对顶角的是( )A .B .C .D .【答案】C【分析】根据对顶角的定义,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,分别判断即可.【详解】解:A 、两角两边没有互为反向延长线,选项错误;B 、两角两边没有互为反向延长线,选项错误;C 、有公共顶点,且两角两边互为反向延长线,选项正确.D 、没有公共顶点,两角没有互为反向延长线,选项错误.故选:C .【点睛】本题考查对顶角的定义,根据定义解题是关键.2.如图所示,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34Ð=ÐB .12Ð=Ð C .D DCE Ð=Ð D.180D ACD Ð+Ð=°【答案】B 【分析】根据平行线的判定判断即可;【详解】当34Ð=Ð时,BD AC P ,故A 不符合题意;当12Ð=Ð时,//AB CD ,故B 符合题意;当D DCE Ð=Ð时,BD AE P ,故C 不符合题意;当180D ACD Ð+Ð=°时,BD AE P ,故D 不符合题意;故答案选B .【点睛】本题主要考查了平行线的判定,准确分析判断是解题的关键.3.如图,若////,//,AB CD EF BC AD AC 为BAD Ð的平分线,则与AOF Ð相等的角有( )个.A.2B.3C.4D.5【答案】D【分析】根据角平分线定义可得∠BAC=∠DAC,利用平行线性质与对顶角性质可得∠DCA=∠FOA=∠BAC=∠COE,∠BCA=∠DAC,即可得出结论.【详解】解:∵AC为BADÐ的平分线,∴∠BAC=∠DAC,AB CD EF BC AD,∵////,//∴∠DCA=∠FOA=∠BAC=∠COE,∠BCA=∠DAC,∴∠AOF=∠DCA=∠BAC=∠COE=∠BCA=∠DAC.故选项D.【点睛】本题考查角平分线定义,平行线性质,对顶角性质,掌握角平分线定义,平行线性质,对顶角性质是解题关键.4.下列图形中,线段PQ能表示点P到直线l的距离的是().A.B.C.D.【答案】D【分析】根据点到直线的距离的定义“从直线外一点到这条直线的垂线段长度,叫点到直线的距离”,即可直接选择.^,故D选项中线段PQ能表示点P到直线l的距离.【详解】只有D选项PQ l故选:D.【点睛】本题考查点到直线的距离的定义,理解并掌握点到直线的距离的定义是解答本题的关键.5.下列现象中,属于平移现象的是()A.方向盘的转动B.行驶的自行车的车轮的运动C.电梯的升降D.钟摆的运动【答案】C【分析】根据平移的定义:把一个图形整体沿着某一直线方向移动,会得到一个新的图形,这种移动就叫做平移,进行判断即可.【详解】解:A、方向盘的转动,不是平移,不符合题意;B、行驶的自行车的车轮的运动,不是平移,不符合题意;C、电梯的升降,是平移,符合题意;D、钟摆的运动,不是平移,不符合题意;故选C.【点睛】本题主要考查了生活中的平移现象,解题的关键在于能够熟练掌握平移的定义.6.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°【答案】C【分析】由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON-∠MOC得出答案.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON-∠MOC=90°-35°=55°.故选:C.【点睛】本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.7.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A .30°B .32°C .42°D .58°【答案】B 【详解】试题分析:如图,过点A 作AB ∥b ,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a ∥b ,AB ∥B ,∴AB ∥b ,∴∠2=∠4=32°,故选B .考点:平行线的性质.8.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且PB l ^于点B ,90APC Ð=°,则下列结论:①线段AP 是点A 到直线PC 的距离;②线段BP 的长是点P 到直线l 的距离;③PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长是点P 到直线l 的距离.其中正确的是( )A .②③B .①②③C .③④D .①②③④【答案】A 【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.【详解】解:①线段AP 是点A 到直线PC 的距离,错误;②线段BP 的长是点P 到直线l 的距离,正确;③PA ,PB ,PC 三条线段中,PB 最短,正确;④线段PC 的长是点P 到直线l 的距离,错误,故选:A .【点睛】此题主要考查了垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.9.如果A Ð与B Ð的两边分别平行,A Ð比B Ð的3倍少36o ,则A Ð的度数是( )A .18oB .126oC .18o 或126oD .以上都不对【答案】C【分析】由∠A 与∠B 的两边分别平行,即可得∠A 与∠B 相等或互补,然后分两种情况,分别从∠A 与∠B 相等或互补去分析,即可求得∠A 的度数.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A 与∠B 相等或互补.分两种情况:①如图1,当∠A+∠B=180°时,∠A=3∠B-36°,解得:∠A=126°;②如图2,当∠A=∠B ,∠A=3∠B-36°,解得:∠A=18°.所以∠A=18°或126°.故选:C .【点睛】此题考查的是平行线的性质,如果两角的两边分别平行,则这两个角相等或互补.此题还考查了方程组的解法.解题要注意列出准确的方程组.10.下列说法中正确的有( )①在同一平面内,不重合的两条直线若不相交,则必平行;②在同一平面内,不相交的两条线段必平行;③相等的角是对顶角;④两条直线被第三条直线所截,所得的同位角相等;⑤两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A .1个B .2个C .3个D .4个【答案】B【分析】在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).在同一平面内,不相交的两条直线叫平行线.两条平行线被第三条直线所截,同位角相等,内错角相等,据此进行判断.【详解】解:①在同一平面内,不相交的两条直线必平行,故说法①正确.②在同一平面内,不相交的两条线段可能平行,也可能不平行,故说法②错误.③相等的角不一定是对顶角,故说法③错误.④两条直线被第三条直线所截,所得同位角不一定相等,故说法④错误.⑤两条平行直线被第三条直线所截,一对内错角的角平分线互相平行,故说法⑤正确.∴说法正确的有2个,故选:B.【点睛】本题主要考查了平行线的概念,平行线的性质以及对顶角的概念的运用,同一平面内的两条直线的位置关系为:平行或相交,对于这一知识的理解过程中,要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.二、填空题11.把下列命题改写成“如果……,那么……”的形式:(1)内错角相等,两直线平行._________.(2)同角的补角相等._____.【答案】如果两条直线被第三条直线所截,内错角相等,那么这两条直线互相平行如果两个角是同一个角的补角,那么这两个角相等【分析】找出原命题的条件和结论即可得出答案.【详解】(1)“两条直线被第三条直线所截,内错角相等”是命题的条件,“这两条直线互相平行”是条件的结论.(2)“两个角是同一个角的补角”是命题的条件,“这两个角相等”是条件的结论.故答案为:(1)如果两条直线被第三条直线所截,内错角相等,那么这两条直线互相平行.(2)如果两个角是同一个角的补角,那么这两个角相等.【点睛】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.Ð+Ð+Ð=________度.12.如图,三条直线1l、2l、3l相交于一点O,则123【答案】180【分析】根据对顶角相等得到∠1=∠4,再根据平角的定义即可得到结果.【详解】∵∠1=∠4,∴∠1+∠2+∠3=∠4+∠2+∠3=180°.故答案为:180.【点睛】本题考查了对顶角的性质及平角,熟记对顶角相等是解题的关键.13.将直角梯形ABCD 平移得梯形EFGH ,若10,2,4HG MC MG ===,则图中阴影部分的面积为_________平方单位.【答案】36【分析】根据图形可知图中阴影部分的面积等于梯形ABCD 的面积减去梯形EFMD 的面积,恰好等于梯形EFGH 的面积减去梯形EFMD 的面积.【详解】根据平移的性质得S 梯形ABCD =S 梯形EFGH ,Q DC = HG = 10,MC = 2,MG = 4,\DM = DC - MC = 10 - 2 = 8,\S 阴影= S 梯形ABCD -S 梯形EFMD=S 梯形EFGH -S 梯形EFMD=S 梯形HGMD =()12DM HG MG +g =12×(8+10)×4= 36.故答案为:36.【点睛】主要考查了梯形的性质和平移的性质,要注意平移前后图形的形状和大小不变,本题的关键是能得到:图中阴影部分的面积等于梯形ABCD 的面积减去梯形EFMD 的面积,恰好等于梯形EFGH 的面积减去梯形EFMD 的面积.14.如图,AB ∥EF ,设∠C =90°,那么x ,y ,z 的关系式为______.【答案】y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90°,由∠y=∠z+∠2,可证∠y=∠z+90°-∠x即可.【详解】解:作CG∥AB,DH∥EF,∵AB∥EF,∴AB∥CG∥HD∥EF,∴∠x=∠1,∠CDH=∠2,∠HDE=∠z∵∠BCD=90°∴∠1+∠2=90°,∠y=∠CDH+∠HDE=∠z+∠2,∵∠2=90°-∠1=90°-∠x,∴∠y=∠z+90°-∠x.即y=90°-x+z.【点睛】本题考查平行线的性质,掌握平行线的性质,利用辅助线画出准确图形是解题关键.15.如图,在一块长为a米、宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其他部分都是草地,则草地的面积为__________平方米.【答案】(ab ﹣2b )【分析】根据图形的特点,可以把小路的面积看作是一个底是2米,高是b 米的平行四边形,根据平行四边形的面积=底×高,长方形的面积=长×宽,用长方形的面积减去小路的面积即可.