材料成型与加工技术
制造工艺中的材料加工与成型技术

制造工艺中的材料加工与成型技术制造工艺是指将原材料通过一系列的加工与成型技术,转化为最终产品的过程。
材料加工与成型技术在制造工艺中起着至关重要的作用。
本文将介绍几种常见的材料加工与成型技术,并探讨其在制造工艺中的应用。
一、铸造技术铸造技术是指将熔融的金属或合金倒入铸模中,经过冷却凝固形成所需形状的方法。
铸造技术可以分为砂型铸造、金属型铸造、压力铸造等多种形式。
其中,砂型铸造是应用最广泛的一种铸造技术,通过将熔融金属倒入砂型中,经过凝固形成所需的铸件。
铸造技术在汽车、航空、建筑等领域有着广泛的应用,能够生产出形状复杂的零件。
二、锻造技术锻造技术是利用加热后的金属或合金材料,在模具中进行加压变形,使其形成所需形状的制造工艺。
锻造技术可以分为冷锻和热锻两种形式。
冷锻适用于加工高强度的合金材料,而热锻适用于加工较大变形量和较大尺寸的零件。
锻造技术能够提高材料的密度和机械性能,广泛应用于航空、军工等领域。
三、剪切技术剪切技术是指利用剪切力将材料分割或切削的工艺。
常见的剪切技术有剪切、冲剪、切割等。
剪切技术适用于金属、塑料、纸张等材料的切割,广泛应用于制造业中的金属加工、纸张加工等领域。
四、焊接技术焊接技术是将两个或多个材料通过加热或施加压力使其熔合在一起的工艺。
焊接技术可以分为压力焊接、熔化焊接和固相焊接等多种形式。
焊接技术在汽车、船舶、管道等领域有着广泛的应用,能够将多个零件连接成整体,提高结构的强度和稳定性。
五、加工技术加工技术是指通过机械力和热力对材料进行切削、磨削和加工变形等工艺。
常见的加工技术有车削、铣削、铣床和钻孔等。
加工技术适用于金属、塑料、木材等材料的加工加工,能够制造出各种精密零件和工艺品。
六、涂装技术涂装技术是指将涂料或涂层施加在材料表面,起到美化、防腐、防磨等功能的一种工艺。
涂装技术可以分为喷涂、粉末涂装和电泳涂装等多种形式。
涂装技术在汽车、家电、建筑等领域有着广泛的应用,能够提高产品的质感和外观。
材料成型加工技术

材料成型加工技术
材料成型加工技术是指将原材料通过加工方式,使其成为具有特定形
状和尺寸的产品的技术。
这种技术在现代工业生产中起着至关重要的
作用,因为它可以大大提高生产效率和产品质量。
下面将介绍几种常
见的材料成型加工技术。
注塑成型技术是一种将熔化的塑料注入模具中,通过冷却和固化形成
所需形状的技术。
这种技术广泛应用于制造各种塑料制品,如塑料杯子、塑料盒子、塑料玩具等。
注塑成型技术具有生产效率高、成本低、产品质量稳定等优点。
挤出成型技术是一种将熔化的塑料通过挤压机挤出成型的技术。
这种
技术广泛应用于制造各种塑料管、塑料板、塑料薄膜等。
挤出成型技
术具有生产效率高、成本低、产品质量稳定等优点。
压铸成型技术是一种将熔化的金属注入模具中,通过冷却和固化形成
所需形状的技术。
这种技术广泛应用于制造各种金属制品,如汽车零
部件、电子产品外壳等。
压铸成型技术具有生产效率高、成本低、产
品质量稳定等优点。
锻造成型技术是一种将金属材料加热至一定温度后,通过锤击或压力
使其变形成所需形状的技术。
这种技术广泛应用于制造各种金属制品,如汽车零部件、机械零件等。
锻造成型技术具有产品密度高、强度高、耐磨性好等优点。
总之,材料成型加工技术在现代工业生产中起着至关重要的作用。
不
同的成型加工技术适用于不同的材料和产品,选择合适的成型加工技
术可以大大提高生产效率和产品质量。
机械工程中的材料加工与成型技术

机械工程中的材料加工与成型技术机械工程是一门研究机械设备设计、制造和运行的学科,而材料加工与成型技术则是机械工程中至关重要的一部分。
材料加工与成型技术涉及到将原材料转化为最终产品的过程,它对于产品质量、成本和效率都有着重要的影响。
在机械工程中,材料加工是指通过各种加工方法将原材料进行形状、尺寸和性能上的改变。
常见的材料加工方法包括切削、锻造、焊接、铸造、冲压等。
切削是最常见的加工方法之一,它通过将切削工具与工件相对运动,将工件上的材料切削掉来实现加工目的。
