阶段性检测答案
陕西省咸阳市实验中学2024-2025学年九年级上学期阶段性检测化学试卷(一)(含答案)

咸阳市实验中学2024~2025学年度第一学期第一次质量检测九年级化学注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题)。
全卷共6页,总分60分。
考试时间60分钟。
2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名、班级和准考证号,同时用2B铅笔在答题卡上填涂对应的试卷类型信息点(A或B)。
3.请在答题卡上各题的指定区域内作答,否则作答无效。
4.考试结束,本试卷和答题卡一并交回。
第一部分(选择题共24分)一、选择题(共12小题,每小题2分,计24分。
每小题只有一个选项符合题意)1.Vc泡腾片是一种含有大量维生素C的片状物品。
将泡腾片放入水中,有无色气体产生。
老师建议:可用石灰水检验一下气体的成分是否为二氧化碳。
这个建议属于科学探究中的()A.提出问题B.猜想假设C.设计实验D.得出结论2.文明芬芳满西安,城市美好向未来。
下列做法不符合新时代西安发展理念的是()A.减少公园绿地,增加住宅建设B.城市街道洒水,降低PM2.5C.推动大气污染防治协同立法D.工厂废气处理达标后排放3.造纸术,是中国的四大发明之一。
以下关于纸的用途,利用了其化学性质的是()A.将纸印刷装订成书籍B.用废纸生煤炉的火C.用纸写字和绘画D.节日用纸来包装礼品4.实验操作是实践探究的基础。
下列操作正确的是()A.滴加液体B.熄灭酒精灯C.量取液体D.倾倒液体5.分类是认识物质的常用方法,下列物质属于化合物的是()A.液氧B.空气C.酱油D.氯化铵6.空气是人类宝贵的自然资源,下列说法不正确的是()A.空气质量监测站对臭氧、二氧化碳等空气污染物进行测量B.氮气的化学性质稳定,可充入食品包装袋中防腐C.稀有气体通电能发光,可制成霓虹灯D.鱼能在水中生存,说明水中溶解有氧气7.嫦娥五号从月球上带回来的样品有氦气和钛铁矿石,如图为氦、钛在元素周期表中的部分信息,下列说法正确的是()A.氦属于非金属元素B.钛的相对原子质量为47.867gC.1个氦原子含有4个质子D.钛原子的中子数为228.下列化学符号的含义正确的是()A.“N2”表示2个氮原子B.“Hg”既可以表示一个汞原子,也可以表示一个汞元素C.“Ca2+”、“O2-”中的“2”都表示离子所带电荷数D.“CO2”、“O2”中均含有氧分子9.一定条件下,水在密闭容器里的冷却过程中,温度和时间的关系如图所示。
天津市南开区2023-2024学年高三上学期阶段性质量检测(一)语文答案

2023—2024学年度第一学期阶段性质量监测(一)高三语文参考答案1.D解析:①恰如其分:办事或说话正合分寸。
毫厘不爽:形容一点不差。
(毫厘:一毫一厘,形容极少的数量)②浸渍:用液体泡。
浸润:(液体)渐渐深入;滋润。
③去粗取精:去掉粗糙的部分,取其精华。
披沙拣金:比喻从大量的事物中选择精华。
2.B解析:A、C、D出现中途易辙、主客倒置、动词语序不当等语病。
故选B3.A4.C.解析:A“也影响了西洋画风”,无中生有。
B“取决于画家所处的时代”与原文“除了才气、学养、心态,是不是原生的深刻的直觉感受起了重要作用呢?”意思不符。
D.强加因果。
5.B解析:选项中“对自然定律的抽象、总结”与原文“对自然现象的抽象和总结却属于人类智慧的结晶”意思不符,偷换概念。
6.D解析:A.①选项“完全走向”与原文“甚至走向了反面”意思不符,②明清时期工笔人物并没有轻弃晋唐的“艺术形式”。
B.说法过绝对。
C.推理无据。
7.B解析:致:表达8.D解析:A.其,那,那里的/第三人称代词,郑国 B.而:连词,表并列/第二人称代词,通“尔”,你的 C.因:连词,于是,就/介词,通过 D.之:定语后置标志9.B10.C解析:《促织》中“操童子业,久不售”中的“售”指考取秀才。
11.C解析:材料二选文部分“从事”分析在“方今寇聚于恒”的客观条件下,推测“若以义请而强委重焉,其何说之辞?”选项“在寇聚于恒时能挺身而出”,将推测误认为“已然”;挺身而出,形容不怕困难艰险,勇敢地站出来,原文意为若乌公委以重任,石处士会出仕,不会拒绝乌公的聘请。
12.①辞去官位而闲居里巷的人,同谁去交往呢?(定语后置句式1分,宾语前置句式1分,游,交游,交往,1分)②先生仁义又勇敢,如果凭借大义聘请他并坚决地委以重任,他还有什么话推辞呢?(若,如果,1分;强,坚决,竭力1分;委重,委以重任1分;其何说之辞,1分)13韩愈不悦的原因:表面上写乌公选尽人才,韩愈被夺去想要依赖相伴终老的人而耿耿于怀。