【详解】解:由题可得,草地的面积是(ab ﹣2b )平方米.故答案为:(ab ﹣2b ).【点睛】本题考查了平移的实际应用.化曲为直是解题的关键.16.如图,直线AB 、CD 相交于点O ,OE AB ^,O 为垂足,如果38EOD Ð=°,则AOC Ð=________,COB Ð=________.【答案】52o 128o【分析】根据对顶角相等可知AOC BOD Ð=Ð,根据余角的定义求得BOD Ð,根据邻补角的定义求得COB Ð.【详解】Q OE AB ^,38EOD Ð=°,90903852BOD EOD \Ð=°-Ð=°-°=°,Q AOC BOD Ð=Ð,52AOC \Ð=°,\180********COB AOC Ð=°-Ð=°-°=°,故答案为:52,128°°.【点睛】本题考查了垂线定义的理解,对顶角相等,求一个角的余角,求一个角的补角,掌握以上知识是解题的关键.17.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:_____.【答案】垂线段最短【详解】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知,要选垂线段.18.如图,给出下列条件:①180B BCD Ð+Ð=°;②12Ð=Ð;③34Ð=Ð;④5B Ð=Ð;⑤B D Ð=Ð.其中,一定能判定AB ∥CD 的条件有_____________(填写所有正确的序号).【答案】①③④【分析】根据平行线的判定方法对各小题判断即可解答.【详解】① ∵180B BCD Ð+Ð=°,∴AB ∥CD (同旁内角互补,两直线平行),正确;② ∵12Ð=Ð,∴AD ∥BC ,错误;③ ∵34Ð=Ð,∴AB ∥CD (内错角相等,两直线平行),正确;④ ∵5B Ð=Ð,∴AB ∥CD (同位角相等,两直线平行),正确;⑤ B D Ð=Ð不能证明AB ∥CD ,错误,故答案为:①③④.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解答的关键.三、解答题19.根据下列语句画出图形:(1)过线段AB 的中点C ,画CD ⊥AB ;(2)点P 到直线AB 的距离是3cm ,过点P 画直线AB 的垂线PC ;(3)过三角形ABC 内的一点P ,分别画AB ,BC ,CA 的平行线.【答案】见解析【分析】(1)根据线段中点和垂直的定义画图;(2)根据点到直线的距离画图;(3)根据平行线的性质画图.【详解】解:(1)如图所示,AC =CB ,CD ⊥AB ;(2)如图所示,点P到直线AB的距离是3cm,AB⊥PC;(3)如图所示,PD∥AB,PE∥BC,PF∥CA..【点睛】本题考查了基本作图,在作垂线、平行线时可以不用直尺和圆规作图,可以利用三角板.20.一个台球桌的桌面如图所示,一个球在桌面上的点A滚向桌边PQ,碰着PQ上的点B 后便反弹而滚向桌边RS,碰着RS上的点C便反弹而滚向点D.如果PQ//RS,AB,BC,CD 都是直线,且∠ABC的平分线BN垂直于PQ,∠BCD的平分线CM垂直于RS,那么,球经过两次反弹后所滚的路径CD是否平行于原来的路径AB?【答案】球经过两次反弹后所滚的路径CD平行于原来的路径AB.【分析】根据平行线的判断与性质以及角平分线的定义解答即可.【详解】解:球经过两次反弹后所滚的路径CD平行于原来的路径AB.理由如下:∵PQ∥RS,∠ABC的平分线BN垂直于PQ,∠BCD的平分线CM垂直于RS,∴BN∥CM,∴∠CBN =∠BCM ,又∵∠ABC =2∠CBN ,∠BCD =2∠BCM ,∴∠ABC =∠BCD ,∴CD ∥AB .【点睛】本题考查了角平分线的定义,垂线,平行线的判定和性质,正确的识别图形是解题的关键.21.完成下面的证明:如图,BE 平分ABD Ð,DE 平分BDC ∠,且90a b Ð+Ð=°,求证//AB CD .证明:∵BE 平分ABD Ð(已知),∴2ABD a Ð=Ð( ).∵DE 平分BDC ∠(已知),∴BDC Ð=________( ).∴22)2(ABD BDC a b a b Ð+Ð=Ð+Ð=Ð+Ð( ).∵90a b Ð+Ð=°(已知),∴Ð+Ð=ABD BDC ________().∴//AB CD ( ).【答案】角的平分线的定义;2b Ð;角的平分线的定义;等式性质;180°;等量代换;同旁内角互补,两直线平行.【分析】根据角平分线的性质,等式性质,等量代换,平行线判定逐个求解即可.【详解】解:BE Q 平分ABD Ð(已知)∴2ABD a ÐÐ=(角平分线的定义)DE Q 平分BDC ∠(已知)∴BDC Ð=2∠β(角平分线的定义)∴222()ABD BDC a b a b Ð+ÐÐ+ÐÐ+Ð==(等式性质)90a b °Ð+ÐQ =(已知)∴ABD BDC Ð+Ð=180°(等量代换)∴//AB CD (同旁内角互补,两直线平行).故答案为:角的平分线的定义;2b Ð;角的平分线的定义;等式性质;180°;等量代换;同旁内角互补,两直线平行.【点睛】本题考查平行线的判定、角平分线的定义,等式性质等,熟练掌握平行线的判定是解决本题的关键.22.已知直线AB 和CD 相交于O 点,射线OE ⊥AB 于O ,射线OF ⊥CD 于O ,且∠BOF =25°,求∠AOC 与∠EOD 的度数.【答案】∠AOC =115°,∠EOD =25°【分析】由OF ⊥CD ,得∠DOF =90°,根据条件可求出∠BOD 的度数,即可得到∠AOC 的度数;由OE ⊥AB ,得∠BOE =90°,可以推出∠EOF 和∠EOD 的度数.【详解】解:∵OF ⊥CD ,∴∠DOF =90°,又∵∠BOF =25°,∴∠BOD =∠DOF+∠BOF=90°+25°=115°,∴∠AOC =∠BOD =115°,又∵OE ⊥AB ,∴∠BOE =90°,∵∠BOF =25°,∴∠EOF =∠BOE -∠BOF =65°,∴∠EOD =∠DOF ﹣∠EOF =90°-65°=25°.【点睛】此题考查的知识点是垂线、角的计算及对顶角知识,关键是根据垂线的定义得出所求角与已知角的关系.23.如图,A 、B 、C 三点在同一直线上,12,3D Ð=ÐÐ=Ð,试说明 //BD CE .证明:∵12Ð=Ð(已知)∴________//________(________________)∴D Ð=Ð________(________________)又∵3D Ð=Ð(________)∴Ð________=Ð________(________________)∴//BD CE (________________).【答案】,AD BE ,内错角相等,两直线平行;DBE ,两直线平行,内错角相等;已知,DBE ,3,等量代换;内错角相等,两直线平行.【分析】由12Ð=Ð,根据内错角相等,两直线平行,可证得//AD BE ,继而证得D DBE Ð=Ð,又由3D Ð=Ð,可证得3DBE Ð=Ð,继而证得//BD CE .【详解】证明:12(Ð=ÐQ 已知),//AD BE \ ( 内错角相等,两直线平行),(D DBE \Ð=Ð 两直线平行,内错角相等 ),又∵3D Ð=Ð(已知),3(DBE \Ð=Ð等量代换),//(BD CE \ 内错角相等,两直线平行).故答案为:AD ,BE ,内错角相等,两直线平行;DBE ,两直线平行,内错角相等;已知,DBE ,3,等量代换;内错角相等,两直线平行.【点睛】本题考查了平行线的性质与判定,熟悉相关证明过程是解题的关键.24.如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.(1)求种花草的面积;(2)若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?【答案】(1)种花草的面积为42平方米;(2)每平方米种植花草的费用是110元【分析】(1)将道路直接平移到矩形的边上,进而根据长方形的面积公式得出答案;(2)根据(1)中所求,代入计算即可得出答案.【详解】解:(1)()()8281-´-67=´42=(平方米)答:种花草的面积为42平方米;(2)462042110¸=(元)答:每平方米种植花草的费用是110元.【点睛】此题考查了生活中的平移现象,解题的关键是要利用平移的知识,把要求的所有道路平移到矩形的边上进行计算.25.如图,某工程队从A 点出发,沿北偏西67°方向修一条公路AD ,在BD 路段出现塌陷区,就改变方向,在B 点沿北偏东23°的方向继续修建BC 段,到达C 点又改变方向,使所修路段//CE AB ,求ECB Ð的度数.【答案】90°【分析】先根据平行线的性质求出∠2的度数,再由平角的定义求出CBA Ð的度数,根据CE ∥AB 即可得出结论.【详解】∠ECB=90°.理由:∵∠1=67°,∴∠2=67°.∵∠3=23°,∴∠CBA=180°-67°-23°=90°.∵CE ∥AB ,∴∠ECB=∠CBA=90°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.26.探究题:(1)已知:三角形ABC ,求证:180A B ACB Ð+Ð+Ð=°;小明同学经过认真思考,他过点C 作//CE AB ,利用添加辅助线的方法成功解决了这个问题.你能说出小明是怎么解决这个问题的吗?写出论证过程.(2)利用以上结论或方法,解决如下问题:已知:六边形ABCDEF ,满足A B C D E F Ð+Ð+Ð=Ð+Ð+Ð,求证://AF CD .【答案】(1)见解析;(2)见解析【分析】(1)根据平行线的性质及平角的性质即可求解;(2)连结,,AC FC FD ,利用三角形内角和将A B C D E F Ð+Ð+Ð=Ð+Ð+Ð转化为AFC DCF Ð=Ð,从而得出//AF CD .【详解】(1)∵//CE AB∴1A Ð=Ð,2B Ð=Ð∵B 、C 、D 在同一直线上∴∠ACB +∠1+∠2=180°∴180A B ACB Ð+Ð+Ð=°;(2)如图,连结,,AC FC FD ,得到△ABC 、△ACF 、△CDF 、△DEF∴∠B +∠BAC +∠ACB =∠ACF +∠AFC +∠CAF =∠FCD +∠CDF +∠CFD =∠E +∠EDF +∠DFE =180°∵BAF B BCD CDE E EFAÐ+Ð+Ð=Ð+Ð+Ð∴BAC ACB ACF F F B CD CA Ð+Ð+ÐÐ+Ð+Ð+=CDF EDF E CFD AFCEFD +Ð+ÐÐ+Ð+Ð+Ð化解得360°-∠AFC +∠FCD =360°-∠FCD +∠AFC∴2∠FCD =2∠AFC则∠FCD =∠AFC∴//AF CD .【点睛】此题主要考查平行线的判断与性质,解题的关键是熟知三角形的内角和为180°.。