切削方法适用于各种材料,如金属、塑料、木材等。
锻造是通过将金属材料加热至一定温度,然后施加压力使其发生塑性变形,从而得到所需形状的加工方法。
焊接是将两个或多个工件通过加热或施加压力使其相互连接的方法,常用于金属材料的加工。
铸造是将熔化的金属或其他材料倒入预先制作好的铸型中,待其冷却凝固后得到所需形状的加工方法。
冲压是通过将金属板材放置在冲压机上,利用冲压模具对其进行冲压、弯曲、拉伸等加工的方法。
与材料加工相对应的是材料成型技术,它是指通过将材料加工成所需形状的方法。
材料成型技术广泛应用于各个领域,如汽车制造、航空航天、电子设备等。
常见的材料成型技术包括挤压、拉伸、压铸、注塑等。
挤压是将金属材料加热至一定温度,然后通过挤压机将其挤压成所需截面形状的加工方法。
拉伸是将金属材料加热至一定温度,然后通过拉伸机将其拉伸成所需形状的加工方法。
压铸是将熔化的金属注入铸型中,然后施加压力使其充填整个铸型并冷却凝固的加工方法。
注塑是将熔化的塑料注入模具中,然后冷却凝固得到所需形状的加工方法。
在机械工程中,材料加工与成型技术的选择对产品的性能和质量有着重要的影响。
不同的加工方法和成型技术适用于不同的材料和产品,需要根据具体情况进行选择。
同时,材料加工与成型技术的发展也在不断推动着机械工程的进步。
随着科技的发展,新的材料和加工技术不断涌现,为机械工程师提供了更多的选择和可能性。
材料加工中的成型技术及其应用

材料加工中的成型技术及其应用材料加工是一门非常重要的工程学科,它涵盖了广泛的技术和方法,其中成型技术是其中最为基础和重要的一部分。
成型技术指的是利用各种设备和机器对材料进行加工,使其成为特定形状和尺寸的过程。
它广泛应用于制造行业,包括航空、汽车、电子、医疗、建筑等多个领域。
本文将针对材料加工中的成型技术进行探讨,其内容主要分为以下几个方面:1. 成型技术的分类及其原理成型技术根据其原理分类,可分为几类:挤压成型、模压成型、注塑成型、吹塑成型、冲压成型、旋压成型等。
这些成型技术各自都有其独特的原理和特点,下面进行简单介绍:挤压成型:挤出机将加热后的塑料材料挤出成型,成型材料为线状或型材状。
模压成型:指的是将加热后的树脂加入开模器内,通过机械压力将其压制成为成形品的过程。
注塑成型:技术使用注塑机将熔化的塑料材料注入模具内,根据零件的形状来进行模具的制作。
吹塑成型:是将加热后的塑料材料放入吹塑机中,然后将其吹成零件的形状。
冲压成型:通过模具在冲床上施加高压,使平板材料挤压成各种形状的零件。
旋压成型:由一台旋压机使用高速旋转和压力的组合将板材制成凸轮形板件。
2. 成型技术的应用成型技术在现代制造业中应用广泛,下面将列举一些常见的成型技术应用:a.汽车工业汽车工业中的零部件需要批量生产,需要进行模压成型和冲压成型等技术,以保证生产的效率和品质。
b.电子行业电子行业中制造的零件大多为塑料材料,使用注塑成型和吹塑成型等技术生产更为常见。
c.航空工业航空工业的制造需要高精度和高质量的零件制造,其常用的成型技术有旋压成型和注塑成型等。
3. 成型技术未来的发展趋势随着制造业的快速发展,成型技术也在不断地改进和创新。
未来成型技术的发展趋势主要有以下几个方面:a.自动化生产随着自动化技术的不断发展,成型制造行业也将更加智能化和自动化,以提高生产效率和产品品质。
b.3D打印技术应用3D打印技术是一种全新的材料成型技术,能够满足高定制的需求,并且具有快速、低成本和灵活的优点。
金属材料的成型加工技术

金属材料的成型加工技术金属材料是人类使用最广泛的材料之一,在各种工业领域和日常生活中都有着重要的地位。
为了满足不同的使用需求,金属材料需要经过一系列的加工处理,其中最基本的是成型加工技术。
一、成型加工技术概述成型加工技术是指在一定的压力和温度条件下,使原材料发生塑性变形,通过模具的作用转化为所需形状的、成型加工过程。
它是金属加工技术中最基础、最广泛的一种加工方法。
成型加工技术分为压力成型和非压力成型两大类。
压力成型包括冷冲压、热冲压、挤压、锻压、旋压等,非压力成型包括铸造、粉末冶金、拉伸、深冲、铆接等。
