PCB四密度通用测试技术介绍(doc 6页)
电测机四线资料

1
PCB四线测试设备介绍
•目前应用范围最广的四线测试设备是飞针测试机,典型代表如ATG,EMMA, 协力。 它们都提供可选配的四线功能,由于飞针可以测试密度很高的PCB ,不需要 制作夹具,且测试精度高,因而成为高密度PCB四线测试的首选。 唯一的缺点是测试效率太低。
1
1、飞针测试探针介绍 飞针测试探针有刀型和针型两种形状, 刀型探针形状如同一把刀,针型探针形状如同一根针。 • 二线测试探针为单针,如下图所示:
电 测 点 流 量 +
电 测 点 压 量 -
电 测 点 流 量 -
1
二线制与四线制测量之比较
1.二线制 2.四线制
优点:
测试电路简单,夹具制作简单。
优点:
实现了精确测量 电流供给回路与电压测定回路完全独立,其排线阻抗, 探针阻抗与接触阻抗完全忽略,所测得的阻值就是PCB 本身待测线路位置的阻值。可精确测定被测PCB 之微小 阻值,其四线测试的测试精度可达到mΩ 级。
1
传统二线制测量与四线制测量原理
二线制测量等效电路 四线制测量等效电路
原理:
数字万用表测量电阻是通过测量恒流源电流I 流 过被测电阻RX 所产生的电压Vx 实现的。 测试时,恒流源电流I 通过Hi, Lo 端和测量线(万用表表笔引线) 输送至被测电阻Rx ,电压测量端S1 、S2 通过短路线接至 Hi, Lo 端。两根表笔即传输电流,又传输电压。即电流,电压 共用一个回路。数字万用表实际测量到的电阻值包括被测 电阻Rx 及表笔引线电阻RL1和RL2 。当测量的电阻阻值较 小时,表笔引线电阻产生的误差就不容忽视。这相当于我们的双 线式测试机测试原理,表笔引线电阻相当于排线电阻,针床接 触电阻等。
测定精度:开路判定为阻抗为10-100Ω 程度。
PCB测试工艺及技术方法详解模板

锡球是对于任何引入免洗技术的工程师的一个问题。为了帮
的不同电路板供应商的数量。经过这样, 她将减少使用在其板上的不同阻焊类型, 并帮助孤立主要冋题■阻焊层。
锡球可能由许多装配期间的工艺冋 题引起,但如果阻焊层不让锡球粘住,该冋题就解决了。如果阻焊 类型不允许锡球粘住表廂,那么这就为工程师打开工艺窗口。锡球
焊盘破裂
当元件或导线必须作为一个第二阶段装配安装时,一般使用C形焊盘。例子有,重型元件、线编织或不能满足焊接要求的元 件。在某些情况中,品质人员不知道破裂的原因,以为是PCB腐蚀
问题。
上面的照片是一个设计陷井,不是PCB缺陷。在焊盘上存在两个破裂,但 只有一个需要防止焊接而且一般防止焊 接过程的方向。
开 始 测 量 方 法(TM, test method)
什么是测量方法?对过程控制、品质保证和失效分析很重要 的,测试方法是概括用于获得有关测试主体,如板、元件.焊锡与 助焊剂,数据的方法的详细程序。这些方法应该以这样一种方式写 下,以便它们容易跟随和能够再现。一个测试方法(TM)应该是可 重复的,以便在各种时间从不同测试所产生的结果能够相互比较。 —个跟随困难和/或不够详细的测试方法可能引起冋题。例如,如 果一个测试方法是写给己装配的电路板的清洁度测试的,经过测量 浸出溶液(extract solution)的导电率,但没有规定进行浸出的温度, 这样可能得到错误的结果。
上面的例子也显示铜焊盘上的去毛 刺。在钻孔或冲孔期间,板廂上的铜已经在某些区域倾斜,使得焊 接困难。如果松香从或者基板或者基板与铜焊盘之间的结合点上 涂在焊盘边缘上。
测试方法入门
By Brian Toleno and Greg Parks
本文介绍,在你的设施内已经有稳定的、容易跟随的、可重 复性的测试方法吗?如果没有,问题可能就在前⑥。
PCB四密度通用测试技术介绍

