2018年高考数学二轮复习专题四数列推理与证明第1讲等差数列与等比数列专题突破讲义文

合集下载

2018年高考数学(理)—— 专题四 数列

2018年高考数学(理)——  专题四  数列

核心知识
考点精题
-9-
对点训练2已知数列{an}满足a1=1,an+1=3an+1.
(1)证明数列 ������������ + (2)证明
1 2
1 2
是等比数列,并求{an}的通项公式;
1 ������ ������
1
������ 1
+
3 2
1 ������ 2
+…+
< .
2
1 2 1 2
3
证明 (1)由 an+1=3an+1,得 an+1+ =3 ������������ + 又 a1+ = ,所以 ������������ +
核心知识
考点精题
-3-
(3)由已知得 bn=2������ ������ ,
������ ������ +1 ������������
=
2������ ������ +1 2������ ������ ������1
= 2������ ������ +1 -������ ������ =23=8,
解 (1)a1=S1=5,a1+a2=S2= ×22+ ×2=13,解得 a2=8. (2)当 n≥2
3 2 7 2 2 2 3 2 7 2 时,an=Sn-Sn-1= [n -(n-1) ]+ [n-(n-1)] 2 2
3
7
= (2n-1)+ =3n+2.
又a1=5满足an=3n+2,所以an=3n+2. 因为an+1-an=3(n+1)+2-(3n+2)=3, 所以数列{an}是以5为首项,3为公差的等差数列.

2018高考数学理二轮专题复习课件 专题四 数列4.1.2 精品

2018高考数学理二轮专题复习课件 专题四 数列4.1.2 精品

(2)由 anan+1=3n,得 an-1an=3n-1(n≥2),所以aann+-11=3(n≥2),
则数列{an}的所有奇数项和偶数项均构成以 3 为公比的等比数 列,又 a1=1,a1a2=3,所以 a2=3,所以 S2 015=1×11--331 008+
3×1-31 1-3
007=31
008-2.
5.nn+11n+2=12nn1+1-n+11n+2
6.
1= n+ n+k=1k(
n+k-
n)
8.n·n!=(n+1)!-n!
[专题回访]
1.若数列{an}是等差数列,且 a1+a8+a15=π,则 tan(a4+ a12)=( )
A. 3
B.- 3
3 C. 3
D.-
[答案] (1)A (2)A
[方法规律] 数列与不等式、函数等问题主要利用函数、不
等式的解题思路来加以解决.
4专能提升 1.(热点一)已知数列{an}的前 n 项和 Sn=n2+6n+7,则数列 {an}的通项公式为________.
解析:当 n=1 时,a1=1+6+7=14;当 n≥2 时,an=Sn -Sn-1=n2+6n+7-[(n-1)2+6(n-1)+7]=2n+5,所以数列{an} 的通项公式为 an=12n4,+n5=,1n≥2 .
A.212 B.29
C.28 D.26
[自主解答] (1)由 a1,a3,a13 成等比数列可得(1+2d)2=1
+12d,得 d=2,故 an=2n-1,Sn=n2,因此2Sann++136=22nn2++126= nn2++18=n+12-n+21n+1+9=n+1+n+9 1-2.



2018高考数学理二轮复习课件:1-3-1 等差数列、等比数列 精品

2018高考数学理二轮复习课件:1-3-1 等差数列、等比数列 精品

1.[2015·银川一模]若等比数列{an}的前 n 项和 Sn=a·3n-2,则 a2=( )
A.4
B.12
C.24
D.36
解析 由等比数列的前 n 项和公式形式 Sn=A-Aqn,可知 Sn=a·3n-2 中 a=2,则 a2=S2-S1=2×32 -2-(2×31-2)=12.故选 B.
2.[2015·课标全国卷Ⅰ]已知{an}是公差为 1 的等差数列,Sn 为{an}的前 n 项和.若 S8=4S4,则 a10=( )
2.[2015·九江高三一模]等差数列{an}中,a1=20115,am=1n,an=m1 (m≠n),则数列{an}的公差为_2_01_1_5____.
解析 ∵am=20115+(m-1)d=1n, an=20115+(n-1)d=m1 ,∴(m-n)d=1n-m1 , ∴d=m1n, ∴am=20115+(m-1)m1n=1n,解得m1n=20115, 即 d=20115.
a2-a1=2×2-1, 将以上各式相加,
得 an-a1=(2n-1)+[2(n-1)-1]+[2(n-2)-1]+…+(2×2-1)=[2n+2(n-1)+2(n-2)+…+2×2] -(n-1)=n-122n+4-n+1=(n-1)(n+2)-n+1=n2-1.
又因为 a1=2,所以 an=n2-1+a1=n2+1(n≥2). 当 n=1 时,a1=2 适合上式. 故 an=n2+1(n∈N*).
2.[2015·陕西高考]中位数为 1010 的一组数构成等差数列,其末项为 2015,则该数列的首项为___5_____. 解析 设等差数列的首项为 a1,根据等差数列的性质可得,a1+2015=2×1010,解得 a1=5.
建模规范答题