湖南省长沙市第一中学2025届高三上学期阶段性检测(一) 数学试题[含答案]
![湖南省长沙市第一中学2025届高三上学期阶段性检测(一) 数学试题[含答案]](https://img.taocdn.com/s3/m/4ff4af47fe00bed5b9f3f90f76c66137ee064fdd.png)
长沙市一中2024—2025学年度高三阶段性检测(一)数学试卷时量:120分钟总分:150分一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,集合,则( ){||1}A x x =<∣{B x y ==∣A B = A .B .C .D .(1,1)-(0,1)[0,1)(1,)+∞2.已知复数z 满足,则复数在复平面内对应的点位于( )i 12i z =-+z A .第一象限B .第二象限C .第三象限D .第四象限3.已知一个古典概型,其样本空间中共有12个样本点,其中事件A 有6个样本点,事件B 有4个样本点,事件有8个样本点,则( )A B +()P AB =A .B .C .D .231213164.己知等差数列的前5项和,且满足,则等差数列的公差为( ){}n a 535S =5113a a ={}n a A . B .C .1D .33-1-5.已知的展开式中的系数为80,则m 的值为( )51(2)my x y x ⎛⎫+-⎪⎝⎭24x y A .B .2C .D .12-1-6.如图,正方形中,是线段上的动点,且,则ABCD 2,DE EC P = BE (0,0)AP x AB y AD x y =+>>的最小值为( )11x y+A .B .C D .47.设,则下列关系正确的是( )0.033,ln1.03,e 1103a b c ===-A .B .C .D .a b c >>b a c >>c b a >>c a b>>8.已知,则1tan 1tan()tan 6,tan tan 3222tan 2αβαβπαβαβαβ⎛⎫⎪--⎡⎤⎛⎫-+-=-=⎪ ⎪⎢⎥-⎣⎦⎝⎭ ⎪⎝⎭( )cos(44)αβ+=A . B . C . D .7981-79814981-4981二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为,则下列说法正确的是( )lg 4.8 1.5E M =+A .地震释放的能量为焦耳时,地震里氏震级约为七级15.310B .八级地震释放的能量约为七级地震释放的能量的6.3倍C .八级地震释放的能量约为六级地震释放的能量的1000倍D .记地震里氏震级为,地震释放的能量为,则数列是等比数列(1,2,,9,10)n n = an {}an 10.已知双曲线的左、右焦点分别为,点P 在双曲线的右支上,现有四2222:1(0,0)x y C a b a b-=>>12,F F 个条件:①;②;③平分;④点P 关于原点对称的点为Q ,且120PF PF ⋅=1260F F P ∠=︒PO 12F PF ∠,能使双曲线C 的离心率为)12||PQ F F =1+A .①②B .①③C .②③D .②④11.如图,是底面直径为2高为1的圆柱的轴截面,四边形绕逆时针旋转ABCD 1OO 1OO DA 1OO 到,则( )(0)θθπ≤≤111OO D A A .圆柱的侧面积为 B .当时,1OO 4π0θπ<<11DD A C⊥C .当时,异面直线与所成的角为D .3πθ=1A D 1OO 4π1A CD △三、填空题(本题共3小题,每小题5分,共15分)12.如图,某景区共有A ,B ,C ,D ,E 五个景点,相邻景点之间仅设置一个检票口供出入,共有7个检票口,工作人员为了检测检票设备是否正常,需要对每个检票口的检票设备进行检测若不重复经过同一个检票口,依次对所有检票口进行检测,则共有___________种不同的检测顺序.13.已知函数在上是增函数,且,则的取()sin ()f x x ωω=∈R 7,212ππ⎛⎫ ⎪⎝⎭3244f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭12f π⎛⎫- ⎪⎝⎭值的集合为___________.14.斜率为1的直线与双曲线交于两点A ,B ,点C 是曲线E 上的一点,满足2222:1(0,0)x y E a b a b -=>>和的重心分别为的外心为R ,记直线的斜率为,,AC BC OAC ⊥△OBC △,,P Q ABC △,,OP OQ OR 123,,k k k 若,则双曲线E 的离心率为___________.1238k k k =-四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)设函数.2()ln ()f x x ax x a =-++∈R (1)若,求函数的单调区间;1a =()f x (2)设函数在上有两个零点,求实数a 的取值范围(其中e 是自然对数的底数)()f x 1,e e ⎡⎤⎢⎥⎣⎦16.