二、冷冲压技术冷冲压是指在室温下将金属板料或金属带材通过压力作用使其变形,以达到成型目的的加工方法。
常用的冷冲压设备主要有冲床、剪板机、卷板机和折弯机等。
冷冲压常用于金属制品的生产,如汽车零部件、电子产品外壳、家用电器、工业机械等。
它具有成型精度高、高效率、成本低、材料利用率高等优点,但也有制造周期长、模具制备困难等缺点。
三、热冲压技术热冲压是指把金属材料加热到一定温度,再进行冲压加工的方法。
它的主要优点是能够提高材料的塑性,使其在变形过程中不容易出现裂纹和缺陷,成型精度高。
常用的热冲压设备有热冲压机和热挤压机。
热冲压技术主要应用于高精度金属制品的生产,如航空航天零部件、精密仪器、电子产品等。
但也存在能源消耗大、成本高等弊端。
四、挤压技术挤压是指将加热后的金属材料通过挤压机的模孔中,使其发生塑性变形,从而成型的加工方法。
挤压可分为直接挤压和间接挤压两种。
直接挤压是指将金属块材通过模孔,由一对锥形轮不停转动挤压,使其变形成型。
间接挤压是指将金属坯料放入模具中,利用一对挤压头挤压,使其变形并成型。
挤压技术主要用于大批量、高精度的金属制品的生产,如铝合金门窗、汽车铝合金零件、电力器材等。
五、锻压技术锻压是指将金属材料加热至一定温度后,在给定的压力下进行冲压成型的加工方法。
它以成型精度高、机械性能好、耐磨损等优点而被广泛使用。
材料成型与材料加工技术考试 选择题 61题

1题1. 下列哪种材料成型方法属于热加工?A. 注塑成型B. 挤压成型C. 粉末冶金D. 机械加工2. 在金属材料的热处理过程中,淬火的目的是什么?A. 提高硬度B. 降低硬度C. 提高韧性D. 降低韧性3. 下列哪种材料成型技术适用于生产复杂形状的零件?A. 锻造B. 铸造C. 切割D. 焊接4. 塑料注射成型过程中,模具的温度控制主要影响什么?A. 塑料的流动性B. 塑料的固化速度C. 塑料的颜色D. 塑料的密度5. 下列哪种金属加工方法可以获得高精度的表面粗糙度?A. 磨削B. 钻孔C. 铣削D. 锯切6. 在粉末冶金过程中,烧结的主要目的是什么?A. 增加粉末的流动性B. 提高粉末的密度C. 去除粉末中的杂质D. 增加粉末的硬度7. 下列哪种材料成型方法适用于大规模生产?A. 手工制作B. 3D打印C. 注塑成型D. 手工锻造8. 在金属材料的冷加工过程中,材料的硬度通常会如何变化?A. 增加B. 减少C. 不变D. 先增加后减少9. 下列哪种材料成型技术可以生产出具有内部空腔的零件?A. 锻造B. 铸造C. 切割D. 焊接10. 塑料挤出成型过程中,螺杆的主要作用是什么?A. 提供动力B. 混合材料C. 控制温度D. 增加压力11. 下列哪种金属加工方法可以用于加工硬质合金?A. 磨削B. 钻孔C. 铣削D. 锯切12. 在粉末冶金过程中,压制的主要目的是什么?A. 增加粉末的流动性B. 提高粉末的密度C. 去除粉末中的杂质D. 增加粉末的硬度13. 下列哪种材料成型方法适用于生产高强度零件?A. 手工制作B. 3D打印C. 注塑成型D. 锻造14. 在金属材料的退火过程中,材料的硬度通常会如何变化?A. 增加B. 减少C. 不变D. 先增加后减少15. 下列哪种材料成型技术可以生产出具有复杂内部结构的零件?A. 锻造B. 铸造C. 切割16. 塑料吹塑成型过程中,模具的主要作用是什么?A. 提供形状B. 混合材料C. 控制温度D. 增加压力17. 下列哪种金属加工方法可以用于加工高精度零件?A. 磨削B. 钻孔C. 铣削D. 锯切18. 在粉末冶金过程中,混合的主要目的是什么?A. 增加粉末的流动性B. 提高粉末的密度C. 去除粉末中的杂质D. 增加粉末的硬度19. 下列哪种材料成型方法适用于生产大型零件?A. 手工制作B. 3D打印C. 注塑成型D. 铸造20. 在金属材料的正火过程中,材料的硬度通常会如何变化?A. 增加B. 减少C. 不变D. 先增加后减少21. 下列哪种材料成型技术可以生产出具有高表面质量的零件?A. 锻造B. 铸造C. 切割D. 磨削22. 