专题4 第1讲 等差数列与等比数列

专题4 第1讲 等差数列与等比数列

第1讲 等差数列与等比数列「考情研析」 1.从具体内容上,主要考查等差数列、等比数列的基本计算和基本性质及等差、等比数列中项的性质、判定与证明. 2.从高考特点上,难度以中、低档题为主,一般设置一道选择题和一道解答题.核心知识回顾1.等差数列(1)01a n =a 1+(n -1)d =a m +(n -m )d . (2)022a n =a n -1+a n +1(n ∈N *,n ≥2). (3)前n 03S n =n (a 1+a n )2=na 1+n (n -1)d2.2.等比数列(1)01a n =a 1q n -1=a m q n -m .(2)02a 2n =a n -1·a n +1(n ∈N *,n ≥2).(3)等比数列的前n 项和公式:03S n =⎩⎨⎧na 1(q =1),a 1-a n q 1-q =a 1(1-q n )1-q (q ≠1).3.等差数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k ,01a m +a n =a l +a k (反之不一定成立);特别地,当m +n =2p 02a m +a n =2a p .(2)若{a n },{b n }是等差数列,则{ka n +tb n }(k ,t 是非零常数)(3)等差数列“依次m 项的和”即S m …仍是等差数列.(4)等差数列{a n },当项数为2n 时,S 偶-S 奇,S 奇S 偶=a n +12n -1时,S 奇-S 偶,S 奇S 偶=n -1其中S 偶表示所有的偶数项之和,S 奇表示所有的奇数项之和)4.等比数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k 反之不一定成立);特别地,当m +n =2p(2)当n 为偶数时,S 偶S 奇=公比为q ).(其中S 偶表示所有的偶数项之和,S奇表示所有的奇数项之和)(3)等比数列“依次m 项的和”,即S m …(S m ≠0)成等比数列.热点考向探究考向1 等差数列、等比数列的运算例1 (1)(2020·山东省青岛市模拟)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,S n 是{a n }的前n 项和,则S 9等于( )A .-8B .-6C .10D .0答案 D解析 ∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4,∴(a 1+2×2)2=a 1·(a 1+3×2),即2a 1=-16,解得a 1=-8.则S 9=-8×9+9×82×2=0,故选D.(2)(2020·山东省泰安市肥城一中模拟)公比不为1的等比数列{a n }的前n 项和为S n ,若a 1,a 3,a 2成等差数列,mS 2,S 3,S 4成等比数列,则m =( )A.78 B .85 C .1 D .95答案 D解析 设{a n }的公比为q (q ≠0且q ≠1), 根据a 1,a 3,a 2成等差数列, 得2a 3=a 1`+a 2,即2a 1q 2=a 1+a 1q ,因为a 1≠0,所以2q 2-1-q =0,即(q -1)(2q +1)=0. 因为q ≠1,所以q =-12, 则S 2=a 1(1-q 2)1-q =34·a 11-q ,S 3=a 1(1-q 3)1-q =98·a 11-q ,S 4=a 1(1-q 4)1-q =1516·a 11-q,因为mS 2,S 3,S 4成等比数列,所以S 23=mS 2·S 4, 即⎝ ⎛⎭⎪⎫98·a 11-q 2=m ·34·a 11-q ·1516·a 11-q ,因为a 1≠0,所以a 11-q ≠0,所以⎝ ⎛⎭⎪⎫982=m ×34×1516, 得m =95,故选D.利用等差数列、等比数列的通项公式、前n 项和公式,能够在已知三个元素的前提下求解另外两个元素,其中等差数列的首项和公差、等比数列的首项和公比为最基本的量,解题中首先要注意求解最基本的量.1.(多选)(2020·山东省青岛市模拟)已知等差数列{a n }的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( )A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20 答案 BCD解析 等差数列{a n }的前n 项和为S n ,公差d ≠0, 由S 6=90,可得6a 1+15d =90,即2a 1+5d =30, ①由a 7是a 3与a 9的等比中项,可得a 27=a 3a 9,即(a 1+6d )2=(a 1+2d )(a 1+8d ),化为a 1+10d =0, ② 由①②解得a 1=20,d =-2,则a n =20-2(n -1)=22-2n ,S n =12n (20+22-2n )=21n -n 2, 由S n =-⎝ ⎛⎭⎪⎫n -2122+4414,可得n =10或n =11时,S n 取得最大值110.由S n >0,可得0<n <21,即n 的最大值为20.故选BCD. 2.定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2022a 2020=( )A .4×20202-1B .4×20192-1C .4×20222-1D .4×20192答案 A解析 ∵a 1=a 2=1,a 3=3,∴a 3a 2-a 2a 1=2,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +1a n 是以1为首项,2为公差的等差数列,∴a n +1a n=2n -1,∴a 2022a 2020=a 2022a 2021·a 2021a2020=(2×2021-1)×(2×2020-1)=4×20202-1.故选A.考向2 等差数列、等比数列的判定与证明例2 (1)设数列{a n }满足a 1=1,a n +1=44-a n (n ∈N *).求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2是等差数列.证明 ∵a n +1=44-a n ,∴1a n +1-2-1a n -2=144-a n -2-1a n -2=4-a n 2a n -4-1a n -2=2-a n 2a n -4=-12为常数,又a 1=1, ∴1a 1-2=-1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2是以-1为首项,-12为公差的等差数列.(2)数列{a n }的前n 项和为S n ,且满足S n +a n =n -1n (n +1)+1,n =1,2,3,…,设b n =a n +1n (n +1),求证:数列{b n }是等比数列.证明 S n =1-a n +n -1n (n +1),∴S n +1=1-a n +1+n(n +1)(n +2),当n =1时,易知a 1=12,∴a n +1=S n +1-S n =n(n +1)(n +2)-a n +1-n -1n (n +1)+a n ,∴2a n +1=n +2-2(n +1)(n +2)-n -1n (n +1)+a n =1n +1-2(n +1)(n +2)-1n +1+1n (n +1)+a n ,∴2⎣⎢⎡⎦⎥⎤a n +1+1(n +1)(n +2)=a n +1n (n +1),b n =a n +1n (n +1),则b n +1=a n +1+1(n +1)(n +2),上式可化为2b n +1=b n ,∴数列{b n }是以b 1=1为首项,12为公比的等比数列,b n =⎝ ⎛⎭⎪⎫12n -1.(1)判断或者证明数列为等差数列、等比数列最基本的方法是用定义判断或证明,其他方法最后都会回到定义,如证明等差数列可以证明通项公式是n的一次函数,但最后还得使用定义才能说明其为等差数列.(2)证明数列{a n}为等比数列时,不能仅仅证明a n+1=qa n,还要说明a1≠0,才能递推得出数列中的各项均不为零,最后断定数列{a n}为等比数列.(3)证明等差、等比数列,还可利用等差、等比数列的中项公式.1.(多选)(2020·日照一中摸底考试)已知数列{a n}满足:a1=3,当n≥2时,a n=( a n-1+1+1)2-1,则关于数列{a n},下列说法正确的是()A.a2=8 B.数列{a n}为递增数列C.数列{a n}为周期数列D.a n=n2+2n答案ABD解析由a n=(a n-1+1+1)2-1得a n+1=(a n-1+1+1)2,∴a n+1=a n-1+1+1,即数列{a n+1}是首项为a1+1=2,公差为1的等差数列,∴a n+1=2+(n-1)×1=n+1.∴a n=n2+2n.所以易知A,B,D正确.2.已知正项数列{a n}满足a2n+1-6a2n=a n+1a n,若a1=2,则数列{a n}的前n 项和为________.答案3n-1解析∵a2n+1-6a2n=a n+1a n,∴(a n+1-3a n)(a n+1+2a n)=0,∵a n>0,∴a n+1=3a n,∴{a n}为等比数列,且首项为2,公比为3,∴S n=3n-1.考向3数列中a n与S n的关系问题例3(1)(2020·河南省高三阶段性测试)设正项数列{a n}的前n项和为S n,且4S n=(1+a n)2(n∈N*),则a5+a6+a7+a8=()A.24 B.48C.64 D.72答案 B解析 当n =1时,由S 1=a 1=(1+a 1)24,得a 1=1,当n ≥2时,⎩⎨⎧4S n =(1+a n )2,4S n -1=(1+a n -1)2,得4a n =(1+a n )2-(1+a n -1)2,∴a 2n -a 2n -1-2a n -2a n -1=0,(a n +a n -1)(a n -a n -1-2)=0.∵a n >0,∴a n -a n -1=2,∴{a n }是等差数列,∴a n =2n -1,∴a 5+a 6+a 7+a 8=2(a 6+a 7)=48.(2)(2020·山东省德州市二模)给出以下三个条件: ①数列{a n }是首项为 2,满足S n +1=4S n +2的数列; ②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列. 请从这三个条件中任选一个将下面的题目补充完整,并求解. 设数列{a n }的前n 项和为S n ,a n 与S n 满足________.记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+n b n b n +1,求数列{c n }的前n 项和T n .解 选①,由已知S n +1=4S n +2, (*) 当n ≥2时,S n =4S n -1+2, (**) (*)-(**),得a n +1=4(S n -S n -1)=4a n , 即a n +1=4a n .当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,所以a 2=8,满足a 2=4a 1, 故{a n }是以2为首项,4为公比的等比数列, 所以a n =22n -1.b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,c n =n 2+n b n b n +1=n (n +1)n 2(n +1)2=1n (n +1)=1n -1n +1.所以T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.选②,由已知3S n =22n +1+λ, (*) 当n ≥2时,3S n -1=22n -1+λ, (**) (*)-(**),得3a n =22n +1-22n -1=3·22n -1, 即a n =22n -1.当n =1时,a 1=2满足a n =22n -1,所以a n =22n -1, 下同选①.选③,由已知3S n =a n +1-2, (*) 则n ≥2时,3S n -1=a n -2, (**) (*)-(**),得3a n =a n +1-a n ,即a n +1=4a n .当n =1时,3a 1=a 2-2,而a 1=2,得a 2=8,满足a 2=4a 1, 故{a n }是以2为首项,4为公比的等比数列, 所以a n =22n -1, 下同选①.由a n 与S n 的关系求通项公式的注意点(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1成立的前提是n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一表示(“合写”). (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎨⎧S 1(n =1),S n-S n -1(n ≥2).已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n2S n -1(n ≥2,n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)证明:13S 1+15S 2+17S 3+…+12n +1S n <12.证明 (1)当n ≥2时,S n -S n -1=2S 2n2S n -1,S n -1-S n =2S n ·S n -1,1S n -1S n -1=2,所以数列⎩⎨⎧⎭⎬⎫1S n 是以1为首项,2为公差的等差数列.