(15分)如图,已知四棱柱的底面为平行四边形,四边形为矩形,平面1111ABCD A B C D -ABCD 11CC D D 平面为线段的中点,且.11CC D D ⊥,ABCD E 1CD BE CE =(1)求证:平面;AD ⊥11BB D D(2)若,直线与平面的余弦4,2AB AD ==1A E 11BB D D 1D AB D --值.17.(15分)软笔书法又称中国书法,是我国的国粹之一,琴棋书画中的“书”指的正是书法.作为我国的独有艺术,软笔书法不仅能够陶冶情操,培养孩子对艺术的审美还能开发孩子的智力,拓展孩子的思维与手的灵活性,对孩子的身心健康发展起着重要的作用.近年来越来越多的家长开始注重孩子的书法教育.某书法培训机构统计了该机构学习软笔书法的学生人数(每人只学习一种书体),得到相关数据统计表如下:书体楷书行书草书隶书篆书人数2416102010(1)该培训机构统计了某周学生软笔书法作业完成情况,得到下表,其中.60a ≤认真完成不认真完成总计男生5aa女生总计60若根据小概率值的独立性检验可以认为该周学生是否认真完成作业与性别有关,求该培训机构学习0.10α=软笔书法的女生的人数.(2)现从学习楷书与行书的学生中用分层随机抽样的方法抽取10人,再从这10人中随机抽取4人,记4人中学习行书的人数为X ,求X 的分布列及数学期望.参考公式及数据:.22(),()()()()n ad bc n a b c d a b c d a c b d χ-==+++++++α0.100.050.01x α2.7063.8416.63518.(17分)已知椭圆的左、右焦点分别为为椭圆C 上一点,且到的距离2222:1(0)x y C a b a b+=>>12,,(2,3)F F A 12,F F 之和为8.(1)求椭圆C 的标准方程;(2)设B 为A 关于原点O 的对称点,斜率为k 的直线与线段(不含端点)相交于点Q ,与椭圆C 相交于AB 点M ,N ,若为常数,求与面积的比值.2||||||MN AQ BQ ⋅AQM △AQN △19.(17分)设满足以下两个条件的有穷数列为阶“曼德拉数列”:12,,,n a a a (2,3,4,)n n =①;②.1230n a a a a ++++= 1231n a a a a ++++= (1)若某阶“曼德拉数列”是等比数列,求该数列的通项(,用k ,n 表示);()*2k k ∈N n a 12n k ≤≤(2)若某阶“曼德拉数列”是等差数列,求该数列的通项(,用k ,n 表示);()*21k k +∈N n a 121n k ≤≤+(3)记n 阶“曼德拉数列”的前k 项和为,若存在,使,试{}n a (1,2,3,,)k S k n = {1,2,3,,}m n ∈ 12m S =问:数列能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理{}(1,2,3,,)i S i n = 由.长沙市一中2024—2025学年度高三阶段性检测(一)数学参考答案一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C【解析】,故.故选C .{11},{0}A xx B x x =-<<=≥∣∣{01}[0,1)A B x x =≤<= ∣2.D【解析】,212i (12i)ii 12i 2i 2i i iz z z -+-+⋅=-+⇒===+⇒=-所以复数在复平面内对应的点位于第四象限,故选D z 3.D【解析】根据概率公式计算可得;由概率的加法公式可614182(),(),()122123123P A P B P A B ====+==知,代入计算可得()()()()P A B P A P B P AB +=+-1()6P AB =故选:D 4.D【解析】,解得,故选D 5151151035;413S a d a a d a =+==+=13,1d a ==5.A 【解析】,55511(2)(2)(2)my x y x y my x y x x ⎛⎫+-=-+- ⎪⎝⎭在的展开式中,由,51(2)x y x-155455(2)()(1)2r r r r r r r r x C x y C x y -----=-⋅令,得r 无解,即的展开式没有的项;424r r -=⎧⎨=⎩51(2)x y x -24x y 