塑料热成型过程中,加热的主要目的是什么?A. 提供形状B. 混合材料C. 控制温度D. 增加压力23. 下列哪种金属加工方法可以用于加工薄壁零件?B. 钻孔C. 铣削D. 锯切24. 在粉末冶金过程中,筛分的主要目的是什么?A. 增加粉末的流动性B. 提高粉末的密度C. 去除粉末中的杂质D. 增加粉末的硬度25. 下列哪种材料成型方法适用于生产高精度零件?A. 手工制作B. 3D打印C. 注塑成型D. 磨削26. 在金属材料的回火过程中,材料的硬度通常会如何变化?A. 增加B. 减少C. 不变D. 先增加后减少27. 下列哪种材料成型技术可以生产出具有高强度和高韧性的零件?A. 锻造B. 铸造C. 切割D. 焊接28. 塑料真空成型过程中,真空的主要作用是什么?A. 提供形状B. 混合材料C. 控制温度D. 增加压力29. 下列哪种金属加工方法可以用于加工高硬度材料?A. 磨削B. 钻孔C. 铣削D. 锯切30. 在粉末冶金过程中,包装的主要目的是什么?A. 增加粉末的流动性B. 提高粉末的密度C. 去除粉末中的杂质D. 增加粉末的硬度31. 下列哪种材料成型方法适用于生产高耐磨零件?A. 手工制作B. 3D打印C. 注塑成型D. 硬质合金加工32. 在金属材料的时效处理过程中,材料的硬度通常会如何变化?A. 增加B. 减少C. 不变D. 先增加后减少33. 下列哪种材料成型技术可以生产出具有高耐腐蚀性的零件?A. 锻造B. 铸造C. 切割D. 不锈钢加工34. 塑料滚塑成型过程中,滚轮的主要作用是什么?A. 提供形状B. 混合材料C. 控制温度D. 增加压力35. 下列哪种金属加工方法可以用于加工高精度孔?A. 磨削B. 钻孔C. 铣削D. 锯切36. 在粉末冶金过程中,涂层的主要目的是什么?A. 增加粉末的流动性B. 提高粉末的密度C. 去除粉末中的杂质D. 增加粉末的硬度37. 下列哪种材料成型方法适用于生产高耐热零件?A. 手工制作B. 3D打印C. 注塑成型D. 高温合金加工38. 在金属材料的固溶处理过程中,材料的硬度通常会如何变化?A. 增加B. 减少C. 不变D. 先增加后减少39. 下列哪种材料成型技术可以生产出具有高导电性的零件?A. 锻造B. 铸造C. 切割D. 铜加工40. 塑料压延成型过程中,压延辊的主要作用是什么?A. 提供形状B. 混合材料C. 控制温度D. 增加压力41. 下列哪种金属加工方法可以用于加工高精度平面?A. 磨削B. 钻孔C. 铣削D. 锯切42. 在粉末冶金过程中,干燥的主要目的是什么?A. 增加粉末的流动性B. 提高粉末的密度C. 去除粉末中的杂质D. 增加粉末的硬度43. 下列哪种材料成型方法适用于生产高耐冲击零件?A. 手工制作B. 3D打印C. 注塑成型D. 高强度钢加工44. 在金属材料的表面处理过程中,电镀的主要目的是什么?A. 增加硬度B. 提高耐腐蚀性C. 增加韧性D. 降低硬度45. 下列哪种材料成型技术可以生产出具有高耐磨性的零件?A. 锻造B. 铸造C. 切割D. 硬质合金加工46. 塑料模压成型过程中,模具的主要作用是什么?A. 提供形状B. 混合材料C. 控制温度D. 增加压力47. 下列哪种金属加工方法可以用于加工高精度曲面?A. 磨削B. 钻孔C. 铣削D. 锯切48. 在粉末冶金过程中,冷却的主要目的是什么?A. 增加粉末的流动性B. 提高粉末的密度C. 去除粉末中的杂质D. 增加粉末的硬度49. 下列哪种材料成型方法适用于生产高耐腐蚀零件?A. 手工制作B. 3D打印C. 注塑成型D. 不锈钢加工50. 在金属材料的表面处理过程中,喷涂的主要目的是什么?A. 增加硬度B. 提高耐腐蚀性C. 增加韧性D. 降低硬度51. 下列哪种材料成型技术可以生产出具有高耐热性的零件?A. 锻造B. 铸造C. 切割D. 高温合金加工52. 塑料热压成型过程中,加热的主要作用是什么?A. 提供形状B. 混合材料C. 控制温度D. 增加压力53. 下列哪种金属加工方法可以用于加工高精度轴?A. 磨削B. 钻孔C. 铣削D. 锯切54. 