(2)由(1)可知,1S n =1S 1+(n -1)·2=2n -1,所以S n =12n -1.13S 1+15S 2+17S 3+…+12n +1S n =11×3+13×5+15×7+…+1(2n -1)(2n +1) =12×⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1=12×⎝ ⎛⎭⎪⎫1-12n +1<12.真题押题『真题检验』1.(2020·全国卷Ⅰ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( )A .12B .24C .30D .32答案 D解析 设等比数列{a n }的公比为q ,则a 1+a 2+a 3=a 1(1+q +q 2)=1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q (1+q +q 2)=q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 5(1+q +q 2)=q 5=32.故选D.2.(2020·全国卷Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S na n=( )A .2n -1B .2-21-nC .2-2n -1D .21-n -1答案 B解析 设等比数列{a n }的公比为q ,由a 5-a 3=12,a 6-a 4=24可得⎩⎨⎧ a 1q 4-a 1q 2=12,a 1q 5-a 1q 3=24,解得⎩⎨⎧q =2,a 1=1,所以a n =a 1q n -1=2n -1,S n =a 1(1-q n )1-q =1-2n1-2=2n -1.因此S na n =2n-12n -1=2-21-n .故选B.3.(2020·新高考卷Ⅰ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.答案 3n 2-2n解析 因为数列{2n -1}是以1为首项,以2为公差的等差数列,数列{3n -2}是以1为首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{a n }是以1为首项,以6为公差的等差数列,所以{a n }的前n 项和为n ·1+n (n -1)2·6=3n 2-2n . 4.(2020·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.答案 25解析 设等差数列{a n }的公差为d ,由a 1=-2,a 2+a 6=2,可得a 1+d +a 1+5d =2,即-2+d +(-2)+5d =2,解得d =1.所以S 10=10×(-2)+10×(10-1)2×1=-20+45=25.5.(2020·江苏高考)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________.答案 4解析 等差数列{a n }的前n 项和公式为P n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,等比数列{b n }的前n 项和公式为Q n =b 1(1-q n )1-q =-b 11-q q n +b 11-q ,依题意S n =P n+Q n ,即n 2-n +2n -1=d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n -b 11-q q n +b 11-q,通过对比系数可知⎩⎪⎨⎪⎧d2=1,a 1-d 2=-1,q =2,b11-q =-1,得⎩⎪⎨⎪⎧d =2,a 1=0,q =2,b 1=1,故d +q =4.6.(2020·新高考卷Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.解 (1)设等比数列{a n }的首项为a 1,公比为q , 依题意有⎩⎨⎧a 1q +a 1q 3=20,a 1q 2=8,解得a 1=2,q =2或a 1=32,q =12(舍去), 所以a n =2n ,所以数列{a n }的通项公式为a n =2n . (2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128, b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1; b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7], 则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15], 则b 8=b 9=…=b 15=3,即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31], 则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63], 则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100], 则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480. 7.(2020·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . 解 (1)设等比数列{a n }的公比为q ,根据题意,有 ⎩⎨⎧ a 1+a 1q =4,a 1q 2-a 1=8,解得⎩⎨⎧a 1=1,q =3, 所以a n =3n -1.(2)令b n =log 3a n =log 33n -1=n -1, 则S n =n (0+n -1)2=n (n -1)2,根据S m +S m +1=S m +3,可得 m (m -1)2+m (m +1)2=(m +2)(m +3)2, 整理得m 2-5m -6=0,因为m >0,所以m =6.『金版押题』8.已知数列{a n }满足na n -28a n +1=n -1(n ∈N *),a 1+a 2+a 3=75,记S n =a 1a 2a 3+a 2a 3a 4+a 3a 4a 5+…+a n a n +1·a n +2,则a 2=________,使得S n 取得最大值的n 的值为________.答案 25 10解析 由na n -28a n +1=n -1(n ∈N *),可取n =1,即a 1-28=0,可得a 1=28,取n =2,可得2a 2-28a 3=1,即a 3=2a 2-28,又a 1+a 2+a 3=75,可得a 2=25,a 3=22,当n ≥2时,由na n -28a n +1=n -1可得a n +1n -a nn -1=-28n (n -1),可令c n =a n +1n ,则c n -1=a nn -1(n ≥2),c n -c n -1=28⎝ ⎛⎭⎪⎫1n -1n -1(n ≥2), 由c n =c 1+(c 2-c 1)+…+(c n -c n -1)=c 1+28⎝ ⎛⎭⎪⎫12-1+13-12+…+1n -1n -1, 可得c n =c 1+28⎝ ⎛⎭⎪⎫1n -1=a 2+28⎝ ⎛⎭⎪⎫1n -1,则a n +1=nc n =na 2+28(1-n )=28+n (a 2-28), 故a n +1=28-3n (n ≥2),所以a n =31-3n (n ≥3), 又a 1=28,a 2=25,也符合上式,所以a n =31-3n . 令b n =a n a n +1a n +2=(31-3n )(28-3n )(25-3n ), 由b n ≥0,可得(31-3n )(28-3n )(25-3n )≥0, 解得1≤n ≤8(n ∈N *)或n =10,又b 9=-8,b 10=10,所以n =10时,S n 取得最大值.9.记数列{a n }的前n 项和为S n ,已知2a n +1+n =4S n +2p ,a 3=7a 1=7. (1)求p ,S 4的值;(2)若b n =a n +1-a n ,求证:数列{b n }是等比数列. 解 (1)由a 3=7a 1=7知,a 3=7,a 1=1.当n =1时,由2a n +1+n =4S n +2p ,得a 2=32+p ,当n =2时,由2a n +1+n =4S n +2p ,得a 3=4+3p =7,所以p =1, 当n =3时,由2a n +1+n =4S n +2p ,得2a 4+3=4S 3+2,解得a 4=412.所以S 4=1+52+7+412=31.(2)证明:由(1)可得a n +1=2S n -12n +1, 则a n +2=2S n +1-12(n +1)+1. 两式作差得a n +2-a n +1=2a n +1-12, 即a n +2=3a n +1-12(n ∈N *). 由(1)得a 2=52,所以a 2=3a 1-12, 所以a n +1=3a n -12对n ∈N *恒成立, 由上式变形可得a n +1-14=3⎝ ⎛⎭⎪⎫a n -14.而a 1-14=34≠0,所以⎩⎨⎧⎭⎬⎫a n -14是首项为34,公比为3的等比数列,所以a n -14=34×3n -1=3n4,所以b n =a n +1-a n =a n +1-14-⎝ ⎛⎭⎪⎫a n -14=3n +14-3n 4=3n 2,所以b n +1=3n +12,b n +1b n=3.又b 1=32,所以数列{b n }是首项为32,公比为3的等比数列.专题作业一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2020·山东德州高三下学期联考)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( )A .4B .8C .16D .32答案 D解析 设等比数列{a n }的公比为q ,∵a 1=1,a 5+a 7a 2+a 4=8,∴a 1(q 4+q 6)a 1(q +q 3)=8,解得q =2,则a 6=25=32.故选D. 2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n答案 A解析 设等差数列{a n }的首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎨⎧ a 1+4d =5,4a 1+6d =0,解得⎩⎨⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A. 3.等差数列{a n }的公差为d ,若a 1+1,a 2+1,a 4+1成以d 为公比的等比数列,则d =( )A .2B .3C .4D .5答案 A解析 将a 1+1,a 2+1,a 4+1转化为a 1,d 的形式为a 1+1,a 1+1+d ,a 1+1+3d ,由于这三个数成以d 为公比的等比数列,故a 1+1+d a 1+1=a 1+1+3da 1+1+d =d ,化简得a 1+1=d ,代入a 1+1+d a 1+1=d ,得2dd =2=d ,故选A.4.(2020·河北省张家口市二模)已知正项等比数列{a n }的公比为q ,若a 1=q≠1,且a m=a1a2a3…a10,则m=()A.19 B.45C.55 D.100答案 C解析∵正项等比数列{a n}的公比为q,a1=q≠1,∴a n=q.q n-1=q n,∵a m=a1a2a3...a10,∴q m=q.q2.q3.....q10=q1+2+3+ (10)q55.∴m=55.故选C.5.(2020·河北省保定市一模)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有五人五钱,令上二人所得与下三人等,问各得几何?”其意思是:“现有甲、乙、丙、丁、戊,五人依次差值等额分五钱,要使甲、乙两人所得的钱数与丙、丁、戊三人所得的钱数相等,问每人各得多少钱?”请问上面的问题里,五人中所得的最少钱数为()A.76钱B.56钱C.13钱D.23钱答案 D解析依题意设甲、乙、丙、丁、戊所得钱数分别为a-2d,a-d,a,a+d,a+2d,又有a-2d+a-d=a+a+d+a+2d,得a=-6d,∵a-2d+a-d+a+a+d+a+2d=5a=5,∴a=1,则d=-16,∴a+2d=23.故选D.6.(2020·广州模拟)正项等比数列{a n}满足a2a4=1,S3=13,则其公比是()A.1 B.1 2C.13D.14答案 C解析设{a n}的公比为q,因为a2a4=1,且a2a4=a23,所以a23=1,易知q>0,所以a3=1.由S3=1+1q +1q2=13,得13q2=1+q+q2,即12q2-q-1=0,解得q=13.故选C.7.已知S n 为等比数列{a n }的前n 项和,若S 3,S 9,S 6成等差数列,则( ) A .S 6=-2S 3 B .S 6=-12S 3 C .S 6=12S 3 D .S 6=2S 3答案 C解析 设等比数列{a n }的公比为q (q ≠1),则S 6=(1+q 3)S 3,S 9=(1+q 3+q 6)S 3,因为S 3,S 9,S 6成等差数列,所以2(1+q 3+q 6)S 3=S 3+(1+q 3)S 3,易知S 3≠0,解得q 3=-12,故S 6=12S 3.8.