在的展开式中,由,5(2)my x y -555155(2)()(1)2rr r r r r r r myC x y mC x y ---+-=-⋅令,解得,5214r r -=⎧⎨+=⎩3r =即的展开式中的项的系数为,5(2)my x y -24x y 35335(1)240mC m --⋅=-又的展开式中的系数为80,5(2)()x my x y +-24x y 所以,解得,故选A .4080m -=2m =-6.C【解析】正方形中,,则,ABCD 2DE EC = 2233AD AE ED AE CD AE AB =+=+=-而,则,AP x AB y AD =+ 2233AP xAB y AE AB x y AB y AE ⎛⎫⎛⎫=+-=-+ ⎪ ⎪⎝⎭⎝⎭又点B,P ,E 共线,于是,即,而,213x y y ⎛⎫-+= ⎪⎝⎭13yx +=0,0x y >>因此,1111443333y x y x x y x y y x ⎛⎫⎛⎫+=++=++≥+=⎪ ⎪⎝⎭⎝⎭当且仅当,即时取等号,3x y y x=y ==所以当时,.x y ==11x y +故选:C 7.C【解析】记.()e 1,(0)xf x x x =--≥因为,所以当时,,所以在上单调递增函数,()e 1xf x '=-0x >()0f x '>()f x (0,)+∞所以当时,,即,所以.0x >()(0)0f x f >=1xe x ->0.03e 10.03->记.()ln(1),(0)g x x x x =+-≥因为,所以在上单调递增函数,1()1011xg x x x-'=-=<++()g x (0,)+∞所以当时,,即,所以.0x >()(0)0g x g <=ln(1)x x +<ln1.030.03<所以.记.c b >()ln(1),(0)1xh x x x x=+-≥+因为,所以当时,,2211()1(1)(1)x h x x x x '=-=+++0x >()0h x '>所以在上单调递增函数,()h x (0,)+∞所以当时,,即,所以.0x >()(0)0h x h >=ln(1)1x x x +>+0.033ln1.0310.03103>=+所以,综上所述:.b a >c b a >>故选:C 8.A【解析】,1tan 1tan()tan 622tan 2αβαβαβαβ⎛⎫⎪--⎡⎤-+-=⎪⎢⎥-⎣⎦ ⎪⎝⎭.2221tan 2tan 2216tan1tan 22αβαβαβαβ--⎛⎫- ⎪+= ⎪-- ⎪-⎝⎭,2221tan 2tan2cos()226sin()1tan 2αβαβαβαβαβ--⎛⎫-+ ⎪-= ⎪-- ⎪-⎝⎭,221tan2cos()2cos()126,6sin()sin()cos()1tan 2αβαβαβαβαβαβαβ-⎛⎫+ ⎪--=⨯=⎪---- ⎪-⎝⎭,11sin(),sin cos cos sin 33αβαβαβ-=-=又因为,所以,tan tan 32παβ⎛⎫-= ⎪⎝⎭sin cos 3cos sin αβαβ=则,所以11cos sin ,sin cos 62αβαβ==2sin()sin cos cos sin 3αβαβαβ+=+=.241cos(22)12sin ()1299αβαβ+=-+=-⨯=.2179cos(44)2cos (22)1218181αβαβ+=+-=⨯-=-故选:A二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.ACD【解析】对于A:当时,由题意得,15.310E =15.3lg104.8 1.5M =+解得,即地震里氏震级约为七级,故A 正确;7M =对于B:八级地震即时,,解得,8M =1lg 4.8 1.5816.8E =+⨯=16.8110E =所以,16.81.5115.3101010 6.310E E ==>≠所以八级地震释放的能量约为七级地震释放的能量的倍,故B 错误;1.510对于C:六级地震即时,,解得,6M =2lg 4.8 1.5613.8E =+⨯=13.8210E =所以,16.83113.821010100010E E ===即八级地震释放的能量约为六级地震释放的能量的1000倍,故C 正确;对于D:由题意得,lg 4.8 1.5(1,2,,9,10)n a n n =+= 所以,所以4.8 1.510n n a += 4.8 1.5(1) 6.31.511010n nn a ++++==所以,即数列是等比数列,故D 正确;6.31.5 1.51 4.81.5101010nn n n a a +++=={}an 故选:ACD 10.AD【解析】③平分且为中线,可得,PO 