四密度通用测试技术介绍1 通用测试技术的起源和发展最早的PCB通用电性测试技术可追溯至七十年代末八十年代初, 由于当时的元器件均采用标准封装(Pitch为100mil), PCB亦只有THT(通孔技术)密度层次, 所以欧美测试机厂商就设计了一款标准网格的测试机, 只要PCB上的元件和布线是按照标准距离排布的,则每个测试点均会落在标准网格点上, 因为当时所有PCB都能通用, 故称为通用测试机。
由于半导体封装技术的发展, 元器件开始有了更小的封装及贴片(SMT)封装, 标准密度通用测试开始不再适用, 于是九十年代中期, 欧美的测试厂商又推出了双倍密度测试机, 并结合用一定的钢针斜率制造夹具以转换PCB测试点与机器网格连接, 随着HDI制程工艺的逐渐成熟, 双倍密度通用测试又不能完全满足测试的需求,于是在二000年左右, 欧洲测试机厂商又推出了四倍密度网格通用测试机。
图一为网格规格:(图一) 网格密度单密度双密度四密度2 通用测试的关键技术2·1开关元件要满足大部份HDI PCB的测试要求, 测试面积必须要足够大, 通常有以下标准尺寸: 9.6×12.8(inch)、16 X12.8(inch)、24×19.2(inch), 在双密度满网格(Full Grid)情况下, 上述三种尺寸测试点数分别是49512、81920、184320, 电子元件的数量高达数十万, 开关元件是保证测试稳定的一个核心元件, 要求其具有耐高压(>300V)、低漏电等性能, 同时电阻值等电气性能要均衡一致,所以这类元件一定要经过严格的筛选与检测, 通常以晶体管或场效应管作为开关元件,基本线路如图二所示:图(二):开关回路晶体三极管的优缺点:优点: 成本低,抗静电击穿能力强, 稳定性高;缺点: 电流驱动,电路比较复杂, 需隔离基流(Ib)影响, 功耗大场效应管的优缺点:优点: 电压驱动, 电路简单, 不受基流(Ib)影响,功耗小缺点: 成本高, 极易发生静电击穿, 需加静电保护措施, 稳定性不高, 所以会增加维修成本。
PCB电测试

当线路不存在断路时,则 Cx =Cx1 + Cx2 当线路存在短路时,则 C x =Cx1 当线路断路时,电容值低于参考值,当 线路短路时,电容值高于参考值。
图 2-10 电容法测试
从测试原理上看,电容测量是取决线路图形产生电容量大小判断,精度取决于电容分辨率, Hioki 公布的数据为 5Af(5 x 10-6 pf),分辨容量越小,阻值分辨越高,但如果是大型系统 PCB(以下 为 A 类),其大部分使用电压较高,电流较大,则不推荐使用此方法测试(电容测试并不使用高电 压,所以耐压值不能测试)。此方法测试最为适合 IC 封装基板,FPC 类 PCB。此测试方法的优点为 测试速度快,缺点为测试精度低
主要有三种方式,一是有夹具测试,探针按照线路板的测试点位置排布在测试夹具上与 PCB 相应的测试点相连;二是无夹具的移动探针式测试(又称飞针测试),该种方式只有几根探针,探针 在线路板上快速移动与测试点接触;三是 JP 导电胶测试,利用电胶的各向异性实现连接。 2.1.2.1.专用测试 使用绕线或电缆连接的方式制做的夹具,通常称为专用夹具。 图 2-4 专用测试结构图 利用专用夹具测试称为专用测试 优点:结构简单,技术难度小,设备成本低。 缺点:密度高,点数多时,成本最高,所以在高密度测试时, 一般不推荐使用。 在日本,由于测试针的尺寸可以做到非常小(<0.1mm= 所以 在小面积的高密度测试时,也较常使用此类测试,但一般配置 CCD 系统或移动夹具测试。 2.1.2.2 通用测试 利用通用测试夹具与具有标准密度点阵的针床进行测试称为通用测试 图 2-5 通用测试结构图 如图 2-5 其中测试夹具上的探针一侧与线路板的测试 Pad 相接触, 另一侧与针床接触,针床上按照固定间距排列弹簧针点阵, 弹簧针再与电子扫描系统相连接。 标准网络又分为单密度(100 点/ 平方英寸),双密度(200 点/ 平方英寸),四密度(400 点/ 平方英寸)。(如图 2-6)