在粉末冶金过程中,混合的主要目的是什么?A. 增加粉末的流动性B. 提高粉末的密度C. 去除粉末中的杂质D. 增加粉末的硬度55. 下列哪种材料成型方法适用于生产高耐冲击零件?A. 手工制作B. 3D打印C. 注塑成型D. 高强度钢加工56. 在金属材料的表面处理过程中,阳极氧化的主要目的是什么?A. 增加硬度B. 提高耐腐蚀性C. 增加韧性D. 降低硬度57. 下列哪种材料成型技术可以生产出具有高耐磨性的零件?A. 锻造B. 铸造C. 切割D. 硬质合金加工58. 塑料注塑成型过程中,注射的主要作用是什么?A. 提供形状B. 混合材料C. 控制温度D. 增加压力59. 下列哪种金属加工方法可以用于加工高精度孔?A. 磨削B. 钻孔C. 铣削D. 锯切60. 在粉末冶金过程中,筛分的主要目的是什么?A. 增加粉末的流动性B. 提高粉末的密度C. 去除粉末中的杂质D. 增加粉末的硬度61. 下列哪种材料成型方法适用于生产高耐腐蚀零件?A. 手工制作B. 3D打印C. 注塑成型D. 不锈钢加工答案1. B2. A3. B4. B5. A6. B7. C8. A9. B10. B11. A12. B13. D14. B15. D16. A17. A18. C19. D20. A21. D22. D23. C24. C25. D26. B27. D28. A29. A30. C31. D32. A33. D34. A35. B36. C37. D38. B39. D40. A41. A42. C43. D44. B45. D46. A47. C48. B49. D50. B51. D52. D53. A54. C55. D56. B57. D58. D59. B60. C61. D。
《材料制备与成型加工技术》课件——绪论

成型加工(Forming and processing)
02
料制品各种成型方法及操作,成型工艺特点,成型工艺的适应性,成型工艺流程,成型设备结构及作用原理,成型工艺条件及其控制,成型工艺在橡胶、塑料、纤维加工中的共性和特殊性,各种高分子材料制品的成型加工过程,成型加工新工艺和新方法。
高分子材料(macromolecule material
按照高聚物来源分类
结构高分子材料--利用它的强度、弹性等力学性能功能高分子材料--利用它的声、光、电、磁、热和生物等功能
按照材料学观点
天然高分子材料--天然高聚物(natural)合成高分子材料--合成高聚物(compound)
2、高分子材料的分类(Classification of Polymer Materials)
2、高分子材料加工(Polymer material processing)
通常是使固体状态(粉状或粒状)、糊状或溶液状态的高分子化合物熔融或变形,经过模具形成所需的形状,并保持其已经取得的形状,最终得到制品的工艺过程。制造过程如下:
(1)成型加工过程的四个阶段
00
原材料的准备
01
使原材料产生变形或流动,并成为所需的形状
工程塑料(Engineering plastic)
01
是指拉伸强度大于50MPa ,冲击强度大于6kJ/m2,长期耐热温度超过100℃的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀性能等优良的、可替代金属用作结构件的塑料。
02
No.1
(3)橡 胶(rubber)
No.2
橡胶是室温下具有粘弹性的高分子化合物,在适当配合剂存在下,在一定温度和压力下硫化(适度交联)而制得的弹性体材料(橡胶制品)。按用途和性能可将橡胶分为通用橡胶和特种橡胶。
材料成型加工技术

材料成型加工技术材料成型加工技术是一种将原料加工成所需形状的技术,广泛应用于工业生产中。
它可以通过改变原料的物理性质和外形来满足不同需求。
本文将从材料成型加工技术的定义、分类、应用以及未来发展等方面进行阐述。
材料成型加工技术是指利用各种方法将原料加工成所需形状的技术。
它可以通过改变原料的形状、尺寸、表面质量等特征来满足不同的需求。