北师大版数学七年级下册第二章 相交线和平行线同步练习(含答案)

北师大版数学七年级下册第二章 相交线和平行线同步练习(含答案)

北师大版七年级下册第二章相交线与平行线一、选择题1.如图,AB、CD相交于点E,EF平分∠AEB,若∠BED∶∠DEF=2∶3,则∠BEC的度数为()A. 144°B. 126°C. 150°D. 72°2.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥dB.b⊥dC.a⊥dD.b∥c3.如果点P在直线a上,也在直线b上,但不在直线c上,且直线a、b、c两两相交符合以上条件的图形是()A.B.C.D.4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定5.如图,点E在直线AB上,EC平分∠AED,∠DEB=100°,如果要使AB∥CD,则∠C的度数为()A. 30°B. 40°C. 50°D. 60°6.如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是()A.同角的余角相等B.对顶角相等C.同角的补角相等D.等角的补角相等7.下列说法正确的是()A.相等的角是对顶角B.一对同旁内角的平分线互相垂直C.对顶角的平分线在一条直线上D.同位角相等8.如图,点O在直线AB上,点M,N在直线AB外,若MO⊥AB,NO⊥AB,垂足均为O,则可得点N在直线MO上,其理由是()A.经过两点有且只有一条直线B.在同一平面上,一条直角只有一条垂线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过直线上或直线外一点,有且只有一条直线与已知直线垂直二、填空题9.如图所示,已知三条直线AB、CD、EF两两相交于点P、Q、R,则图中补角共有______对,对顶角共有______对(平角除外).10.已知AB∥CD,CP平分∠ACD.求证:∠1=∠2证明:∵AB∥CD(已知),∴∠2=∠3 ( ).又∵CP平分∠ACD,∴∠1=__________.∴∠1=∠2(等量代换).11.如图,把一块长方形纸片ABCD沿EG折叠,若∠FEG=35°,则∠AEF的补角为__________度.12.如图,在△ABC中,∠ABC=90,过点B作三角形ABC的AC边上的高BD,过D点作三角形ABD的AB边上的高DE.∠A的同位角是__________________________.∠ABD的内错角是__________.点B到直线AC的距离是线段______的长度.点D到直线AB的距离是线段______的长度.13.n条水平直线与倾斜直线a相交可得________条线段,_______对同位角,____对内错角,______对同旁内角.14.如图,BD⊥AC于D,DE⊥BC于E,若DE=9 cm,AB=12 cm,不考虑点与点重合的情况,则线段BD的取值范围是_________.15.如图,l1∥l2,则∠1=________度.16.已知∠A与∠B互余,若∠A=20°15′,则∠B的度数为.三、解答题17.给下面命题的说理过程填写依据.已知:如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,OF平分∠BOD,对∠EOF=∠BOC说明理由.理由:因为∠AOC=∠BOD(),∠BOF=∠BOD(),所以∠BOF=∠AOC().因为∠AOC=180°-∠BOC(),所以∠BOF=90°-∠BOC.因为EO⊥CD(),所以∠COE=90°()因为∠BOE+∠COE=∠BOC(),所以∠BOE=∠BOC-∠COE.所以∠BOE=∠BOC-90°()因为∠EOF=∠BOE+∠BOF()所以∠EOF=(∠BOC-90°)+( )所以∠EOF=∠BOC.18.如图,已知AC∥ED,ED∥GF,∠BDF=90°.(1)若∠ABD=150°,求∠GFD的度数;(2)若∠ABD=θ,求∠GFD-∠CBD的度数.19.如图,已知直线l1∥l2,直线l和直线l1、l2交于点C和D,在直线l有一点P.若P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由.20.如图,已知AB∥CF,DE∥CF,DE与BC交于点P,若∠ABC=70°,∠CDE=130°.(1)试判断∠ABP与∠BPD之间的数量关系,并说明理由;(2)求∠BCD的度数.21.如图,直线AB,CD相交于点O,∠AOC=60°,∠1∶∠2=1∶2.(1)求∠2的度数;(2)若∠2与∠MOE互余,求∠MOB的度数.22.求出满足下列条件的角的度数:(1)已知一个角的补角是这个角的余角的3倍,求这个角;(2)已知一个角的余角比这个角小18°,求这个角的补角.23.如图,直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC,且∠COE∶∠AOC =2∶5,求∠DOF的度数.24.如图:把一张长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点M,如果∠EFB=66°,求∠EBF及∠DEF的度数.答案解析1.【答案】A【解析】∵EF平分∠AEB,∴∠BEF=90°,∵∠BED∶∠DEF=2∶3,∴∠BED=36°,∴∠BEC=180°-∠BED=144°.故选A.2.【答案】C【解析】∵a⊥b,b⊥c,∴a∥c,∵c⊥d,∴a⊥d.故选C.3.【答案】D【解析】A.不符合直线a、b、c两两相交;B.不符合点P在直线a上;C.不符合点P不在直线c上;D.符合条件,故选D.4.【答案】A【解析】∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A.5.【答案】B【解析】∵∠DEB=100°,∴∠AED=180°-100°=80°,∵EC平分∠AED,∴∠AEC=∠DEC=∠AED=40°,∵AB∥CD,∠C=∠AEC=40°,故选B.6.【答案】C【解析】∵∠1+∠3=180°,∠2+∠3=180°,∴∠1=∠2(同角的补角相等),故选C.7.【答案】C【解析】A.相等的角不一定是对顶角,错误;B.一对同旁内角的平分线不一定互相垂直,错误;C.对顶角的平分线在一条直线上,正确;D.同位角不一定相等,错误;故选C.8.【答案】D【解析】∵MO⊥AB,NO⊥AB,垂足均为O,∴MN⊥AB于点O,即MO与NO是同一条直线,根据是经过直线上或直线外一点,有且只有一条直线与已知直线垂直,故选D.9.【答案】126【解析】如图,一个顶点处∠1与∠2,∠2与∠3,∠3与∠4,∠4与∠1是补角,共4对,图中共有三个顶点,所以补角有4×3=12对;∠1与∠3,∠2与∠4是对顶角,共2对,图中共有3个顶点,所以对顶角有2×3=6对.故应填12,6.10.