PCB四密度通用测试技术介绍(doc 6页)

PCB四密度通用测试技术介绍(doc6页)部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑四密度通用测试技术介绍1 通用测试技术的起源和发展最早的PCB通用电性测试技术可追溯至七十年代末八十年代初, 由于当时的元器件均采用标准封装(Pitch为100mil), PCB亦只有THT(通孔技术)密度层次, 所以欧美测试机厂商就设计了一款标准网格的测试机, 只要PCB上的元件和布线是按照标准距离排布的,则每个测试点均会落在标准网格点上, 因为当时所有PCB都能通用, 故称为通用测试机。
由于半导体封装技术的发展, 元器件开始有了更小的封装及贴片(SMT)封装, 标准密度通用测试开始不再适用, 于是九十年代中期, 欧美的测试厂商又推出了双倍密度测试机, 并结合用一定的钢针斜率制造夹具以转换PCB测试点与机器网格连接, 随着HDI制程工艺的逐渐成熟, 双倍密度通用测试又不能完全满足测试的需求,于是在二000年左右, 欧洲测试机厂商又推出了四倍密度网格通用测试机。
图一为网格规格:(图一) 网格密度单密度双密度四密度2 通用测试的关键技术2·1开关元件要满足大部份HDI PCB的测试要求, 测试面积必须要足够大, 通常有以下标准尺寸: 9.6×12.8(inch)、16 X12.8(inch)、24×19.2(inch), 在双密度满网格(Full Grid)情况下, 上述三种尺寸测试点数分别是49512、81920、184320, 电子元件的数量高达数十万, 开关元件是保证测试稳定的一个核心元件, 要求其具有耐高压(>300V)、低漏电等性能, 同时电阻值等电气性能要均衡一致,所以这类元件一定要经过严格的筛选与检测, 通常以晶体管或场效应管作为开关元件,基本线路如图二所示:图(二):开关回路晶体三极管的优缺点:优点: 成本低,抗静电击穿能力强, 稳定性高;缺点: 电流驱动,电路比较复杂, 需隔离基流(Ib)影响, 功耗大场效应管的优缺点:优点: 电压驱动, 电路简单, 不受基流(Ib)影响,功耗小缺点: 成本高, 极易发生静电击穿, 需加静电保护措施, 稳定性不高, 所以会增加维修成本。
高密度电路板技术与应用.pcb先进制造技术_概述及解释说明

高密度电路板技术与应用.pcb先进制造技术概述及解释说明1. 引言1.1 概述高密度电路板技术是一种重要的电子制造技术,它能够在有限的空间内密集布置更多的元器件,并提供更高性能和更可靠的电子设备。
随着现代电子产品对小型化、轻量化和高性能要求的增加,高密度电路板技术在各个行业中得到了广泛应用。
1.2 文章结构本文将从以下几个方面对高密度电路板技术进行探讨。
首先,在第二部分中,我们将概述高密度电路板技术的定义与特点,并回顾其发展历程以及应用领域。
接下来,在第三部分中,我们将介绍PCB先进制造技术的制造工艺、材料选择与设计考虑,并列举一些先进技术应用案例。
然后,在第四部分中,我们将探讨高密度电路板技术在行业中的价值,包括促进产业发展、提高产品性能与可靠性以及开拓新应用领域和前景。
最后,在第五部分中,我们将总结目前高密度电路板技术的现状,并展望未来的发展趋势,同时提出实践意义和建议措施。
1.3 目的本文的目的是全面介绍高密度电路板技术及其应用,在读者对该领域有一个整体了解的基础上,进一步深入探讨其制造工艺、材料与设计考虑以及先进技术应用案例。
同时,本文还将重点分析高密度电路板技术在产业中的价值,包括其对产业发展、产品性能与可靠性的提升,以及新应用领域和前景的拓展。