已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项和为( )A .0B .252 C .21 D .42 答案 C解析 函数y =f (x +1)的图象关于y 轴对称,平移可得y =f (x )的图象关于直线x =1对称,且函数f (x )在(1,+∞)上单调,由数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),可得a 4+a 18=2,所以a 1+a 21=a 4+a 18=2,可得数列{a n }的前21项和S 21=21(a 1+a 21)2=21.故选C.二、选择题:在每小题给出的选项中,有多项符合题目要求.9.已知无穷数列{a n }的前n 项和S n =an 2+bn +c ,其中a ,b ,c 为实数,则( )A .{a n }可能为等差数列B .{a n }可能为等比数列C .{a n }中一定存在连续的三项构成等差数列D .{a n }中一定存在连续的三项构成等比数列 答案 ABC解析解法一:因为S n=an2+bn+c,所以S n-1=a(n-1)2+b(n-1)+c(n≥2),所以a n=S n-S n-1=2na-a+b(n≥2),若数列{a n}为等差数列,则a1=a+b+c=a+b,c=0,验证知,当c=0时,{a n}为等差数列,所以A正确;在a n=2na-a +b(n≥2)中,当a=0,b≠0时,a n=b(n≥2),若数列{a n}为等比数列,则a1=b +c=b,c=0,验证知,当a=c=0,b≠0时,{a n}为等比数列,所以B正确;由a n=2na-a+b(n≥2)可知,{a n}中一定存在连续的三项构成等差数列,所以C 正确;假设a k,a k+1,a k+2(k≥2,且k∈N*)成等比数列,则[2(k+1)a-a+b]2=(2ka -a+b)·[2(k+2)a-a+b],整理得(k+1)2=k(k+2),即1=0(不成立),所以{a n}中不存在连续的三项构成等比数列,所以D错误.故选ABC.解法二:当c=0,a≠0时,数列{a n}为等差数列,所以A正确;当a=c=0,b≠0时,数列{a n}为常数列,也是等比数列,所以B正确;当n≥2时,a n=S n -S n-1=2na-a+b,则{a n}中一定存在连续的三项构成等差数列,所以C正确;假设a k,a k+1,a k+2(k≥2,且k∈N*)成等比数列,则[2(k+1)a-a+b]2=(2ka-a +b)·[2(k+2)a-a+b],整理得(k+1)2=k(k+2),即1=0(不成立),所以{a n}中不存在连续的三项构成等比数列,所以D错误.故选ABC.10.(2020·海南省海口市模拟)已知正项等比数列{a n}满足a1=2,a4=2a2+a3,若设其公比为q,前n项和为S n,则()A.q=2 B.a n=2nC.S10=2047 D.a n+a n+1<a n+2答案ABD解析根据题意,对于A,正项等比数列{a n}满足2q3=4q+2q2,变形可得q2-q-2=0,解得q=2或q=-1,又{a n}为正项等比数列,则q=2,故A正确;对于B,a n=2×2n-1=2n,B正确;对于C,S n=2×(1-2n)1-2=2n+1-2,所以S10=2046,C错误;对于D,a n+a n+1=2n+2n+1=3×2n=3a n,而a n+2=2n+2=4×2n =4a n>3a n,D正确.故选ABD.11.等差数列{a n}的前n项和记为S n,若a1>0,S10=S20,则()A.公差d<0 B.a16<0C .S n ≤S 15D .当且仅当S n <0时n ≥32答案 ABC解析 因为等差数列中,S 10=S 20,所以a 11+a 12+…+a 19+a 20=5(a 15+a 16)=0,又a 1>0,所以a 15>0,a 16<0,所以d <0,S n ≤S 15,故A ,B ,C 正确;因为S 31=31(a 1+a 31)2=31a 16<0,故D 错误.故选ABC.12.设正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,则( ) A .a 2a 9的最大值为10 B .a 2+a 9的最大值为210 C.1a 22+1a 29的最大值为15D .a 42+a 49的最小值为200答案 ABD解析 因为正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,所以(a 2+a 9)2=2a 2a 9+20,即a 22+a 29=20,则a 2a 9≤a 22+a 292=202=10,当且仅当a 2=a 9=10时等号成立,故A 正确;由于⎝ ⎛⎭⎪⎫a 2+a 922≤a 22+a 292=10,所以a 2+a 92≤10,a 2+a 9≤210,当且仅当a 2=a 9=10时等号成立,故B 正确;1a 22+1a 29=a 22+a 29a 22·a 29=20a 22·a 29≥20⎝ ⎛⎭⎪⎫a 22+a 2922=20102=15,当且仅当a 2=a 9=10时等号成立,所以1a 22+1a 29的最小值为15,故C 错误;a 42+a 49=(a 22+a 29)2-2a 22·a 29=400-2a 22·a 29≥400-2×102=200,当且仅当a 2=a 9=10时等号成立,故D 正确.故选ABD. 三、填空题13.已知数列{a n }的前n 项和为S n ,a 1=1,2S n =a n +1,则S n =________. 答案 3n -1解析 由2S n =a n +1得2S n =a n +1=S n +1-S n ,所以3S n =S n +1,即S n +1S n =3,所以数列{S n }是以S 1=a 1=1为首项,q =3为公比的等比数列,所以S n =3n -1.14.(2020·山东省聊城市三模)已知数列{a n }中,a 1=1,a n +1=a n +n ,则a 6=________.答案 16解析 由题意,得a 2=a 1+1=2,a 3=a 2+2=4,a 4=a 3+3=7,a 5=a 4+4=11,a 6=a 5+5=16.15.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n+1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________. 答案 a n =n (n +1)2解析 由题设可得a n +1=b n b n +1,a n =b n b n -1,得2b n =a n +a n +1⇒2b n =b n b n -1+b n b n +1,即2b n =b n -1+b n +1,又a 1=1,a 2=3⇒2b 1=4⇒b 1=2,则{b n }是首项为2的等差数列.由已知得b 2=a 22b 1=92,则数列{b n }的公差d =b 2-b 1=322-2=22,所以b n =2+(n -1)·22=2(n +1)2,即b n =n +12.当n=1时,b 1=2,当n ≥2时,b n -1=n2,则a n =b n b n -1=n (n +1)2,a 1=1符合上式,所以数列{a n }的通项公式为a n =n (n +1)2.16.已知数列{a n }满足13a 1+132a 2+…+13n a n =3n +1,则a n =________,a 1+a 2+a 3+…+a n =________.答案 ⎩⎨⎧12,n =1,3n +1,n ≥2⎩⎨⎧12,n =1,3n +2-32,n ≥2解析 由题意可得,当n =1时,13a 1=4,解得a 1=12.当n ≥2时,13a 1+132a 2+…+13n -1a n -1=3n -2,所以13n a n =3,n ≥2,即a n =3n +1,n ≥2,又当n =1时,a n =3n +1不成立,所以a n =⎩⎨⎧12,n =1,3n +1,n ≥2.当n ≥2时,a 1+a 2+…+a n =12+33-3n +21-3=3n +2-32. 四、解答题17.(2020·江西省南昌市三模)已知数列{a n }中,a 1=2,a n a n +1=2pn +1(p 为常数) .(1)若-a 1,12a 2,a 4成等差数列,求p 的值;(2)是否存在p ,使得{a n }为等比数列?若存在,求{a n }的前n 项和S n ;若不存在,请说明理由.解 (1)令n =1,a 1a 2=2p +1⇒a 2=2p ,且a n +1a n +2=2pn +p +1,与已知条件相除得a n +2a n=2p ,故a 4=2p a 2=(2p )2, 而-a 1,12a 2,a 4成等差数列,则a 4-2=a 2,即(2p )2-2=2p ,解得2p =2,即p =1.(2)若{a n }是等比数列,则由a 1>0,a 2>0,知此数列首项和公比均为正数.设其公比为q ,则q =2p 2,故2p 2=a 2a 1=2p 2⇒p =2, 此时a 1=2,q =2⇒a n =2n ,故a n a n +1=22n +1, 而2pn +1=22n +1,因此p =2时,{a n }为等比数列,其前n 项和S n =2(1-2n )1-2=2n +1-2. 18.(2020·山东省威海二模)从条件①2S n =(n +1)a n ,② S n +S n -1=a n (n ≥2),③a n >0,a 2n +a n =2S n 中任选一个,补充到下面问题中,并给出解答.已知数列{a n }的前n 项和为S n ,a 1=1,________.若a 1,a k ,S k +2成等比数列,求k 的值.解 若选择①,∵2S n =(n +1)a n ,n ∈N *,∴2S n +1=(n +2)a n +1,n ∈N *.两项相减得2a n +1=(n +2)a n +1-(n +1)a n ,整理得na n +1=(n +1)a n .即a n +1n +1=a n n ,n ∈N *, ∴⎩⎨⎧⎭⎬⎫a n n 为常数列.a n n =a 11=1,∴a n =n . ⎝ ⎛⎭⎪⎫或由a n +1a n =n +1n ,利用相乘相消法,求得a n =n a k =k ,S k +2=(k +2)×1+(k +2)(k +1)2×1 =(k +2)(k +3)2. 又a 1,a k ,S k +2成等比数列,∴(k +2)(k +3)=2k 2, k 2-5k -6=0,解得k =6或k =-1(舍去). ∴k =6.若选择②, 由S n +S n -1=a n (n ≥2)变形得S n +S n -1=S n -S n -1, S n +S n -1=( S n +S n -1)( S n -S n -1), 易知S n >0,∴ S n -S n -1=1,{S n }为等差数列, 而S 1=a 1=1,∴ S n =n ,S n =n 2, ∴a n =S n -S n -1=2n -1(n ≥2),且n =1时也满足, ∴a n =2n -1.∵a 1,a k ,S k +2成等比数列,∴(k +2)2=(2k -1)2,∴k =3或k =-13,又k ∈N *,∴k =3.若选择③,∵a 2n +a n =2S n (n ∈N *),∴a 2n -1+a n -1=2S n -1(n ≥2).两式相减得a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n (n ≥2),整理得(a n -a n -1)(a n +a n -1)=a n +a n -1(n ≥2). ∵a n >0,∴a n -a n -1=1(n ≥2),∴{a n }是等差数列,∴a n =1+(n -1)×1=n ,S k +2=(k +2)×1+(k +2)(k +1)2×1=(k +2)(k +3)2. 又a 1,a k ,S k +2成等比数列,∴(k +2)(k +3)=2k 2,解得k =6或k =-1,又k ∈N *,∴k =6.19.设数列{a n }的前n 项和为S n ,且满足a n -12S n -1=0(n ∈N *).(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列{S n +(n +2n )λ}为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由a n -12S n -1=0(n ∈N *),可知当n =1时, a 1-12a 1-1=0,即a 1=2.又由a n -12S n -1=0(n ∈N *),可得a n +1-12S n +1-1=0,两式相减,得⎝ ⎛⎭⎪⎫a n +1-12S n +1-1-⎝ ⎛⎭⎪⎫a n -12S n -1=0, 即12a n +1-a n =0,即a n +1=2a n .所以数列{a n }是以2为首项,2为公比的等比数列, 故a n =2n (n ∈N *).(2)由(1)知,S n =a 1(1-q n )1-q=2(2n -1),所以S n+(n+2n)λ=2(2n-1)+(n+2n)λ.若数列{S n+(n+2n)λ}为等差数列,则S1+(1+2)λ,S2+(2+22)λ,S3+(3+23)λ成等差数列,即有2[S2+(2+22)λ]=[S1+(1+2)λ]+[S3+(3+23)λ],即2(6+6λ)=(2+3λ)+(14+11λ),解得λ=-2.经检验λ=-2时,{S n+(n+2n)λ}成等差数列,故λ的值为-2.。