【答案】两直线平行,内错角相等∠3【解析】∵AB∥CD(已知),∴∠2=∠3 (两直线平行,内错角相等).又∵CP平分∠ACD,∴∠1=∠3,∴∠1=∠2(等量代换).故答案为:两直线平行,内错角相等,∠3.11.【答案】70【解析】∠DEF=∠FEG+∠DEG=35°+35°=70°,即∠AEF的补角是70°.故答案是:70.12.【答案】∠BDC、∠BED、∠EDC∠BDC BD DE【解析】根据两直线被第三条直线所截,位置相同的角是同位角,可得一个角的同位角,根据根据两直线被第三条直线所截,角位于两直线的中间,截线的两侧是内错角,可得一个角的内错角,根据点到直线的垂线段的长度是点到直线的距离,可得答案.∠A的同位角是∠BDC、∠BED、∠EDC,∠ABD的内错角是∠BDC,点B到直线AC的距离是线段BD的长度,点D到直线AB的距离是线段DE的长度,13.【答案】2n(n-1)n(n-1)n(n-1)【解析】n条水平直线与倾斜直线a相交可得条线段,2n(n-1)对同位角,n(n-1)对内错角,n(n-1)对同旁内角,故答案为,2n(n-1),n(n-1),n(n-1).14.【答案】9 cm<DB<12 cm【解析】在△ADB中,∵BD⊥AD,∴AB>BD,∵AB=12 cm,∴BD<12 cm,在△BDE中,∵DE⊥BC,∴BD>DE,∵DE=9 cm,∴BD>9 cm,∴9 cm<DB<12 cm.故答案为9 cm<DB<12 cm.15.【答案】20【解析】∵l1∥l2,∴∠2=70°,∴∠1=90°-∠2=90°-70°=20°.16.【答案】69.75°【解析】∵∠A与∠B互余,∠A=20°15′,∴∠B=90°-20°15′=69°45′=69.75°.故答案为:69.75°.17.【答案】因为∠AOC=∠BOD(对顶角相等),∠BOF=∠BOD(平分线的定义),所以∠BOF=∠AOC(等量代换).因为∠AOC=180°-∠BOC(平角的定义),所以∠BOF=90°-∠BOC.因为EO⊥CD(已知),所以∠COE=90°(垂直的定义)因为∠BOE+∠COE=∠BOC(两角和的定义),所以∠BOE=∠BOC-∠COE.所以∠BOE=∠BOC-90°(等量代换)因为∠EOF=∠BOE+∠BOF(两角和的定义)所以∠EOF=(∠BOC-90°)+(等量代换)所以∠EOF=∠BOC.故答案为:对顶角相等,角平分线的定义,等量代换,平角的定义,已知,垂直的定义,两角和的定义,等量代换,两角和的定义,等量代换.【解析】根据对顶角的性质得到∠AOC=∠BOD,由角平分线的定义得到∠BOF=∠BOD,等量代换得到∠BOF=∠AOC,由垂直的定义得到∠COE=90°,等量代换得到∠BOE=∠BOC-90°,于是得到结论.18.【答案】(1)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=150°,∴∠BDE=30°,∵∠BDF=90°,∴∠EDF=60°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=120°;(2)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=θ,∴∠BDE=180°-θ,∵∠BDF=90°,∴∠EDF=90°-(180°-θ)=θ-90°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=270°-θ,∵∠ABD=θ,∴∠CBD=180°-θ,∴∠GFD-∠CBD=(270°-θ)-(180-θ)°=90°.【解析】(1)根据平行线的性质可得∠ABD+∠BDE=180°,进而可得∠BDE=30°,然后再计算出∠EDF的度数,再根据平行线的性质可得∠EDF+∠F=180°,进而可得∠GFD的度数;(2)与(1)类似,表示出∠F的度数,再表示出∠CBD的度数,再求差即可.19.【答案】如图,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD.【解析】当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD.20.【答案】(1)∠ABP=∠BPD,理由:∵AB∥CF,DE∥CF,∴AB∥DE,∴∠ABP=∠BPD;(2)∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF-∠DCF=70°-50°=20°.【解析】(1)根据AB∥CF,DE∥CF,可得AB∥DE,进而得出∠ABP=∠BPD;(2)由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF-∠DCF可求.21.【答案】(1)∵∠DOB=∠AOC=60°,∴∠1+∠2=60°,又∠1∶∠2=1∶2.∴∠1=20°,∠2=40°;(2)∵∠2与∠MOE互余,∠2=40°,∴∠MOE=50°,又∠1=20°,∴∠MOB=30°.【解析】(1)根据对顶角相等得到∠DOB=60°,根据已知求出∠2的度数;(2)根据余角的概念求出∠MOE的度数,计算即可.22.【答案】解:(1)设这个角为x°,由题意得:180-x=3(90-x),解得:x=45.答:这个角为45°.(2)设这个角为x°,由题意得:90-x=x-18,解得:x=54.所以这个角的补角为126°.【解析】(1)首先设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,根据题目所给等量关系列出方程,再解方程即可.(2)首先这个角为x°,则它的余角为(90-x)°,根据题意列出方程即可.23.【答案】∵OE⊥AB,∴∠AOE=∠BOE=90°,设∠EOC=2x,∠AOC=5x.∵∠AOC-∠COE=∠AOE,∴5x-2x=90°,解得x=30°,∴∠COE=60°,∠AOC=150°.∵OF平分∠AOC,∴∠AOF=75°.∵∠AOD=∠BOC=90°-∠COE=30°,∴∠DOF=∠AOD+∠AOF=105°.【解析】先由OE⊥AB得出∠AOE=∠BOE=90°,再设∠COE=2x,∠AOC=5x.根据∠AOC-∠COE=∠AOE,列方程求出x,再根据角平分线定义求出∠AOF=75°,根据对顶角性质及互余的性质得出∠AOD=∠BOC=90°-∠COE=30°,然后由∠DOF=∠AOD+∠AOF即可求解.24.【答案】∵AD∥BC,∴∠DEF=∠EFB=66°,由折叠可得∠DEF=∠BEF,∴∠BEF=66°,∴∠EBF=∠AEB=180°-∠DEF-∠BEF=180°-66°-66°=48°.【解析】首先根据平行线的性质可得∠DEF=∠EFB,再根据折叠可得∠DEF=∠BEF,再利用三角形内角和可得∠EBF=∠AEB=180°-∠DEF-∠BEF,进而得到答案.。