最后,我们还将总结目前高密度电路板技术的现状,并为未来发展趋势提出展望,并给出实践意义和建议措施。
通过阅读本文,读者将能够更好地了解高密度电路板技术,并对其在相关行业中的应用与发展有一个更清晰的认识。
2. 高密度电路板技术概述2.1 定义与特点高密度电路板技术是一种在电子设备中使用的先进制造技术,它通过将更多的线路和元件集成到较小的空间内,实现了电路板尺寸的缩小和功能的增强。
与传统的电路板相比,高密度电路板具有更高的线路密度、更小的元件间距以及更复杂的设计结构。
2.2 发展历程高密度电路板技术起源于20世纪60年代初期,当时主要应用于军事领域。
四密度通用测试技术介绍(精)

四密度通用测试技术介绍1 通用测试技术的起源和发展最早的PCB通用电性测试技术可追溯至七十年代末八十年代初, 由于当时的元器件均采用标准封装(Pitch为100mil), PCB亦只有THT(通孔技术)密度层次, 所以欧美测试机厂商就设计了一款标准网格的测试机, 只要PCB上的元件和布线是按照标准距离排布的,则每个测试点均会落在标准网格点上, 因为当时所有PCB都能通用, 故称为通用测试机。
由于半导体封装技术的发展, 元器件开始有了更小的封装及贴片(SMT)封装, 标准密度通用测试开始不再适用, 于是九十年代中期, 欧美的测试厂商又推出了双倍密度测试机, 并结合用一定的钢针斜率制造夹具以转换PCB测试点与机器网格连接, 随着HDI制程工艺的逐渐成熟, 双倍密度通用测试又不能完全满足测试的需求,于是在二000年左右, 欧洲测试机厂商又推出了四倍密度网格通用测试机。
图一为网格规格:(图一) 网格密度单密度双密度四密度2 通用测试的关键技术2·1开关元件要满足大部份HDI PCB的测试要求, 测试面积必须要足够大, 通常有以下标准尺寸: 9.6×12.8(inch)、16 X12.8(inch)、24×19.2(inch), 在双密度满网格(Full Grid)情况下, 上述三种尺寸测试点数分别是49512、81920、184320, 电子元件的数量高达数十万, 开关元件是保证测试稳定的一个核心元件, 要求其具有耐高压(>300V)、低漏电等性能, 同时电阻值等电气性能要均衡一致,所以这类元件一定要经过严格的筛选与检测, 通常以晶体管或场效应管作为开关元件,基本线路如图二所示:图(二):开关回路晶体三极管的优缺点:优点: 成本低,抗静电击穿能力强, 稳定性高;缺点: 电流驱动,电路比较复杂, 需隔离基流(Ib)影响, 功耗大场效应管的优缺点:优点: 电压驱动, 电路简单, 不受基流(Ib)影响,功耗小缺点: 成本高, 极易发生静电击穿, 需加静电保护措施, 稳定性不高, 所以会增加维修成本。
四线式测试技术研究

四线式测试技术研究本文详细介绍了低阻四线式测试技术的原理,以及四线式飞针、四线式针床的实际工作过程,并以飞针低阻四线式测试进行实验。
一、前言随着电子技术的迅猛发展,印制线路板(PCB)的制作层数越来越高、线路密度越来越密、焊盘尺寸越做越小,客户对板的要求越来越严。
通常情况下,PCB 的开短路测试测试参数值中的开路阻抗设为25Ω,线路阻值大于25Ω时机器判断为开路,小于25Ω时机器判断为合格,对于阻值小于25Ω的线路则无法精确测试出其实际电阻值,25Ω以下的线路成为测试盲区。
在实际生产中发现PCB的某些缺陷,如孔内无铜、空洞、铜薄、线幼、线路缺口等问题均会影响到线路阻值,当阻值小于25Ω时,用通常的开短路测试方法来测试以上缺陷板时,测试结果显示PASS,但客户经过高温焊接后阻值发生变化,导致开路问题发生,最终导致客户投诉,严重的还需向客户赔款。