2018年高考数学二轮总复习 第一部分 专题攻略 专题四 数列 4.1 等差数列与等比数列课件 文

2018年高考数学二轮总复习 第一部分 专题攻略 专题四 数列 4.1 等差数列与等比数列课件 文
较强,同时还要注意性质成立的条件,如等差数列{an}中,a1+an =a2+an-1,但 a1+an≠an+1;等比数列的前 n 项和为 Sn,则在公比 不等于-1 或 m 不为偶数时,Sm,S2m-Sm,S3m-S2m,…成等比数 列.
4.(2017·山西运城联考)已知在等比数列{an}中,a2a10=6a6, 在等差数列{bn}中,b4+b6=a6,则数列{bn}的前 9 项和为( )
TS59=(
)
3
5
1
27
A.5
B.9
C.3
D.25
解析:由{an}为等差数列可得 S5=5a12+a5=5×22a3=5a3. 同理可得 T9=9b5.
所以TS59=95ba53=59×35=13.故选 C. 答案:C
6.一个项数为偶数的等比数列{an},全部各项之和为偶数项之 和的 4 倍,前 3 项之积为 64,则 a1=( )
答案:A
2.(2017·武汉市武昌区调研考试)设公比为 q(q>0)的等比数列 {an}的前 n 项和为 Sn.若 S2=3a2+2,S4=3a4+2,则 a1=( )
A.-2 B.-1
1
2
C.2
D.3
解析:由 S2=3a2+2,S4=3a4+2 得 a3+a4=3a4-3a2,即 q+ q2=3q2-3,解得 q=-1(舍)或 q=32,将 q=32代入 S2=3a2+2 中得 a1+32a1=3×32a1+2,解得 a1=-1,故选 B.
1.(2017·课标全国卷Ⅲ)等差数列an的首项为 1,公差不为 0.
若 a2,a3,a6 成等比数列,则an前 6 项的和为(
)
A.-24 B.-3
C.3
D.8

2018高考数学理二轮专题复习课件 专题四 数列4-1-1 精品

2018高考数学理二轮专题复习课件 专题四 数列4-1-1 精品
第一讲 等差数列 等比数列
1高考巡航 本讲考查的热点主要有三个方面: (1)对等差、等比数列基本量的考查,常以客观题的形式出 现,考查利用通项公式、前 n 项和公式建立方程组求解,属于低 档题; (2)对等差、等比数列性质的考查,主要以客观题出现,具 有“新、巧、活”的特点,考查利用性质解决有关计算问题,属 中低档题; (3)对等差、等比数列的判断与证明,主要出现在解答题的 第一问,是为求数列的通项公式而准备的,因此是解决问题的关 键环节.
(2)应牢固掌握等差、等比数列的性质,特别是等差数列中 若“m+n=p+q,则 am+an=ap+aq(m,n,p,q∈N*)”这一性 质与求和公式 Sn=na12+an的综合应用.
4专能提升
1.(热点一)已知等差数列{an}前 9 项的和为 27,a10=8,则
a100=( )
A.100
B.99
答案:10
3热点追踪
热点考向一 等差(比)数列的基本运算
[典例 1] (1)已知等差数列{an}的前 n 项和为 Sn,若 a1=-
11,a4+a6=-6,则当 Sn 取最小值时,n 等于( )
A.6
B.7
C.8
D.9
(2)已知数列{an}中,a1=2,an+1-2an=0,bn=log2an,则数 列{bn}的前 10 项和等于( )
二、重要公式
1.通项公式 (1)等差数列的通项公式:an=a1+(n-1)d=am+(n-m)d(n, m∈N*). (2)等比数列的通项公式:an=a1qn-1=am·qn-m(n,m∈N*)
2.前 n 项和公式 (1)等差数列的前 n 项和公式 Sn=na12+an=na1+nn2-1d. (2) 等 比 数 列 的 前 n 项 和 公 式 Sn =

高考数学大二轮总复习 增分策略 专题四 数列 推理与证明 第1讲 等差数列与等比数列


013+a2
014=1
005.
热点二 等差数列、等比数列的判定与证明 数列{an}是等差数列或等比数列的证明方法 (1)证明数列{an}是等差数列的两种基本方法: ①利用定义,证明an+1-an(n∈N*)为一常数; ②利用中项性质,即证明2an=an-1+an+1(n≥2). (2)证明{an}是等比数列的两种基本方法: ①利用定义,证明aan+n 1(n∈N*)为一常数; ②利用等比中项,即证明 a2n=an-1an+1(n≥2).
12 3 4
2.(2015·安徽)已知数列{an}是递增的等比数列,a1+a4=9, a2a3=8,则数列{an}的前n项和等于__2_n_-__1__. 解析 由等比数列性质知a2a3=a1a4,又a2a3=8,a1+a4=9, 所以联立方程aa11a+4=a48=,9, 解得aa14= =18, 或aa14= =81, , 又数列{an}为递增数列,∴a1=1,a4=8,从而a1q3=8, ∴q=2. ∴数列{an}的前 n 项和为 Sn=11--22n=2n-1.
所以当Sn取最小值时,n=6.
(2)已知等比数列{an}公比为q,其前n项和为Sn,若S3,S9,
S6成等差数列,则q3等于( A )
A.-21
B.1
C.-21或 1
D.-1 或21
解析 若q=1,则3a1+6a1=2×9a1,
得a1=0,矛盾,故q≠1.
所以a111--qq3+a111--qq6=2a111--qq9, 解得 q3=-12或 1(舍),故选 A.
12 3 4
4.(2013·江西)某住宅小区计划植树不少于100棵,若第一天 植2棵,以后每天植树的棵数是前一天的2倍,则需要的最 少天数n(n∈N*)等于____6____. 解析 每天植树棵数构成等比数列{an}, 其中 a1=2,q=2.则 Sn=a111--qqn=2(2n-1)≥100, 即2n+1≥102.∴n≥6,∴最少天数n=6.

2018届高考数学二轮复习 第一部分 专题四 数列 1.4.1 等差数列、等比数列教案 理


B.1
1
1
C.2
D.8
解析:通解:∵a3=a1·q2,a4=a1·q3,a5=a1·q4, ∴a21·q6=4(a1·q3-1) ∵a1=14, ∴q6-16q3+64=0,∴q3=8,∴q=2,∴a2=a1·q=12.
优解:设{an}的公比为q,由等比数列的性质 可知a3a5=a24,∴a24=4(a4-1),即(a4-2)2=0, 得a4=2, 则q3=aa14=21=8,得q=2,
(2)由(1)可得 Sn=-2[11-+2-2n]=-23+(-1)n2n3+1. 由于Sn+2+Sn+1=-43+(-1)n2n+3-3 2n+2 =2-23+-1n2n3+1=2Sn, 故Sn+1,Sn,Sn+2成等差数列.
专题四 数 列
[高考领航]——————————摸清规律 预测考情
(大纲卷) T18(等差数列 求和)
解题必备 解题方略 走进高考 限时规范训练
考点一 等差数列、等比数列
1.等差、等比数列的性质
等差数列
等比数列
(1)若m,n,p,q∈N*, 且m+n=p+q,则am+ 性 an=ap+aq; 质 (2)an=am+(n-m)d; (3)Sm,S2m-Sm,S3m- S2m,…仍成等差数列
4
则a2=a1q=14×2=12,故选C.
1.解题关键:抓住项与项之间的关系及项的序号之间的关 系,从这些特点入手选择恰当的性质进行求解.
2.运用函数性质:数列是一种特殊的函数,具有函数的一些 性质,如单调性、周期性等,可利用函数的性质解题.
[自我挑战]
3.等比数列{an}中,a4=2,a5=5,则数列{lg an}的前 8 项和 等于( C )
解得d=4.故选C.

2018高考数学浙江专版二轮复习与策略课件 专题4 等差数列、等比数列 精品


(16 (224π -12 [(1由a1=1,an+1=an+3,得an+1-an=3,
所以数列{an}是首项为1,公差为3的等差数列. 由Sn=n+nn2-1×3=51,即(3n+17(n-6=0,
解得n=6或n=-137(舍.
(2由{an}为等差数列得a1+a5+a9=3a5=8π,解得a5=
∴(a1+2d2=(a1+d(a1+6d,即 2d+3a1=0.