材料成型加工技术主要包括塑性成形、热成形、粉末冶金、复合材料加工等多种方法。
不同的加工方法适用于不同的材料和加工要求。
材料成型加工技术可以根据不同的分类标准进行分类。
按加工方式可以分为传统成型加工和先进成型加工。
传统成型加工主要包括锻造、压力成形、旋压、拉伸等方法,适用于金属材料的加工。
先进成型加工则包括注塑成型、挤压成型、复合成型等方法,适用于高分子材料、陶瓷材料等的加工。
按材料性质可以分为金属成型和非金属成型。
金属成型主要用于金属材料的加工,非金属成型则用于高分子材料、陶瓷材料等的加工。
材料成型加工技术在工业生产中有广泛的应用。
在汽车制造领域,材料成型加工技术可以用于制造汽车的车身、发动机零部件等。
在电子电器行业,材料成型加工技术可以用于制造电子元件、电线电缆等。
在航空航天领域,材料成型加工技术可以用于制造飞机的机身、发动机零部件等。
此外,材料成型加工技术还可以用于医疗器械、建筑材料等领域的生产。
未来,随着科技的不断进步,材料成型加工技术将会得到更大的发展。
一方面,新材料的不断涌现将为材料成型加工技术提供更多的应用领域。
例如,纳米材料、复合材料等的出现将为材料成型加工技术带来更多的挑战和机遇。
另一方面,先进的加工设备和技术将为材料成型加工技术的发展提供更多的支持。
例如,先进的数控机床、激光加工设备等将使材料成型加工技术更加精确、高效。
材料成型加工技术是一种将原料加工成所需形状的技术,广泛应用于工业生产中。
它可以通过改变原料的物理性质和外形来满足不同需求。
材料成型加工技术的发展离不开科技的进步和市场的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论制造业是提高国家工业生产率、经济增长、国家安全及生活质量的基础,是国家综合实力的重要标志。
现如今我国制造业面临巨大挑战,因而加强材料成形加工技术与科学基础研究,大力采用先进制造技术,对国民经济的发展具有重要意义。
材料成形加工技术与科学既是制造业的重要组成部分,又是材料科学与工程的四要素之一,对国民经济的发展及国防力量的增强均有重要作用。
“新一代材料精确成形加工技术”与“多学科多尺度模拟仿真”是现代两个重要学科研究前沿领域。
高新技术材料的出现,将加速发展以“精确成形”及“短流程”为代表的材料加工工艺,包括:全新的成形加工方法与工艺,及传统成形加工方法的改进与工序综合。
“模拟仿真”是产品计算机集成制造、敏捷制造的主要内容,是实现制造业信息化的先进方法。
并行工程已成为产品及相关制造过程集成设计的系统方法,以计算机模拟仿真与虚拟现实技术为手段的虚拟制造设计将是先进制造技术的重要支撑环境。
网络化、智能化是现代产品与工艺过程设计的趋势,绿色制造是现代材料加工技术的进一步发展方向。
面对市场经济、参与全球竞争,必须加强材料成形加工科学与技术的基础和应用研究。
只有使用先进的材料加工技术,才能获得高质量产品的结构和性能,这些高性能的先进材料包括传统材料和新材料。
发展材料成形加工技术对我国制造业以高新技术生产高附加值的优质零部件有积极作用,可扩大材料及制造范围、提高生产率、降低产品成本、增强企业国际竞争能力。
制造业在过去的几年中发生了巨大变化,而现代高科技及新材料的出现将导致材料成形加工技术的进一步发展与变革,出现全新的成形加工方法与工艺,传统加工方法不断改进并走向工艺综合,材料成形加工技术则逐渐综合化、多样化、柔性化、多科学化。
第二章现代材料成形加工技术与科学2.1现代材料成形加工技术的作用与地位我国已是制造大国,仅次于美、日、德,位居世界第四位。
材料成形加工行业则是制造业的重要组成部分,材料成形加工技术也是先进制造技术的重要内容。
铸造、锻造及焊接等材料加工技术是国民经济可持续发展的主体技术。
目前,在汽车行业中汽车重量的65%A上仍由钢铁、铝及镁合金等材料通过铸造、锻压、焊接等加工方法而成形。
材料成形加工技术与科学又是材料科学与工程的四要素之一,它不仅赋予零部件以形状,而且给予零部件以最终性能及使用特性。
制造业在过去的几年中发生了巨大的变化,这种变化还会延续。