二、现状经对我司某客户退回的板进行问题分析发现,在反馈的244 块开路缺陷板中,其中过孔阻值大于25Ω的板有6 块,过孔阻值小于25Ω的板有51 块,其它类型开路问题板187 块,而过孔阻值小于25Ω的51 块板退去元件上机测试后的结果显示为PASS,重新测试这51 块板的开路阻值,阻值分布在1.21Ω-23.4Ω之间(详见下表),从表中数据可以看出,被退回的244 块开路缺陷板中,阻值小于25Ω的数量共51 块,占总数的比例为20.9%,此部分板是由测试机判断测试结果为PASS 而正常出货的,现有测试机根本无法检测出,我们必须寻找一种新的测试方法,降低客户投诉。
序号阻值(Ω)序号阻值(Ω)序号阻值(Ω)序号阻值(Ω)1 3.8 14 3.8 27 10.2 40 3.52 4.8 15 22.7 28 10.4 41 2.33 4.8 16 22.4 29 14.8 42 3.24 6.8 17 23.4 30 3.2 43 4.15 10.8 18 3.6 31 3.5 44 2.66 6.8 19 7.2 32 1.25 45 1.97 7.3 20 10.8 33 2.2 46 3.08 3 21 8 34 5.6 47 2.09 2.8 22 4.9 35 2.6 48 7.410 8 23 5.6 35 1.21 49 2.611 4.6 24 8.4 37 2.5 50 9.412 6.4 25 5.8 38 4.2 51 3.613 10.8 26 4.2 39 4.8三、二线测试与四线测试原理对比1、普通二线测试原理通常的开短路测试方法即为普通二线测试,如下图所示,二线测试是目前普遍应用的一种方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB四密度通用测试技术介绍(doc 6页)
四密度通用测试技术介绍
1 通用测试技术的起源和发展
最早的PCB通用电性测试技术可追溯至七十年代末八十年代初, 由于当时的元器件均采用标准封装(Pitch为100mil), PCB亦只有THT(通孔技术)密度层次, 所以欧美测试机厂商就设计了一款标准网格的测试机, 只要PCB上的元件和布线是按照标准距离排布的,则每个测试点均会落在标准网格点上, 因为当时所有PCB都能通用, 故称为通用测试机。
由于半导体封装技术的发展, 元器件开始有了更小的封装及贴片(SMT)封装, 标准密度通用测试开始不再适用, 于是九十年代中期, 欧美的测试厂商又推出了双倍密度测试机, 并结合用一定的钢针斜率制造夹具以转换PCB测试点与机器网格连接, 随着HDI制程工艺的逐渐成熟, 双倍密度通用测试又不能完全满足测试的需求,于是在二000年左右, 欧洲测试机厂商又推出了四倍密度网格通用测试机。
图一为网格规格:
(图一) 网格密度
单密度双密度四密度
2 通用测试的关键技术
2·1开关元件
要满足大部份HDI PCB的测试要求, 测试面积必须要足够大, 通常有以下标准尺寸: 9.6×12.8(inch)、16 X12.8(inch)、24×19.2(inch), 在双密度满网格(Full Grid)情况下, 上述三种尺寸测试点数分别是49512、81920、184320, 电子元件的数量高达数十万, 开关元件是保证测试稳定的一个核心元件, 要求其具有耐高压(>300V)、低漏电等性能, 同时电阻值等电气性能要均衡一致,所以这类元件一定要经过严格的筛选与检测, 通常以晶体管或场效应管作为开关元件,基本线路如图二所示:
图(二):开关回路
晶体三极管的优缺点:
优点: 成本低,抗静电击穿能力强, 稳定性高;
缺点: 电流驱动,电路比较复杂, 需隔离基流(Ib)影响, 功耗大
场效应管的优缺点:
优点: 电压驱动, 电路简单, 不受基流(Ib)影响,功耗小
缺点: 成本高, 极易发生静电击穿, 需加静电保护措施, 稳定性不高, 所以会增加维修成本。
2·2 网格点的独立性