又∵2a1+a2=1,∴3a1+d=1.

由①②解得 a1=23,d=-1.]
6.(2016·浙江高考设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1, n∈N*.
(1求通项公式an; (2求数列{|an-n-2|}的前n项和.
提醒:应用等比数列前n项和公式时,务必注意公比q的取值范围.
[变式训练1] (1已知在数列{an}中,a1=1,an+1=an+3,Sn为{an}的前n 项和,若Sn=51,则n=__________.
(2(2016·浙江五校联考已知{an}为等差数列,若a1+a5+a9=8π,则|an|前9 项的和S9=________,cos(a3+a7的值为________.




·




专题二 数 列








·


建知识网络 明内在联系
[高考点拨] 数列专题是高考的必考专题之一,主要考查等差、等比数列 的基本量运算及数列求和的能力,该部分即可单独命题,又可与其他专题综合 命题,考查方式灵活多样,结合近几年高考命题研究,为此本专题我们按照 “等差、等比数列”和“数列求和”两条主线展开分析和预测.

2018年高考数学(文)二轮复习+专题突破讲义:专题四 数列、推理与证明专题四+第3讲

第3讲 数列的综合问题1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式. 2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.将数列与实际应用问题相结合,考查数学建模和数学应用能力.热点一 利用S n ,a n 的关系式求a n1.数列{a n }中,a n 与S n 的关系a n =⎩⎪⎨⎪⎧ S 1,n =1,S n -S n -1,n ≥2.2.求数列通项的常用方法(1)公式法:利用等差(比)数列求通项公式.(2)在已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用累加法求数列的通项a n .(3)在已知数列{a n }中,满足a n +1a n=f (n ),且f (1)·f (2)·…·f (n )可求,则可用累乘法求数列的通项a n .(4)将递推关系进行变换,转化为常见数列(等差、等比数列).例1 (2017·运城模拟)正项数列{a n }的前n 项和为S n ,满足a 2n +3a n =6S n +4.(1)求{a n }的通项公式;(2)设b n =2n a n ,求数列{b n }的前n 项和T n .解 (1)由a 2n +3a n =6S n +4,① 知a 2n +1+3a n +1=6S n +1+4,②由②-①,得a 2n +1-a 2n +3a n +1-3a n =6S n +1-6S n =6a n +1,即(a n +1+a n )(a n +1-a n -3)=0,∵a n >0,∴a n +1+a n >0,∴a n +1-a n -3=0,即a n +1-a n =3.又a 21+3a 1=6S 1+4=6a 1+4,即a 21-3a 1-4=(a 1-4)(a 1+1)=0,∵a n >0,∴a 1=4,∴{a n }是以4为首项,以3为公差的等差数列,∴a n =4+3(n -1)=3n +1.(2)b n =2n a n =(3n +1)·2n ,故T n =4·21+7·22+10·23+…+(3n +1)·2n ,2T n =4·22+7·23+10·24+…+(3n +1)·2n +1,∴-T n =4·21+3·22+3·23+…+3·2n -(3n +1)·2n +1=21+3(2+22+23+…+2n )-(3n +1)·2n +1=21+3·2(1-2n )1-2-(3n +1)·2n +1 =-(3n -2)·2n +1-4,∴T n =(3n -2)·2n +1+4.思维升华 给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .跟踪演练1 (2017届湖南省娄底市二模)设数列{a n }的前n 项和S n =2n +1-2,数列{b n }满足b n =1(2n +1)log 2a 2n -1+22n -1. (1)求数列{a n }的通项公式;(2)求数列{b n }的前n 项和T n .解 (1)当n =1时, a 1=S 1=2,由S n =2n +1-2,得S n -1=2n -2(n ≥2),∴a n =S n -S n -1=2n +1-2n =2n (n ≥2),又a 1也符合,∴a n =2n (n ∈N *).(2)b n =1(2n +1)log 222n -1+22n -1 =1(2n +1)(2n -1)+22n -1 =12⎝ ⎛⎭⎪⎫12n -1-12n +1+22n -1, T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1+(2+23+25+…+22n -1) =12⎝ ⎛⎭⎪⎫1-12n +1+2(1-4n )1-4=22n +13-14n +2-16. 热点二 数列与函数、不等式的综合问题数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题,不等关系或恒成立问题.例2 设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2.(1)求f n ′(2);(2)证明:f n (x )在⎝⎛⎭⎫0,23内有且仅有一个零点(记为a n ),且0<a n -12<13⎝⎛⎭⎫23n . (1)解 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1, ①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n , ②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1, 则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2, 可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)证明 因为f n (0)=-1<0,f n ⎝⎛⎭⎫23=23⎣⎡⎦⎤1-⎝⎛⎭⎫23n 1-23-1=1-2×⎝⎛⎭⎫23n ≥1-2×⎝⎛⎭⎫232>0,所以f n (x )在⎝⎛⎭⎫0,23内至少存在一个零点, 又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎝⎛⎭⎫0,23内单调递增, 因此f n (x )在⎝⎛⎭⎫0,23内有且仅有一个零点a n , 由于f n (x )=x -x n +11-x-1, 所以0=f n (a n )=a n -a n +1n 1-a n-1, 由此可得a n =12+12a n +1n >12, 故12<a n <23, 所以0<a n -12=12a n +1n <12×⎝⎛⎭⎫23n +1=13⎝⎛⎭⎫23n . 思维升华 解决数列与函数、不等式的综合问题要注意以下几点(1)数列是一类特殊的函数,函数定义域是正整数,在求数列最值或不等关系时要特别重视.(2)解题时准确构造函数,利用函数性质时注意限制条件.(3)不等关系证明中进行适当的放缩.跟踪演练2 (2016届浙江省宁波市期末)已知数列{a n }满足a 1=2,a n +1=2(S n +n +1)(n ∈N *),令b n =a n +1.(1)求证:{b n }是等比数列;(2)记数列{nb n }的前n 项和为T n ,求T n ;(3)求证:12-12×3n <1a 1+1a 2+1a 3+…+1a n <1116. (1)证明 a 1=2,a 2=2(2+2)=8,a n +1=2(S n +n +1)(n ∈N *)a n =2(S n -1+n )(n ≥2),两式相减,得a n +1=3a n +2(n ≥2).经检验,当n =1时上式也成立,即a n +1=3a n +2(n ≥1).所以a n +1+1=3(a n +1),即b n +1=3b n ,且b 1=3.故{b n }是等比数列.(2)解 由(1)得b n =3n .T n =1×3+2×32+3×33+…+n ×3n ,3T n =1×32+2×33+3×34+…+n ×3n +1,两式相减,得-2T n =3+32+33+…+3n -n ×3n +1=3(1-3n )1-3-n ×3n +1, 化简得T n =⎝⎛⎭⎫32n -34×3n +34. (3)证明 由1a k =13k -1>13k , 得1a 1+1a 2+1a 3+...+1a n >13+132+ (13)=13⎝⎛⎭⎫1-13n 1-13=12-12×13n . 又1a k =13k -1=3k +1-1(3k -1)(3k +1-1)<3k +1(3k -1)(3k +1-1)=32⎝ ⎛⎭⎪⎫13k -1-13k +1-1, 所以1a 1+1a 2+1a 3+…+1a n<12+32⎣⎢⎡⎝ ⎛⎭⎪⎫132-1-133-1+⎝ ⎛⎭⎪⎫133-1-134-1+…+ ⎦⎥⎤⎝ ⎛⎭⎪⎫13n -1-13n +1-1 =12+32⎝ ⎛⎭⎪⎫132-1-13n +1-1 =12+316-32×13n +1-1<1116, 故12-12×3n <1a 1+1a 2+1a 3+…+1a n <1116. 热点三 数列的实际应用用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列是等差模型还是等比模型,它的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题的结果.例3 自从祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商第一年年初到大陆就创办了一座120万元的蔬菜加工厂M ,M 的价值在使用过程中逐年减少,从第二年到第六年,每年年初M 的价值比上年年初减少10万元,从第七年开始,每年年初M 的价值为上年年初的75%.(1)求第n 年年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a n n,若A n 大于80万元,则M 继续使用,否则须在第n 年年初对M 更新,证明:必须在第九年年初对M 更新.(1)解 当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,故a n =120-10(n -1)=130-10n ,当n ≥7时,数列{a n }从a 6开始的项构成一个以a 6=130-60=70为首项,以34为公比的等比数列,故a n =70×⎝⎛⎭⎫34n -6,所以第n 年年初M 的价值a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝⎛⎭⎫34n -6,n ≥7.(2)证明 设S n 表示数列{a n }的前n 项和,由等差数列和等比数列的求和公式,得当1≤n ≤6时,S n =120n -5n (n -1),A n =S n n=120-5(n -1)=125-5n ≥95>80, 当n ≥7时,由于S 6=570,故S n =570+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6=780-210×⎝⎛⎭⎫34n -6. 