北师大版七年级下册第二章-平行线与相交线同步练习题(含答案)

北师大版七年级下册第二章-平行线与相交线同步练习题(含答案)

第二章 平行线与相交线同步练习题2.1两条直线的位置关系一、选择题(共18小题) 1 .下列说法正确的是( )A .两条不相交的线段叫平行线B .过一点有且只有一条直线与已知直线平行 C. 线段与直线不平行就相交D. 与同一条直线相交的两条直线有可能平行2 .如果线段AB 与线段CD 没有交点,则( A .线段AB 与线段CD 一定平行 C .线段AB 与线段CD 可能平行3.如图,在方格纸上给出的线中,平行的有( )4.已知Z1 + Z 2=90° Z3+)B .线段AB 与线段CD 一定不平行 D .以上说法都不正确0=180 °下列说法正确的是()A. Z1是余角C. Z1是的余角 D . Z3和也都是补角5. 下列说法错误的是()题(含答案)6. 下列说法正确的是()A.两个互补的角中必有一个是钝角B . 一个锐角的余角一定小于这个角的补角C. 一个角的补角一定比这个角大D. 一个角的余角一定比这个角小7. 如果Z aZ =90°,而/与/互余,那么/o与/Y勺关系为()A.互余 B .互补C.相等9.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B .有公共顶点并且相等的两个角是对顶角C.如果两个角不相等,那么这两个角不是对顶角D .以上说法都不对A •两个互余的角相加等于90°C.互为补角的两个角不可能都是钝角B .钝角的平分线把钝角分为两个锐角D .两个锐角的和必定是直角或钝角D .不能确定A. 60 ° B . 45 C. 30° D . 90°8—个角的余角是它的补角的11.(2007?济南)已知:如图,AB J CD ,垂足为O,EF 为过点O 的一条直线,则J 与的关系一定成立的是 ( )12. (2003?杭州)如图所示立方体中,过棱 BB 1和平面CD 1垂直的平面有(C . 3个15. 如图,已知 0A J m , OB J m ,所以OA 与OB 重合,其理由是□EmC .互补D .互为对顶角ZPQR 等于 138° SQ J QR , QTZPQ .贝U zSQT 等于(B . 64 °C . 48°D . 24°14. (2005?哈尔滨)过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为 40°则此钝角为( 140° B . 160° C . 120° D . 110°A •相等A . 1个B •过一点只能作一条垂线C. 经过一点只有一条直线垂直于已知直线D. 垂线段最短16. 如图,ZBAC=90 ° AD ZBC,则下列的结论中正确的个数是()①点B到AC的垂线段是线段AB ;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.C. 3个17. 如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,A.垂线最短B .过一点确定一条直线与已知直线垂盲C. 垂线段最短D. 以上说法都不对18 .已知线段AB=10cm,点A , B至煩线I的距离分别为6cm, 4cm .符合条件的直线I有()C. 3条、填空题(共12小题)19.已知Z1=43°7',则Z1的余角是_____________ ,补角是20.若一个角的余角是30°则这个角的补角为_________________21•两个角互余或互补,与它们的位置 ________________ (填有”或无”)关.22. 一个角的补角是它的余角的4倍,则这个角等于_______________ 度.23•若/o和/匝为余角,并且/a匕/大20° /和/互为补角,贝y Z = _______________________ , Z= _____________ ,那么,/ 丫 / = ______________ .24.如图,已知ZCOE= ZBOD= zAOC=90 °则图中与ZBOC相等的角为_________________ ,与ZBOC互补的角为—___________ ,与ZBOC互余的角为______________ .O,左OC=6O ° OA平分zEOC,那么ZBOD的度数是26. (2006?宁波)如图,直线azb, Z=50° 则/2= _ _ 度.27.如图,点 A ,B ,C 在一条直线上,已知 21=53° Z2=37°贝U CD 与CE 的位置关系是 ____________________28 .老师在黑板上随便画了两条直线 AB , CD 相交于点0,还作/BOC 的平分线0E 和CD 的垂线OF (如图),量得zDOE 被一直线分成2: 3两部分,小颖同学马上就知道 2AOF 等于 __ .30. 如图,已知 BA zBD , CB 2CD , AD=8 , BC=6,则线段 BD长的取值范围是29 .如图,2ADB=90 ° 贝^ AD ____________ B D ;用 匕”连接AB , AC , AD ,结果是三、解答题(共9小题)31. 已知一个角的补角加上 10。

北师大版七年级下册数学第二章 相交线与平行线含答案

北师大版七年级下册数学第二章 相交线与平行线含答案

北师大版七年级下册数学第二章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是( )A.80 °B.70 °C.60 °D.50 °2、如图,下列能判定的条件的个数是()①②③④A.1个B.2个C.3个D.4个3、如图,将长方形ABCD沿线段OG折叠到OB'C'G的位置,∠OGC'等于100°,则∠DGC'的度数为()A.20°B.30°C.40°D.50°4、如图已知∠1=∠2,∠3=80°,∠4=()A.80°B.70°C.60°D.50°5、下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等6、如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论:①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A.①②③④B.①②C.①③④D.①②④7、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐( )A.40°B.50°C.130°D.150°8、如图,直线a,b被直线c所截,a∥b,若∠2=45°,则∠1等于()A.125°B.130°C.135°D.145°9、如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4B.∠1=∠5C.∠1+∠4=180°D.∠3=∠510、如图所示,点在的延长线上,下列条件中能判断的是()A. B. C. D.11、如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=40°,则∠2=()A.40°B.50°C.60°D.70°12、如图,直线l1, l2,被l3所截得的同旁内角为α,β,要使l1∥l2,只要使()A.α+β=90°B.α=βC. =36°D.α+β=360°13、如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A.150°B.130°C.100°D.50°14、如图,给出下列条件:其中,能推出AB∥DC的是()A.①④B.②③C.①③D.①③④15、如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二、填空题(共10题,共计30分)16、请将下列证明过程补充完整:已知:如图,AD是△ABC的角平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠BEF+∠ADC=180°.求证:∠AFG=∠G.证明:∵∠BEF+∠ADC=180°(已知),又∵________(平角的定义),∴∠GED=∠ADC(________),∴AD∥GE(________),∴∠AFG=∠BAD(________),且∠G=∠CAD(________),∵AD是△ABC的角平分线(已知),∴∠BAD=∠CAD(角平分线的定义),∴∠AFG=∠G.17、如图,AB∥CD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于________度.18、如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=________19、在下面的解题过程的横线上填空,并在括号内注明理由.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知)∴AC∥DF(________)∴∠D=∠________ (________)又∵∠C=∠D(已知)∴∠1=∠C(等量代换)∴BD∥CE(________)20、图中刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片(如图)时形成∠1、∠2,则∠1+∠2=________度.21、如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3=________.22、如图,把一块含45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是________.23、已知的余角是,则为________°.24、如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是________.通过作图可以发现,过直线l外一点,能且只能画出一条平行线,于是得到平行线的一条基本性质________.25、,直线分别交、于点、,平分,,那么________°.三、解答题(共5题,共计25分)26、一个角的补角比它的余角的2倍还多45°,求这个角的度数.27、如图,∠EBC+∠EFA=180°,∠A=∠C。