高速发展的工业技术要求材料加工产品精密化、轻量化、集成化;国际竞争更加激烈的市场要求产品性能高、成本低、周期短;日益恶化的环境要求材料加工原料与能源消耗低、污染少;另外材料成形本身制造好、成品率高。
为了生产高精度、高质量的产品,材料正由单一的传统型向复合型、多功能型发展;材料加工技术逐渐综合化、多样化、柔性化、多科学化。
面对市场经济、参与全球竞争,必须加强材料成形加工科学与技术的基础和应用研究。
只有使用新近的材料加工技术才能获得高质量产品的结构和性能,这些高性能的先进材料包括传统材料和新材料。
发展材料成形加工技术对我国制造业已高新技术生产高附加值的优质零部件有积极作用。
2.2材料成形加工技术的发展趋势美国在“新一代制造计划”中指出,未来的制造模式将是批量小、质量高、成本低、交货期短、生产柔性、环境友好;未来的制造企业要掌握十大关键技术,其中包括快速产品与工艺开发系统、新一代制造工艺及装备及模拟与仿真三项关键技术。
其中新一代工艺包括精确成形加工制造或称净终成形加工工艺。
净终成形加工工艺要求材料成形加工制造向更轻、更薄、更强、更韧及成本低、周期短、质量高的方向发展。
轻量化、精确化、高效化将是未来材料成形加工技术的重要发展方向。
近年来,随着汽车工业的迅速发展,对通过降低产品的自重以降低能源消耗和减少污染(包括汽车尾气和废旧塑料)提出了更迫切的要求,轻质、高质量的绿色环保材料将成为人们的首选。
镁合金就是被世界各国材料界看好的最具有开发和应用发展前途的金属材料。
镁合金压铸件广泛应用于交通工业(汽车、摩托车及飞机零件等)、IT行业(手机、笔记本等)、小型家电行业(摄像机、照相机及其它电子产品外壳等)。
汽车离合器和变速箱壳体采用镁合金压铸件比铝合金重量分别减轻 2.6kg和2.5kg。
同时,压铸镁铝合金产品在体育运动(自行车架与踏板、滑雪板等)、手工工具(链锯、岩钻等)、国防建设(轻型武器、步兵装备)等领域亦有十分广阔的应用前景。
2.3材料成形加工过程的建模与仿真随着计算机技术的发展,技术材料科学已成为一门新兴的交叉学科,成为材料研究的重要手段,是除实验和理论外解决材料科学中实际问题的第三个重要研究方法。
它可以比理论和实验做得更深刻、更全面、更细致,可以进行一些理论和实验暂时还做不到的研究。
因此,基于知识的材料成形工艺模拟仿真是材料科学与工程的前沿领域及研究热点,而高性能、高保真和高效率则是模拟仿真的努力目标。
根据美国科学研究院工程技术委员会的测算,模拟仿真可提高产品质量5〜15倍,增加材料出品率25%降低工程技术成本13%- 30%降低人工成本5%〜20%增加投入设备的利用率30%〜60%缩短产品设计和试制周期30%〜60%增加分析问题广度和深度的能力3〜3.5倍等。
2.4材料的快速成形与虚拟制造我国制造业的主要问题之一是缺乏创新产品的开发能力,因而缺乏国际市场竞争能力。
随着全球化市场的激烈竞争,加快产品开发速度已成为竞争的重要手段之一。
制造业要满足日益变化的用户要求,必须有较强的灵活性,以最快的速度提供高质量产品。
虚拟制造是CAD CAM和CAPP等软件的集成技术,其关键是建立制造过程的计算模型,虚拟仿真制造过程。
虚拟制造以并行方式进行产品设计、加工和装配,对各单元采用分布管理,而且不受时间、空间限制。
虚拟制造的基础是虚拟现实技术。
所谓“虚拟现实”技术是利用计算机和外观设备,生成与真实环境一致的三维虚拟环境,使用户通过辅助设备从不同的“角度”和“视点”与环境中的“现实”交互。
与智能制造、虚拟工厂、网络化制造集成,材料加工过程建模与仿真将成为制造业新产品过程设计的非常有效的工具。
第三章新一代材料成形加工3.1材料成形加工技术发展特征材料成形加工技术在现代发展的过程中,形成“精密”、“优质”、“快速”、“复合”、“绿色”、“信息化”的特征。
1. 材料成形加工技术的“精密”特征:成形精度向净成形的方向发展材料成形加工技术的重要特征是精密化,以制造技术而论,从尺度上看,精密制造技术已经跨越了微米级技术,进入了亚微米和纳米技术领域。