12F PF ∠PO 12PF PF =点P 在双曲线的右支上,所以不成立;若选①②:可得,1212120,60,2PF PF F F P F F c ⋅=∠=︒=21,PF c PF ==,即离心率为,成立;2c a -=1c e a ===+若选②④:,点P 关于原点对称的点为Q ,1260F F P ∠=︒且,可得四边形为矩形,12||PQF F =12F QF P 即可得,1212,2PF PF F F c ⊥=12,PF c PF ==,即离心率为,成立;2c a -=1c e a ===+故选:AD 11.BC【解析】对于A,圆柱的侧面积为,A 错误;1OO 2112ππ⨯⨯=对于B,因为,所以,又,0θπ<<11DD D C ⊥111DD A D ⊥所以平面,所以,B 正确;1DD ⊥11A D C 11DD A C ⊥对于C,因为,所以就是异面直线与所成的角,因为,所以111A D OO ∥11DA D ∠1A D 1OO 113DO D π∠=为正三角形,所以,因为,所以,C 正确;11DO D △1111DD A D ==111A D DD ⊥114DA D π∠=对于D,作,垂足为E ,连接,所以平面,所以.1D E DC ⊥1A E DC ⊥11A D E 1A E DC ⊥在中,11Rt A D E △1A E ==≤=,所以,D 错误.1111222A CD S DC A E =⨯⨯≤⨯=△()1maxA CDS =△故选:BC .三、填空题(本题共3小题,每小题5分,共15分)12.32【解析】如图将5个景区抽象为5个点,见7个检票口抽象为7条路线,将问题化归为不重复走完7条路线,即一笔画问题,从B 或E 处出发的线路是奇数条,其余是偶数条,可以判断只能从B 或E 处出发才能不重复走完7条路线,由于对称性,只列出从B 处出发的路线情形即可.①走路线:3126547,3126745,3147526,3147625,3156247,3157426,共6种;BA ②走路线:4137526,4137625,4265137,4267315,4562137,4573126,共6种;BC ③走路线:7513426,7543126,7621345,7624315,共4种;BE 综上,共有种检测顺序.()266432⨯++=故答案为:3213.11,2⎧⎫⎨⎬⎩⎭【解析】由可知,,得,3244f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭32442T nT πππ+=-=,21T n n π=∈+Z 所以,2||42n Tπω==+又函数在上是增函数,()sin ()f x x ωω=∈R 7,212ππ⎛⎫⎪⎝⎭所以,即,所以,7212212T πππ≥-=6T π≥||12ω≤所以,的可能取值为.ω2,6,10±±±当时,由解得,0ω>2222k x k πππωπ-+≤≤+22,22k k x k ππππωωωω-+≤≤+∈Z 经检验,,6,10时不满足题意;2ω=当时,由解得,0ω<2222k x k πππωπ-+≤≤+22,22k k x k ππππωωωω+≤≤-+∈Z 经检验,时满足题意.2,6ω=--所以,的可能取值为.12f π⎛⎫-⎪⎝⎭1sin ,sin 11262122f f ππππ⎛⎫⎛⎫-==-==⎪ ⎪⎝⎭⎝⎭故答案为:11,2⎧⎫⎨⎬⎩⎭14【解析】若直线与双曲线有两个交点G ,H ,设G ,H 的中点为K ,y kx m =+22221x y a b -=联立方程组,整理得,22221y kx m x y ab =+⎧⎪⎨-=⎪⎩()22222222220b a k x a kmx a m a b ----=可得,则,22222G H a km x x b a k +=-22222G H K x x a kmx b a k+==-又由在直线上,可得,(),K K K x y y kx m =+22222222K a km b my m b a k b a k =+=--所以,所以,22K OKK y b k x ka ==22GH OK b k k a ⋅=即直线l 与双曲线相交线的中点与原点的连线的斜率与直线l 的斜率之积为定值,22b a如图所示,取的中点M ,N ,,AC BC 因为的重心P 在中线上,的重心Q 在中线上,OAC △OM OBC △ON所以,可得,12,OP OM OQ ON k k k k k k ====22$OM AC ON BCb k k k k a⋅=⋅=即,2122AC BCb k k k k a⋅=⋅=又由,可得,可得AC BC ⊥1AC BCk k ⋅=-22122b k k a ⎛⎫⋅=- ⎪⎝⎭因为,且的外心为,点R ,则R 为线段的中点,AC BC ⊥ABC △AB 可得,因为,所以,22OR ABb k k a ⋅=1AB k =22OR b k a=所以,所以,3212328b k k k a ⎛⎫=-=- ⎪⎝⎭ba =所以c e a ===.