北师大版七年级数学下《相交线与平行线》附答案

北师大版七年级数学下《相交线与平行线》附答案

北师大版七年级数学下册第二章——余角、补角、邻补角和相交线一.选择题(共9小题)1.(2012•孝感)已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ的值等于()A.45°B.60°C.90°D.180°2.(2012•北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°3.(2011•柳州)如图,在所标识的角中,互为对顶角的两个角是()A.∠2和∠3 B.∠1和∠3 C.∠1和∠4 D.∠1和∠24.(2008•资阳)如图,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DAC C.∠ACF是α的余角D.α与∠ACF互补5.(2008•湘西州)如图,直线AB,CD相交于O点,若∠1=30°,则∠2,∠3的度数分别为()A.120°,60°B.130°,50°C.140°,40°D.150°,30°6.(2008•西宁)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个7.(2007•襄阳)如图,直线AB、CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD的度数是()A.40°B.45°C.30°D.35°8.(2007•济南)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角9.(2006•西岗区)如图,直线AB,CD相交于点O,OM⊥AB,若∠COB=135°,则∠MOD等于()A.45°B.35°C.25°D.15°二.填空题(共16小题)10.(2012•泰州)已知∠α的补角是130°,则∠α=_________度.11.(2012•厦门)已知∠A=40°,则∠A的余角的度数是_________.12.(2011•梧州)如图,直线a、b相交,∠1=65°,则∠2的度数是_________°.13.(2011•芜湖)一个角的补角是36°5′,这个角是_________.14.(2011•江西)一块直角三角板放在两平行直线上,如图所示,∠1+∠2=_________度.15.(2010•娄底)如图,直线AB、CD相交于点O.OE平分∠AOD,若∠BOD=100°,则∠AOE=_________度.16.(2009•资阳)若两个互补的角的度数之比为1:2,则这两个角中较小角的度数是_________度.17.(2009•营口)如图,将直尺与三角尺叠放在一起,在图中标记的所有角中,与∠2互余的角是_________.18.(2008•十堰)如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC= _________度.19.(2006•海南)如图,△ABC中,∠ACB=90°,CD⊥AB于D,则图中所有与∠B互余的角_________.20.(2004•南平)如图,将两块三角板的直角顶点重合后重叠在一起,如果∠1=40°,那么∠2=_________度.21.(2002•岳阳)如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=76°,则∠BOD=_________.22.若∠1+∠2=90°,∠3+∠2=90°,∠1=40°,则∠3=_________°,依据是_________.23.已知∠1与∠2互补,∠1与∠3互余,若∠2=130°,则∠3=_________.24.一个角的余角比它的补角的多1°,则这个角的度数为_________度.25.已知∠1与∠2互补,∠1又与∠3互补,若∠2=150°,则∠3=_________.三.解答题(共5小题)26.如图,点A、O、E在同一直线上,∠AOB=40°,∠COD=28°,OD平分∠COE.(1)求∠COB的度数(2)求∠AOD的度数.27.如图所示,直线AB、CD相交O,OE⊥AB于O,且∠DOE=3∠COE,求∠AOD的度数.28.如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.29.一个角的余角比它的补角的还少20°,求这个角.30.如图,∠AOC和∠BOD都是直角,如果∠AOB=150°,求∠COD的度数.参考答案与试题解析一.选择题(共9小题)1.(2012•孝感)已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ的值等于()A.45°B.60°C.90°D.180°考点:余角和补角.专题:计算题.分析:根据互余两角之和为90°,互补两角之和为180°,结合题意即可得出答案.解答:解:由题意得,∠α+∠β=180°,∠α+∠γ=90°,两式相减可得:∠β﹣∠γ=90°.故选C.点评:此题考查了余角和补角的知识,属于基础题,掌握互余两角之和为90°,互补两角之和为180°,是解答本题的关键.2.(2012•北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°考点:对顶角、邻补角;角平分线的定义.专题:常规题型.分析:根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.解答:解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选C.点评:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.3.(2011•柳州)如图,在所标识的角中,互为对顶角的两个角是()A.∠2和∠3 B.∠1和∠3 C.∠1和∠4 D.∠1和∠2考点:对顶角、邻补角.分析:两条直线相交后,所得的只有一个公共顶点,且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角.解答:解:根据同位角、同旁内角、邻补角、对顶角的定义进行判断,A、∠2和∠3是对顶角,正确;B、∠1和∠3是同旁内角,错误;C、∠1和∠4是同位角,错误;D、∠1和∠2的邻补角是内错角,错误.故选A.点评:解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.(2008•资阳)如图,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DAC C.∠ACF是α的余角D.α与∠ACF互补考点:垂线;对顶角、邻补角.分析:根据余角、补角、邻补角的定义来判断.解答:解:∵∠α+∠DAC=90°,∴选项A错误;α的邻补角为∠DAE,∴选项B错误;由同角的余角相等知∠α=∠ACD,而∠ACF+∠ACD=180°,∴∠ACF是α的补角,不是余角.∴选项C错误,选项D正确.故选D.点评:主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180°.解此题的关键是把握余角、补角、邻补角的定义,同时应注意认真审图,准确找出两个角之间的数量关系,从而判断出两角之间的关系.5.(2008•湘西州)如图,直线AB,CD相交于O点,若∠1=30°,则∠2,∠3的度数分别为()A.120°,60°B.130°,50°C.140°,40°D.150°,30°考点:对顶角、邻补角.专题:计算题.分析:首先判断所求角与∠1的关系,然后利用对顶角、邻补角的性质求解.解答:解:∵∠1与∠3是对顶角,∴∠3=∠1=30°,∵∠1与∠2是邻补角,即∠1+∠2=180°,∴∠2=180°﹣30°=150°.故选D.点评:熟练掌握邻补角及对顶角的性质.6.(2008•西宁)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个考点:余角和补角.分析:根据角的性质,互补两角之和为180°,互余两角之和为90,可将,①②③④中的式子化为含有∠α+∠β的式子,再将∠α+∠β=180°代入即可解出此题.解答:解:∵∠α和∠β互补,∴∠α+∠β=180度.因为90°﹣∠β+∠β=90°,所以①正确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正确;(∠α+∠β)+∠β=×180°+∠β=90°+∠β≠90°,所以③错误;(∠α﹣∠β)+∠β=(∠α+∠β)=×180°﹣90°=90°,所以④正确.综上可知,①②④均正确.故选B.点评:本题考查了角之间互补与互余的关系,互补两角之和为180°,互余两角之和为90度.7.(2007•襄阳)如图,直线AB、CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD的度数是()A.40°B.45°C.30°D.35°考点:垂线;对顶角、邻补角.专题:计算题.分析:由已知OE⊥AB,∠COE=55°,利用互余关系求∠AOC,再利用对顶角相等求∠BOD的度数.解答:解:∵OE⊥AB,∠COE=55°,∴∠AOC=90°﹣∠COE=35°;∵∠BOD与∠AOC是对顶角,∴∠BOD=∠AOC=35°.故选D.点评:此题主要考查了余角和对顶角的关系.8.(2007•济南)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角考点:垂线;余角和补角;对顶角、邻补角.分析:根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.解答:解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选B.点评:本题考查了余角和垂线的定义以及对顶角相等的性质.9.(2006•西岗区)如图,直线AB,CD相交于点O,OM⊥AB,若∠COB=135°,则∠MOD等于()A.45°B.35°C.25°D.15°考点:垂线;对顶角、邻补角.分析:已知∠COB与∠BOD是邻补角,且∠COB=135°,可求∠BOD,再利用互余关系求∠MOD.解答:解:∵∠COB与∠BOD是邻补角,∠COB=135°,∴∠BOD=180°﹣∠COB=180﹣135°=45°.又∵OM⊥AB,∴∠MOD=90°﹣∠BOD=45°.故选A.点评:本题先根据平角的定义求出∠BOD的度数,再根据余角的定义求出∠MOD的度数.二.填空题(共16小题)10.(2012•泰州)已知∠α的补角是130°,则∠α=50度.考点:余角和补角.分析:根据补角的和等于180°列式计算即可得解.