材料成形加工技术也在朝着精密化的方向发展,表现为零件成形的尺寸精度正在从近净成形向净成形,即近无余量成形方向发展。
“毛坯”与“零件”的界限越来越小。
2. 材料成形加工技术的“优质”特征:成形质量向近无缺陷、“零”缺陷的方向发展如果说净成形技术主要反映的是成形加工技术的尺寸与形状精密的特征,反映了成形加工保证尺寸及形状的精密程度,那么,反映成形加工优质特征的则是近无缺陷、“零”缺陷成形加工技术。
这个“缺陷”是指不致引起早期失效的临界缺陷的概念。
采取的主要措施有:采用先进工艺、净化熔融金属、增大合金组织的致密度,为得到健全的铸件、锻件奠定基础;采用模拟技术、优化工艺技术,实现一次成形及试模成功,保证质量;加强工艺过程监控及无损检测,及时发现超标零件;通过零件安全可靠性能研究及评估,确定临界缺陷量值等。
3. 材料成形加工技术的“快速”特征:成形过程向快速方向发展为满足现代消费观念的变革以及市场的剧烈竞争化,“客户化、小批量、快速交货”的要求不断增加,需要材料成形加工技术的快速化。
成形加工技术的快速特征表现在各种新型高效成形工艺不断涌现,星星铸造、锻造、焊接方法都从不同角度提高生产效率。
3.2新一代材料成形加工技术制造技术可分为加工制造和成形制造(以液态铸造成形、固态塑性成形及连接成形等为代表)技术,其中成形制造不仅赋予零件以形状,而且决定了零件的组成。
3.2.1精确成形加工技术近年来出现了很多新的精确成形加工制造技术。
在轿车工业中还有很多材料精确成形新工艺,如用精确锻造成形技术生产凸轮轴等零件,液压胀形技术,半固态成形及三维挤压发等。
摩擦压力焊接技术近来也备受人们关注。
以挤压铸造及半固态铸造为代表的精确成形技术由于熔体在压力下充型、凝固,从而使零件具有好的表面及内部质量。
半固态铸造是一种生产结构复杂、近净成形、高品质铸件的材料半固态加工技术。
半固态铸造铝合金零件在汽车上的应用其区别于压力铸造和锻压的主要特征是:材料处于半固态时在较高压力(约200MPa下充型和凝固。
材料在压力作用下凝固可形成细小的球状晶粒组织。
3.2.2快速原型制造技术随着全球化及市场的激烈竞争,加快产品开发速度已成为竞争的重要手段之一。
制造业要满足日益变化的用户需求,制造技术必须具有较强的灵活性,能够以小批量甚至单批量生产迎合市场。
快速原型制造技术以离散和堆积原理为基础和特征,将零件的电子模型按一定方式离散成为可加工离散面、离散线和离散点,然后采用多种手段将这些离散的面、线和点堆积形成零件的整体形状。
有人因该技术高度的柔性而称之为“自由成形制造”。
近年来快速原型制造已发展为快速模具制造及快速制造,这些技术能大大缩短产品的设计开发周期,解决单件或小批零件的制造问题。
3.3新一代产品制造设计的研究未来智能制造公司需要一系列核心智能,以便在集成设计、制造和商业服务系统内进行智能商务运作。
这一系列的智能核心即可预测性、可生产性和廉价性、污染防治、产品与工艺性能。
研究这些特点已使集成设计、制造和服务成为一个具有竞争力的系统学科。
如果将这种集成工程系统理解成为一种科学,就可以将其归为已经成熟的分析方法,然后就可以确定基本参数及如何测量它们,从而可以预测期行为。
下面是在材料加工和新一代产品制造设计中将建模与仿真用作智能核心的基本要点:1. 数字产品和工艺建模的可预测性随着具有竞争力的缩减产品发展与实现周期的蓬勃发展,在产品与工艺合成中的所有决策需要精度的建模与仿真工艺,以使物理基础的或行为基础的设计属性生效。
在动力学、热力学、理学、材料和行为系统中有效运用建模工具是未来数字制造的先决条件。
这些模型和知识要在网络和协作环境下共享,最新的SGI (美国图形工作站生产厂商)工作站可以在数分钟至数小时内解决极为复杂的工程问题。
制造商可以使用高度工程化的仿真模型来帮助供货商改变模型设计和运送近于零缺陷的铸件给消费者,这样会尽量减少返工和缺陷。
2. 材料的可生产性和廉价性廉价的制造材料对制造业特别是航空业一直是一个挑战。
随着对环境和性能的规范和限制越来越多,各公司正在寻找更好的超级合金高温材料和类似网状的工艺技术,以降低原材料和制造运作过程的成本。