因为{a n }是递减数列,所以{A n }是递减数列.因为A n =S n n =780-210×⎝⎛⎭⎫34n -6n, A 8=780-210×⎝⎛⎭⎫3428≈82.734>80, A 9=780-210×⎝⎛⎭⎫3439≈76.823<80, 所以必须在第九年年初对M 更新.思维升华 常见数列应用题模型的求解方法(1)产值模型:原来产值的基础数为N ,平均增长率为p ,对于时间n 的总产值y =N (1+p )n .(2)银行储蓄复利公式:按复利计算利息的一种储蓄,本金为a 元,每期的利率为r ,存期为n ,则本利和y =a (1+r )n .(3)银行储蓄单利公式:利息按单利计算,本金为a 元,每期的利率为r ,存期为n ,则本利和y =a (1+nr ).(4)分期付款模型:a 为贷款总额,r 为年利率,b 为等额还款数,则b =r (1+r )n a (1+r )n -1. 跟踪演练3 一弹性小球从100 m 高处自由落下,每次着地后又跳回原来高度的23再落下,设它第n 次着地时,共经过了S n ,则当n ≥2时,有( )A .S n 的最小值为100B .S n 的最大值为400C .S n <500D .S n ≤500答案 C解析 第一次着地时,经过了100 m ;第二次着地时共经过了⎝⎛⎭⎫100+100×23×2 m ;第三次着地时共经过了⎝⎛⎭⎫100+100×23×2+100×⎝⎛⎭⎫232×2m ;…;以此类推,第n 次着地时共经过了⎝⎛100+100×23×2+100×⎝⎛⎭⎫232×2+…+100×⎝⎛⎭⎫23n -1×2 m ;所以S n =100+100×23×2+100×⎝⎛⎭⎫232×2+…+100×⎝⎛⎭⎫23n -1×2=100+4003⎣⎡⎦⎤1-⎝⎛⎭⎫23n -11-23=100+400⎣⎡⎦⎤1-⎝⎛⎭⎫23n -1,显然S n 是关于n 的单调增函数,所以当n =2时,S n 取得最小值S 2=7003,且S n <100+400=500,故选C.真题体验1.(2016·浙江)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=______,S 5=______.答案 1 121解析 由⎩⎪⎨⎪⎧a 2=2a 1+1,a 2+a 1=4,解得a 1=1,a 2=3, 当n ≥2时,由已知可得a n +1=2S n +1,① a n =2S n -1+1, ②由①-②,得a n +1-a n =2a n ,∴a n +1=3a n ,又a 2=3a 1,∴{a n }是以a 1=1为首项,以q =3为公比的等比数列.∴S 5=1-1×351-3=121. 2.(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解 (1)设数列{x n }的公比为q .由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0,由已知得q >0,所以q =2,x 1=1.因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1.由(1)得x n +1-x n =2n -2n -1=2n -1,记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2, 所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2, ①则2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1, ②由①-②,得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12. 押题预测已知数列{a n }的前n 项和S n 满足关系式S n =ka n +1,k 为不等于0的常数.(1)试判断数列{a n }是否为等比数列;(2)若a 2=12,a 3=1. ①求数列{a n }的通项公式及前n 项和S n 的表达式;②设b n =log 2S n ,数列{c n }满足c n =1b n +3b n +4+b n +2·2b n,数列{c n }的前n 项和为T n ,当n >1时,求使4n -1T n <S n +3+n +122成立的最小正整数n 的值. 押题依据 本题综合考查数列知识,第(1)问考查反证法的数学方法及逻辑推理能力,第(2)问是高考的热点问题,即数列与不等式的完美结合,其中将求数列前n 项和的常用方法“裂项相消法”与“错位相减法”结合在一起,考查了综合分析问题、解决问题的能力. 解 (1)若数列{a n }是等比数列,则由n =1得a 1=S 1=ka 2,从而a 2=ka 3.又取n =2得a 1+a 2=S 2=ka 3,于是a 1=0,显然矛盾,故数列{a n }不是等比数列.(2)①由条件得⎩⎨⎧ a 1=12k ,a 1+12=k ,解得⎩⎪⎨⎪⎧a 1=12,k =1, 从而S n =a n +1.当n ≥2时,由S n -1=a n ,得a n =S n -S n -1=a n +1-a n ,即a n +1=2a n ,此时数列是首项为a 2=12、公比为2的等比数列.综上所述,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧12,n =1,2n -3,n ≥2.从而其前n 项和S n =2n -2 (n ∈N *). ②由①得b n =n -2,从而c n =1(n +1)(n +2)+n ·2n -2.记C 1=12×3+13×4+…+1(n +1)(n +2)=⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=n2(n +2),记C 2=1·2-1+2·20+…+n ·2n -2, 则2C 2=1·20+2·21+…+n ·2n -1, 两式相减得C 2=(n -1)·2n -1+12,从而T n =n 2(n +2)+(n -1)·2n -1+12=n +1n +2+(n -1)·2n -1, 则不等式4n -1T n <S n +3+n +122可化为4(n +1)(n -1)(n +2)+2n +1<2n +1+n +122,即n 2+n -90>0,因为n ∈N *,故n >9, 从而最小正整数n 的值是10.A 组 专题通关1.(2017届江西抚州市七校联考)若数列{a n }满足(2n +3)·a n +1-(2n +5)a n =(2n +3)(2n +5)·lg ⎝⎛⎭⎫1+1n ,且a 1=5,则数列⎩⎨⎧⎭⎬⎫a n 2n +3的第100项为( ) A .2 B .3C .1+lg 99D .2+lg 99答案 B解析 由(2n +3)a n +1-(2n +5)a n =(2n +3)(2n +5)lg ⎝⎛⎭⎫1+1n , 可得a n +12n +5-a n2n +3=lg ⎝⎛⎭⎫1+1n , 记b n =a n2n +3,有b n +1-b n =lg ⎝⎛⎭⎫1+1n , 由累加法,得b n =lg n +1,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +3的第100项为lg 100+1=3,故选B. 2.已知数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则a 1·a 2·a 3·…·a 2 017等于( )A .-6B .6C .-2D .2 答案 D解析 ∵a 1=2,a n +1=1+a n 1-a n ,∴a 2=1+21-2=-3,同理a 3=-12,a 4=13,a 5=2,…,∴a n +4=a n ,而a 1a 2a 3a 4=1,∴a 1a 2a 3…a 2 017=(a 1a 2a 3a 4)504×4×a 1=1×2=2,故选D.3.(2017届贵州省遵义航天高级中学模拟)南北朝时期的数学古籍《张邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出:下四人后入得三斤,持出;中间三人未到者,亦依等次更给,问:每等人比下等人多得几斤?”( ) A.439 B.778 C.776 D.585 答案 B解析 每等人所得金构成一个等差数列{a n },设公差为d .由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3=4,a 7+a 8+a 9+a 10=3,即⎩⎪⎨⎪⎧3a 1+3d =4,4a 1+30d =3,解得d =-778.故选B.4.(2017届河北省衡水中学调研)若数列{}a n 满足a 1=1,且对于任意的n ∈N *都有a n +1=a n +n +1,则1a 1+1a 2+…+1a 2 017等于( )A.2 0162 017 B.2 0152 016 C.4 0302 016 D.2 0171 009答案 D解析 由a n +1=a n +n +1,得a n +1-a n =n +1,则a 2-a 1=1+1,a 3-a 2=2+1, a 4-a 3=3+1,…,a n -a n -1=(n -1)+1 ,以上等式相加,得a n -a 1=1+2+3+…+(n -1)+n -1 ,把a 1=1代入上式,得a n =1+2+3+…+(n -1)+n =n (n +1)2,所以1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,则1a 1+1a 2+…+1a 2 016=2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 017-12 018 =2⎝⎛⎭⎫1-12 018=2 0171 009,故选D.5.(2017届天津市六校联考)已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *).若b n +1=(n -2λ)·⎝⎛⎭⎫1a n+1 (n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围是( ) A .λ>23B .λ>32C .λ<32D .λ<23答案 D解析 因为a n +1=a n a n +2⇒1a n +1=2a n +1⇒1a n +1+1=2⎝⎛⎭⎫1a n +1⇒1a n +1=⎝⎛⎭⎫1a 1+12n -1=2n ,所以b n +1=(n -2λ)·2n ,因为数列{b n }是单调递增数列,所以当n ≥2时b n >b n -1⇒(n -2λ)·2n >(n -1-2λ)·2n -1⇒n >2λ-1⇒2>2λ-1⇒λ<32;当n =1时,b 2>b 1⇒(1-2λ)·2>-λ⇒λ<23,因此λ<23,故选D.6.(2017届湖南湘中名校教改联合体联考)对于数列{a n },定义H n =a 1+2a 2+…+2n -1a nn为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n 恒成立,则实数k 的取值范围为________. 答案 ⎣⎡⎦⎤73,125解析 由题意可知a 1+2a 2+…+2n -1a n n =2n +1,∴a 1+2a 2+…+2n -1a n =n ·2n +1,① a 1+2a 2+…+2n -2a n -1=(n -1)·2n ,②由①-②,得2n -1a n =n ·2n +1-(n -1)·2n , 则a n =2n +2,∴a n -kn =(2-k )·n +2, 令b n =(2-k )·n +2,∵S n ≤S 5,∴b 5≥0,b 6≤0,解得73≤k ≤125,∴k 的取值范围是⎣⎡⎦⎤73,125.7.