解答:解:∵∠α的补角是130°,∴∠α=180°﹣130°=50°.故答案为:50.点评:本题考查了余角与补角的定义,熟记补角的和等于180°是解题的关键.11.(2012•厦门)已知∠A=40°,则∠A的余角的度数是50°.考点:余角和补角.分析:设∠A的余角是∠B,则∠A+∠B=90°,再根据∠A=40°求出∠B的度数即可.解答:解:设∠A的余角是∠B,则∠A+∠B=90°,∵∠A=40°,∴∠B=90°﹣40°=50°.故答案为:50°.点评:本题考查的是余角的定义,即如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.12.(2011•梧州)如图,直线a、b相交,∠1=65°,则∠2的度数是65°.考点:对顶角、邻补角.分析:根据对顶角相等解答即可.解答:解:∵∠1=65°,∴∠2=∠1=65°.故答案为:65.点评:本题主要考查了对顶角相等的性质,熟记性质并认准对顶角是解题的关键,是基础题,比较简单.13.(2011•芜湖)一个角的补角是36°5′,这个角是143°55′.考点:余角和补角;度分秒的换算.专题:计算题.分析:根据补角的定义,用180°减36°5′即可得到该角.解答:解:180°﹣36°5′=143°55′.故答案为:143°55′.点评:此题考查了补角的定义,属于基础题,较简单,主要记住互为补角的两个角的和为180度.14.(2011•江西)一块直角三角板放在两平行直线上,如图所示,∠1+∠2=90度.考点:对顶角、邻补角;余角和补角.专题:计算题.分析:根据对顶角相等得到∠1=∠3,∠2=∠4,而三角形尺为直尺,即可得到∠1+∠2=90°.解答:解:如图,∵∠1=∠3,∠2=∠4,而∠3+∠4=90°,∴∠1+∠2=90°.故答案为:90.点评:本题考查了对顶角的性质:对顶角相等.15.(2010•娄底)如图,直线AB、CD相交于点O.OE平分∠AOD,若∠BOD=100°,则∠AOE=40度.考点:对顶角、邻补角;角平分线的定义.专题:计算题.分析:首先利用邻补角互补求出∠AOD,再利用角平分线的定义计算.解答:解:∵∠AOD与∠BOD互为邻补角,∠BOD=100°,∴∠AOD=180°﹣∠BOD=80°,又OE平分∠AOD,∴∠AOE=40°.点评:本题考查了利用邻补角和角平分线的定义,在相交线中角的度数的求解方法.16.(2009•资阳)若两个互补的角的度数之比为1:2,则这两个角中较小角的度数是60度.考点:余角和补角.专题:计算题.分析:根据补角定义列方程解答.解答:解:设这两个角的度数为x°、2x°.列方程得:x°+2x°=180°,解得x=60°.即较小的角的度数是60°.点评:此题比较容易,考查了互补的概念,是送分题.17.(2009•营口)如图,将直尺与三角尺叠放在一起,在图中标记的所有角中,与∠2互余的角是∠4,∠5,∠6.考点:余角和补角.分析:本题要注意到∠2与∠4互余,并且直尺的两边互相平行,可以考虑平行线的性质.解答:解:与∠2互余的角有∠4,∠5,∠6;一共3个.点评:正确观察图形,由图形联想到学过的定理是数学学习的一个基本要求.18.(2008•十堰)如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC= 48度.考点:垂线;对顶角、邻补角.专题:计算题.分析:由OE⊥AB,∠EOD=42°,利用互余关系求∠BOD,再利用对顶角相等求∠AOC.解答:解:∵OE⊥AB,∠EOD=42°,∴∠BOD=90°﹣∠EOD90°﹣42°=48°,∵∠BOD与∠AOC是对顶角,∴∠BOD=∠AOC=48°.点评:利用垂直的定义及对顶角相等求解.19.(2006•海南)如图,△ABC中,∠ACB=90°,CD⊥AB于D,则图中所有与∠B互余的角∠A与∠2.考点:余角和补角.分析:利用“直角三角形两锐角之和为90°”的性质来解题.解答:解:∵∠ACB=90°,∴∠A+∠B=90°;又∵CD⊥AB于D,∴∠2+∠B=90°.根据互余定义,与∠B互余的角为∠A、∠2.点评:根据互余定义,找出与∠B和为90°的角即可.其间,要利用直角三角形的性质.20.(2004•南平)如图,将两块三角板的直角顶点重合后重叠在一起,如果∠1=40°,那么∠2=40度.考点:余角和补角.专题:计算题.分析:由于∠1与∠2都与∠AOB互余,根据余角的性质可知∠2=∠1,从而得出∠2的度数.解答:解:∵∠1+∠AOB=90°,∠2+∠AOB=90°,∴∠1=∠2.∵∠1=40°,∴∠2=40°.故答案为40.点评:本题主要考查了余角的性质:同角或等角的余角相等.21.(2002•岳阳)如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=76°,则∠BOD=38°.考点:对顶角、邻补角;角平分线的定义.专题:计算题.分析:根据角平分线的定义可判断∠AOC=∠EOC=×76°=38°,根据对顶角的定义可知∠BOD=∠AOC=38°.解答:解:∵OA平分∠EOC,∴∠AOC=∠EOC=×76°=38°,∴∠BOD=∠AOC=38°.故答案为38°.点评:本题考查了对顶角、角平分线的定义,知道角平分线平分一个角、对顶角相等即可解答.22.若∠1+∠2=90°,∠3+∠2=90°,∠1=40°,则∠3=40°,依据是同角的余角相等.考点:余角和补角.分析:若∠1+∠2=90°,∠3+∠2=90°,根据余角的性质可知,∠1=∠3,由∠1的度数可以求出∠3的度数.解答:解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3(同角的余角相等),∵∠1=40°,∴∠3=40°.故答案是40°,同角的余角相等.点评:本题重点考查了余角的性质,即同角的余角相等,等角的余角也相等.23.已知∠1与∠2互补,∠1与∠3互余,若∠2=130°,则∠3=40°.考点:余角和补角.分析:根据∠2=150°,∠1与∠2互补可先求出∠1.再根据∠1又与∠3互补求出∠3的度数.解答:解:∵∠2=130°,∠1与∠2互补,∴∠1=180°﹣∠2=50°,又∵∠1又与∠3互余,∴∠3=90°﹣∠1=40°.点评:此题属于基础题,较简单,互补即两角的和为180°,互余即两角的和为90°,先求出∠1是解题的关键.24.一个角的余角比它的补角的多1°,则这个角的度数为63度.考点:余角和补角.专题:计算题.分析:根据余角、补角的定义计算.解答:解:设这个角为x°,则它的余角为(90﹣x)°,补角为(180﹣x)°.根据题意有:(90﹣x)=(180﹣x)+1解得x=63,故这个角的度数为63度.点评:此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.25.已知∠1与∠2互补,∠1又与∠3互补,若∠2=150°,则∠3=150°.考点:余角和补角.专题:计算题.分析:互补即两角的和为180°,根据∠2=150°,∠1与∠2互补可先求出∠1.再根据∠1又与∠3互补求出∠3的度数.解答:解:∵∠2=150°,∠1与∠2互补,∴∠1=180°﹣∠2=30°,又∵∠1又与∠3互补,∴∠3=180°﹣∠1=150°.故答案为150°.点评:此题属于基础题,较简单,先求出∠1是解题的关键.三.解答题(共5小题)26.如图,点A、O、E在同一直线上,∠AOB=40°,∠COD=28°,OD平分∠COE.(1)求∠COB的度数(2)求∠AOD的度数.考点:角平分线的定义;余角和补角.专题:探究型.分析:(1)先根据OD平分∠COE得出∠DOE=∠COD,再由∠COD=28°可得出∠DOE=28°,再根据平角的性质即可得出∠COB的度数;(2)根据∠AOD=180°﹣∠DOE即可得出答案.解答:解:(1)∵OD平分∠COE,∴∠DOE=∠COD,∵∠COD=28°,∴∠DOE=28°,∵∠AOB+∠BOC+∠COD+∠DOE=180°,∴∠BOC=180°﹣(∠AOB+∠COD+∠DOOE),=180°﹣(40°+28°+28°),=84°;(2)∠AOD=180°﹣∠DOE,=180°﹣28°,=152°.点评:本题考查的是角平分线的定义及补角的性质,解答此题的关键是熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.27.如图所示,直线AB、CD相交O,OE⊥AB于O,且∠DOE=3∠COE,求∠AOD的度数.考点:角的计算;余角和补角;垂线.专题:计算题.分析:先根据∠DOE=3∠COE,和平角等于180°,可求出∠DOE,又OE⊥AB,故可得出∠DOB,再根据平角关系,即可得出∠AOD的度数.解答:解:∵∠DOE=3∠COE,∠DOE+∠COE=180°,∴∠DOE=135°,∵OE⊥AB,∴∠BOD=45°,∵∠AOB=180°,∴∠AOD=∠AOB﹣∠BOD=135°.点评:此题主要考查角的计算,注意垂直和平角的灵活运用.28.如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.考点:余角和补角;角平分线的定义.专题:计算题.分析:解此类题目关键在于:结合图形,根据余角、补角的定义,有时还需考虑角平分线的性质,分析并找到角与角之间的关系,再进行计算得出答案.解答:解:设∠AOB=x°,因为∠AOC与∠AOB互补,则∠AOC=180﹣x°.由题意,得.∴180﹣x﹣x=80,∴﹣2x=﹣100,解得x=50故∠AOB=50°,∠AOC=130°.点评:此题结合图形考查余角、补角的定义;涉及了角平分线的性质,及角的运算.在图形中,找补角、余角关系时,除了借助图形外,还需考虑等量关系即有没有相等的角.29.一个角的余角比它的补角的还少20°,求这个角.考点:余角和补角.专题:计算题.分析:首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.解答:解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x=(180°﹣x)﹣20°,解得x=75°.故答案为75°.点评:此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.30.如图,∠AOC和∠BOD都是直角,如果∠AOB=150°,求∠COD的度数.考点:余角和补角.专题:计算题.分析:由于∠AOC和∠BOD都是直角,如果∠AOB=150°,可求出∠AOD=60°,进而可以求出∠COD=30°.解答:解:∵∠BOD是直角,∴∠BOD=90°,∵∠AOB=150°,∴∠AOD=60°,又∵∠AOC是直角,∴∠AOC=90°,∴∠COD=30°.故答案为30°.点评:本题主要考查角余角和补角的知识点,比较简单.。