四、解答题(本题共6小题,共70分)15.解:(1)当时,的定义域为,1a =2()ln ,()f x x x x f x =-++(0,)+∞,2121()21x x f x x x x-++'=-++=令,则,解得,()0f x '>2210x x --<01x <<令,则,解得.()0f x '<2210x x -->1x >∴函数的单调递增区间为,单调递减区间为.()f x (0,1)(1,)+∞(2)令,则.2()ln 0f x x ax x =-++=ln xa x x=-令,其中,ln ()x g x x x =-1,e e x ⎡⎤∈⎢⎥⎣⎦则.2221ln ln 1()1x xx x x g x x x⋅-+-'=-=令,解得,令,解得.()0g x '>1e x <≤()0g x '<11ex ≤<的单调递减区间为,单调递增区间为,()g x ∴1,1e ⎡⎫⎪⎢⎣⎭(1,e].min ()(1)1g x g ∴==又,函数在上有两个零点,111e ,(e)e e ee g g ⎛⎫=+=-⎪⎝⎭()f x 1,e e ⎡⎤⎢⎥⎣⎦的取值范围是.a ∴11,e e ⎛⎤- ⎥⎝⎦16.解:(1)在中,E 为线段的中点,且,所以,1BCD △1CD BE CE =1D E CE BE ==所以为直角三角形,且,所以,111,2BE CD BCD =△190CBD ∠=︒1D B BC ⊥因为底面为平行四边形,,所以,ABCD AD BC ∥1AD D B ⊥又因为四边形为矩形,所以,11CC D D 1D D DC ⊥因为平面平面,平面平面平面,11CC D D ⊥ABCD 11CC D D 1,ABCD DC D D =⊂11CC D D 所以平面,1D D ⊥ABCD 因为平面,所以,AD ⊂ABCD 1AD D D ⊥因为平面,11111,,D D D B D D D D B =⊂ 11BB D D 所以平面.AD ⊥11BB D D (2)因为平面平面,所以,AD ⊥11,BB D D BD ⊂11BB D D AD BD ⊥由(1)知平面,又平面,所以,11,D D AD D D ⊥⊥ABCD BD ⊂ABCD 1D D BD ⊥所以两两垂直,1,,DA DB DD 以D 为坐标原点,所在直线为x 轴,所在直线为y 轴,DA DB所在直线为z 轴,建立如图所示的空间直角坐标系,1DD 在中,,所以,Rt ADB △4,2AB AD ==DB ==设,则,1(0)DD t t =>1(0,0,0),(2,0,0),(2,0,),,(0,2t D A A t E B ⎛⎫- ⎪⎝⎭所以,1,(2,2t A E AB ⎛⎫=--=- ⎪⎝⎭易知平面的一个法向量为,11BB D D (2,0,0)DA =设直线与平面所成的角为,1A E 11BB D D θ则,解得111sin cos ,||A E DAA E DA A E DA θ⋅====t =所以,11(0,0,(2,0,D AD =-设平面的法向量为1ABD (,,)m x y z =则,令,12020AB m x AD m x⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ x =m = 易知平面的一个法向量为,ABCD (0,0,1)n =则,cos ,||||m n m n m n ⋅===易知二面角是锐角,故二面角1D AB D --1D AB D --17.解:(1)根据题意,完成列联表如下:认真完成不认真完成总计男生45a 5a a女生4605a -205a -80a-总计602080由题意可得,2244802060555516 2.7066020(80)15(80)a a a a a a a a χ⎡⎤⎛⎫⎛⎫⨯--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==≥⨯⨯⨯--得.57.38a >易知a 为5的倍数,且,所以,60a ≤60a =所以该培训机构学习软笔书法的女生有(人).806020-=(2)因为学习软笔书法的学生中学习楷书与行书的人数之比为,24:163:2=所以用分层随机抽样的方法抽取的10人中,学习楷书的有(人),学习行书的有310632⨯=+(人),210432⨯=+所以X 的所有可能取值为0,1,2,3,4,,4312266464444101010C C C C C 151808903(0),(1),(2)C 21014C 21021C 2107P X P X P X ============.134644441010C C C 2441(3),(4)C 21035C 210P X P X =======X 的分布列为:X 01234P114821374351210所以.183418()0123414217352105E X =⨯+⨯+⨯+⨯+⨯=18.