满网格(Full Grid)
每个网格有独立的开关回路, 即每个点都占用一组开关元件及线路,整个测试面积都能按四倍密度撒针;
共享网格(Share Grid)
由于满网格的开关元件数量多且线路比较复杂, 难于实现,所以某些测试厂商使用网格共用技术,使不同区域的几个点共用一组开关元件和线路,从而减小了布线的难度和开关元件的数量,我们称之为共享网格(Share Grid)。
共享网格有一个很大的缺陷,假如一个区域的点己经被完全占用了, 那么与之共享的区域的点就不能再用,以至降低了该区域的密度为单密度。
所以在较大面积HDI测试仍存在密度的瓶颈。
2
3 双密度与四密度比较
首先,四密度可以完成双密度无法测试的板,因为针床上的弹簧针点阵密度与线路板上的测试点的密度不同而使得测试夹具的钢针必须有一定的斜率,才能将on grid 转变成为off grid,然而钢针的斜度是受到结构限制的,不可能无限地加大,一般情况下,双密度的钢针斜率(测试钢针在夹具中水平偏移的距离)最大为700mil, 四密度为400mil,那么,就有可能产生无法种针的现象,究竟有多少这样的针是可以通过计算得出的。
对于PAD的间距为20mil平均分布的BGA,撒针最大斜率双密按600mil,四密按400mil 计算时,用双密度测试可排列的点数为:441个,约0.17inch2,而用四密度测试时可排列的点数为:896个,约0.35inch2。
基本是双密度的一倍,由可知一斑。
另外,在测试效果上可明显改善测试的假点率和压痕情况,四密度的点阵密度为每平方英寸400点,双密度为200点,相同点数在夹具底层上的撒针面积可以减小一半,所以,采用四密度可以减小钢针的斜度,在夹具高度相同的情况下,同一款测试板的撒针斜率四密度基本上是双密度的一半,而钢针的斜度会对测试效果有很大的影响,斜率大则垂直方向上的距离减小,弹簧针压力会因此而减小,而夹具各层对钢针在垂直方向的阻力增大,导致钢针与PAD接触不良。
另外,倾斜的钢针在上下模压合的过程中与PCB接触的一端会在PAD表面有相对滑动,如果夹具的强度不好而变形,钢针卡在夹具中,此时,钢针在PAD上的压力就远远不止是针床弹簧针的弹力,严重时就会产生压痕。
四密度的钢针斜率比双密度的小,则有更多空间在夹具上安装支撑柱,使夹具结构更加稳定。
斜率小的另外一个好处是,可以使钻孔孔径减小,从而减小孔破的可能。
表(三)种针斜率比较表
图(四) 相同的BGA用双密与四密度的种针情况
4 明信四密度通用测试技术的优势
明信集团公司推出的四密度测试系统应用了自已的专利技术,取得了多项的技术突破: —全球第一台晶体管满网格一体化设计
明信QD技术是在超过十年测试技术研究基础上发展出来,成功地应用晶体三极管结合独特的偏流控制技术和成熟的芯片设计技术,使晶体管满网格一体化设计的四倍密度测试机成为全球第一台,其独有的经济性和稳定性,决定了其具有更好的性价比;
—可在双密度机型直接升级
QD设计的一体化开关模块,直接与明信双密度DD模块兼容,所以可以在原双倍密度机型直接升级,并且可实现四密度与双密度混合密度使用,经济灵活;
—测试速度提升了50%以上
开关模块采用了高速单指令(RISC)CPU和DMA控制技术,结合可靠的通讯技术,在保证测试的可靠性的前提下,速度大幅提高,达到了4096点/秒;
—完善的技术支持服务网络
明信的技术支持和服务网络不仅在国内比较完善,在台湾地区、韩国、东南亚亦已经设立;
明信电子集团公司作为PCB测试行业的先驱,以“不断提升产品的技术和品质,不断追求服务的质量和效率,成为客户最信赖的合作伙伴”为公司的宗旨。
完善的质量管理体系与技术标准体系为保证。
锐意创新,不屈不挠的作风,相信明信集团公司将会不断创造出PCB测试行业的新奇迹,成为国内、国际PCB业界最受尊重的测试方案供应商。