(新课标)湘教版七年级数学下册《相交线与平行线》同步练习题及答案解析

(新课标)湘教版七年级数学下册《相交线与平行线》同步练习题及答案解析

新课标 2017-2018学年湘教版七年级数学下册4.1.1相交与平行核心笔记:1.如果两条直线有两个公共点,那么它们一定重合.如果两条直线有且只有一个公共点,那么称这两条直线相交,也称它们是相交直线.这个公共点叫做它们的交点.2.平行线:在同一平面内,没有公共点的两条直线叫做平行线.直线a 与直线b互相平行,记做“a∥b”.3.同一平面内的两条直线有三种位置关系:平行、相交和重合.4.平行基本事实:过直线外一点有且只有一条直线与这条直线平行.5.平行于同一条直线的两条直线平行,即:设a,b,c是三条直线,如果a ∥b,c∥b,那么a∥c.基础训练1.在同一平面内,两条直线的位置关系有( )A.平行B.相交C.平行、相交和重合D.重合2.下列说法中正确的是( )A.两直线不相交则平行B.两直线不平行则相交C.如果两直线平行,那么它们就不相交D.如果两直线不相交,那么它们就平行3.如果a∥b,b∥c,那么a∥c,这个推理的依据是( )A.等量代换B.平行线的定义C.经过直线外一点,有且只有一条直线与已知直线平行D.平行于同一直线的两直线平行4.已知直线AB外一点P,过P点画直线CD,使CD∥AB,借助三角尺来画,有如下操作:①沿三角尺的斜边画直线CD;②将三角尺的斜边靠紧直线AB;③将直尺EF靠紧三角尺的一条直角边;④固定直尺EF,并沿EF方向移动三角尺,使斜边经过点P.正确的操作顺序是( )A.①②③④B.②③④①C.②④③①D.④③②①5.在同一平面内,若两条直线相交,则有_______个公共点;若两条直线平行,则有_______个公共点.6.公园里准备修五条直的走廊,并且在走廊的交叉路口处设一个报亭,这样的报亭最多要设_______个.7.如图是一个长方体.(1)图中和AB 平行的线段有哪些?(2)图中和AB 相交的线段有哪些?培优提升1.下列语句中,正确的是( )A.不相交的直线叫平行线B.不重合的两条直线的位置关系只有平行、相交两种C.若a ∥b,b ∥c,则a ∥cD.若线段AB 和线段CD 不相交,则直线AB 与直线CD 平行2.在同一平面内,三条直线两两相交,则交点个数为( )A.1个B.2个C.3个D.1个或3个3.在同一平面内,直线l 1,l 2相交,l 3∥l 2,则直线l 1,l 2,l 3的交点个数为( )A.1个B.2个C.3个D.1个或2个4.l 1,l 2,l 3为同一平面内互不重合的三条直线,若l 1与l 2不平行,l 2与l 3不平行,则下列判断正确的是( )A.l 1与l 3一定不平行B.l 1与l 3一定平行C.l 1与l 3可能既不平行也不相交D.l 1与l 3可能相交,也可能平行5.在同一平面内,直线a 与b 满足下列条件:若a 与b 没有公共点,则a 与b_______;若a 与b 有且仅有一个公共点,则a 与b_______;若a 与b 有两个公共点,则a 与b_______.6.在同一平面内,与已知直线l 平行的直线有_______条,过直线l 外一点M 与已知直线l 平行的直线有_______条.7.如图,过BC 上一点P 画AB 的平行线交AC 于点T,过点C 画MN ∥AB.那么直线PT,MN 有何位置关系?8.如图所示,在书写艺术字时,常常运用画“平行线段”这种基本作图方法,此图是在书写字母“M ”.(1)请从正面,上面两个不同方向上各找出一组平行线段,并用字母表示出来;(2)AA',QR 有何位置关系,AE,D'I 有何位置关系?说明理由.参考答案【基础训练】1.【答案】C解:在同一平面内,两条直线的位置关系有三种:平行、相交和重合.2.【答案】C3.【答案】D4.【答案】B5.【答案】1;06.【答案】10解:5条直线最多有1+2+3+4=10(个)交点.7.解:(1)AB ∥A 1B 1,AB ∥C 1D 1,AB ∥CD,即和AB 平行的线段有A 1B 1、C 1D 1、CD.(2)和AB 相交的线段有AA 1,AD,BB 1,BC.【培优提升】1.【答案】C2.【答案】D解:分两种情况,如图.3.【答案】B解:l 3∥l 2,l 1,l 2相交,则l 1,l 3也相交,故有2个交点.4.【答案】D5.【答案】平行;相交;重合6.【答案】无数;一解:在同一平面内,已知一直线l,则可以画无数条直线与直线l 平行,位置不定;而若固定了直线l 外的一点,则过此点只能画一条直线与直线l 平行.7.解:如图所示.直线PT 与MN 平行.8.解:(1)正面:AE 与JF;上面:AA'与BB'.(答案不唯一)(2)AA'与QR 平行,AE 与D'I 平行.AA'与QR 都与BB'平行,所以AA'与QR 平行;AE 与D'I 都与DH 平行,所以AE 与D'I 平行.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档