已知数列{a n }的前n 项和为S n ,S n =43(a n -1),则(4n -2+1)⎝⎛⎭⎫16a n +1的最小值为__________. 答案 4解析 ∵S n =43(a n -1),∴S n -1=43(a n -1-1)(n ≥2),∴a n =S n -S n -1=43(a n -a n -1),∴a n =4a n -1,又a 1=S 1=43(a 1-1),∴a 1=4,∴{a n }是首项为4,公比为4的等比数列, ∴a n =4n , ∴(4n -2+1)⎝⎛⎭⎫16a n +1=⎝⎛⎭⎫4n16+1⎝⎛⎭⎫164n +1 =2+4n 16+164n ≥2+2=4,当且仅当n =2时取“=”.8.(2017届山西晋中榆社中学月考)已知数列{a n }的通项公式a n =⎩⎪⎨⎪⎧a ,n =1,4n +(-1)n(8-2a ),n ≥2,若对任意n ∈N *,a n <a n +1恒成立,则a 的取值范围是__________.答案 (3,5)解析 由已知可得a 2n =8n +8-2a , a 2n +1=8n -4+2a ,由条件得⎩⎪⎨⎪⎧a <16-2a ,8n +8-2a <8n -4+2a ,8n -4+2a <8(n +1)+8-2a ,解得3<a <5.9.数列{a n }的前n 项和为S n ,且S n =n (n +1)-1(n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足:a n =b 13+1+b 232+1+b 333+1+…+b n3n +1,求数列{b n }的通项公式.解 (1)当n =1时,a 1=S 1,当n ≥2时,a n =S n -S n -1=n (n +1)-(n -1)n =2n , 知a 1=1不满足该式,∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2.(2)当n =1时,b 1=4;当n =2时,b 2=30; ∵a n =b 13+1+b 232+1+b 333+1+…+b n3n +1(n ≥2), ①a n +1=b 13+1+b 232+1+b 333+1+…+b n3n +1+b n +13n +1+1, ②由②-①,得b n +1=2(3n +1+1),∴b n =2(3n +1). 综上,b n=⎩⎪⎨⎪⎧4,n =1,30,n =2,2(3n+1),n ≥3.10.(2016·四川)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n 3n -1.(1)解 由已知,S n +1=qS n +1,S n +2=qS n +1+1,两式相减,得a n +2=qa n +1,n ≥1.又由S 2=qS 1+1,得a 2=qa 1,故a n +1=qa n 对所有n ≥1都成立. 所以数列{a n }是首项为1,公比为q 的等比数列. 从而a n =q n -1.由2a 2,a 3,a 2+2成等差数列,可得2a 3=3a 2+2,即2q 2=3q +2,则(2q +1)(q -2)=0, 由已知,q >0,故q =2.所以a n =2n -1(n ∈N *). (2)证明 由(1)可知,a n =q n -1. 所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q 2(n -1).由e 2=1+q 2=53,解得q =43.因为1+q 2(k -1)>q 2(k -1), 所以1+q 2(k -1)>q k -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n -1q -1. 故e 1+e 2+…+e n >4n -3n3n -1.B 组 能力提高11.(2017届江西抚州市七校联考)若数列{a n }满足a n +12n +5-a n2n +3=1,且a 1=5,则数列{a n }的前100项中,能被5整除的项数为( ) A .42 B .40 C .30 D .20 答案 B解析 ∵数列{a n }满足a n +12n +5-a n2n +3=1,即a n +12(n +1)+3-a n 2n +3=1,且a 12×1+3=1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +3是以1为首项,以1为公差的等差数列, ∴a n2n +3=n ,∴a n =2n 2+3n ,由题意可知,∴每10项中有4项能被5整除,∴数列{a n }的前100项中,能被5整除的项数为40,故选B. 12.(2017·广东省汕头市金山中学、河北省石家庄市第二中学联考)已知数列{a n }满足:a 1=1,a n =a 2n -1+2a n -1 (n ≥2),若b n =1a n +1+1a n +2(n ∈N *),则数列{b n }的前n 项和S n =________. 答案 1解析 当n ≥2时,a n +1=a 2n -1+2a n -1+1=(a n -1+1)2>0,两边取以2为底的对数可得log 2(a n +1)=log 2(a n -1+1)2=2log 2(a n -1+1),则数列{log 2(a n +1)}是以1为首项,2为公比的等比数列, log 2(a n +1)=2n -1,1221n n a -=-,又a n =a 2n -1+2a n -1(n ≥2), 可得a n +1=a 2n +2a n (n ∈N *),两边取倒数可得1a n +1=1a 2n +2a n =1a n (a n +2)=12⎝ ⎛⎭⎪⎫1a n -1a n +2, 即2a n +1=1a n -1a n +2, 因此b n =1a n +1+1a n +2=1a n -1a n +1,所以Sn =b 1+…+b n =1a 1-1a n +1=113.已知数列{a n }中,a 1=1,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上.(1)求数列{a n }的通项公式;(2)若函数f (n )=1n +a 1+2n +a 2+3n +a 3+…+nn +a n (n ∈N *,且n >2),求函数f (n )的最小值;(3)设b n =1a n ,S n 表示数列{b n }的前n 项和,试问:是否存在关于n 的整式g (n ),使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立?若存在,写出g (n )的解析式,并加以证明;若不存在,试说明理由. 解 (1)点P (a n ,a n +1)在直线x -y +1=0上, 即a n +1-a n =1,且a 1=1,∴数列{a n }是以1为首项,1为公差的等差数列, ∴a n =1+(n -1)·1=n (n ∈N *). (2)∵f (n )=1n +1+2n +2+…+n 2n ,∴f (n +1)=1n +2+2n +3+…+n -12n +n2n +1+n +12n +2,∴f (n +1)-f (n )>0, ∴f (n )是单调递增的, 故f (n )的最小值是f (3)=2320.(3)∵b n =1n ⇒S n =1+12+13+…+1n ,∴S n -S n -1=1n (n ≥2),即nS n -(n -1)S n -1=S n -1+1,∴(n -1)S n -1-(n -2)S n -2=S n -2+1,…,2S 2-S 1=S 1+1, ∴nS n -S 1=S 1+S 2+…+S n -1+n -1, ∴S 1+S 2+…+S n -1=nS n -n =(S n -1)·n (n ≥2), ∴g (n )=n .14.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n ,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n . 证明 (1)由a 1=1及a n +1=a n 1+a 2n知,a n >0,故a n +1-a n =a n1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n , 得1a 2n +1=1a 2n+a 2n +2, 从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n , 又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *.(3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n . 另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第讲等差数列与等比数列
.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.
.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.
热点一等差数列、等比数列的运算
.通项公式
等差数列:=+(-);
等比数列:=·-.
.求和公式
等差数列:==+;
等比数列:==(≠).
.性质
若+=+,
在等差数列中+=+;
在等比数列中·=·.
例()(届江西师大附中、临川一中联考)已知数列,满足=,∈*,其中是等差数列,且=,则+++…+等于( )
..
. )
答案
解析由题设可得+=,
即+=,
由等差数列的通项的性质,可得
+=+=,
所以+++…+=(+ ()=,
故选.
()(届四川省成都市诊断性检测)在等比数列{}中,已知=, ++=,则等于( )
..
..
答案
解析由于++=++=(++)=,得+-=,得=或=-(舍去),则==×=,故选.
思维升华在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于和()的方程组求解,但要注意消元法及整体计算,以减少计算量.
跟踪演练()(·河北省曲周县第一中学模拟)设等差数列{}的前项和为,若=-,=,则等于( )
..-
..
答案
解析由题设可得(\\(+(×)=-,+(×)=))⇒(\\(=-,=,))
则=-×+×=,故选.
()(届长沙一模)等比数列的公比为-,则))-))=.
答案
解析))-))
=)))== .
热点二等差数列、等比数列的判定与证明
数列{}是等差数列或等比数列的证明方法
()证明数列{}是等差数列的两种基本方法:
①利用定义,证明+-(∈*)为一常数;
②利用等差中项,即证明=-++(≥).
()证明{}是等比数列的两种基本方法
①利用定义,证明(∈*)为一常数;
②利用等比中项,即证明=-+(≥).
例(届东北三省三校联考)已知数列{}满足=,+=-+,数列{}满足=,+=+-.
()证明:{-}为等比数列;
()数列{}满足=,求数列{}的前项和.
()证明∵+=-+,
∴+-(+)=(-),
又-=,
∴{-}是以为首项,为公比的等比数列.
()解由()知-=(-)·-=,
∵+=+-,∴+-=,
(\\(-=,-=,,…,--=-,))。

相关文档
最新文档