解:(1)由椭圆的定义得,所以.1228AF AF a +==4a =又为椭圆C 上一点,所以,(2,3)A 22491a b+=将代入,得,4a =212b =所以椭圆C 的标准方程为.2211612x y +=(2)因为B 为A 关于原点O 的对称点,所以,直线的方程为.()2,3B --AB 32y x =设,则直线的方程为,()()2,311Q t t t -<<MN ()32y t k x t -=-联立得,可得,22116123(2)x y y t k x t ⎧+=⎪⎨⎪-=-⎩()2222438(32)4(32)480k x kt k x t k ++-+--=由点Q 在椭圆内,易知,0∆>不妨令,则,()()1122,,,M x y N x y 221212228(23)4(32)48,4343kt k t k x x x x k k ---+=⋅=++所以.()()()()()()222222222121212224811612(32)||11443k k t k MN kx x k x x x x k⎡⎤++--⎣⎦⎡⎤=+-=++-=⎣⎦+又,()2||||131AQ BQ t ⋅==-所以为常数,()()()222222224811612(32)||||||13431k k t k MN AQ BQ k t ⎡⎤++--⎣⎦=⋅+-则需满足为常数,22221612(32)1k t k t+---(此式为与t 无关的常数,所以分子与分母对应成比例)即,解得.221612(32)k k +=-12k =-将代入,可得,得,12k =-1228(23)43kt k x x k -+=+124x x t +=1222x x t +=所以Q 为的中点,MN 所以.||1||AQM AQNS MQ S NQ ==△△19.解:(1)设等比数列的公比为q .1232,,,,(1)k a a a a k ≥ 若,则由①得,得,1q ≠()21122101k k a q a a a q-+++==- 1q =-由②得或.112a k =112a k=-若,由①得,,得,不可能.1q =120a k ⋅=10a =综上所述,.1q =-或.11(1)2n n a k -∴=-11(1)2n n a k-=--(2)设等差数列的公差为d ,12321,,,,(1)k a a a a k +≥ ,123210k a a a a +++++= ,112(21)(21)0,02k k dk a a kd +∴++=+=即,120,k k a a d ++=∴=当时,“曼德拉数列”的条件①②矛盾,0d =当时,据“曼德拉数列”的条件①②得,0d >,()23211212k k k k a a a a a a ++++++==-+++ ,即,(1)122k k kd d -∴+=1(1)d k k =+由得,即,10k a +=110(1)a k k k +⋅=+111a k =-+.()*111(1),211(1)(1)n n a n n n k k k k k k k∴=-+-⋅=-∈≤++++N 当时,同理可得,0d <(1)122k k kd d -+=-即.1(1)d k k =-+由得,即,10k a +=110(1)a k k k -⋅=+111a k =+.()*111(1),211(1)(1)n n a n n n k k k k k k k∴=--⋅=-+∈≤++++N 综上所述,当时,,0d >()*1,21(1)n n a n n k k k k∴=-∈≤++N 当时,.0d <()*1,21(1)n n a n n k k k k=-+∈≤++N (3)记中非负项和为A ,负项和为B ,则,12,,,n a a a 0,1A B A B +=-=得,即.1111,,2222k A B B S A ==--=≤≤=1(1,2,3,,)2k S k n ≤= 若存在,使,由前面的证明过程知:{1,2,3,,}m n ∈ 12m S =,且. 12120,0,,0,0,0,,0m m m n a a a a a a ++≥≥≥≤≤≤ 1212m m n a a a +++++=- 若数列为n 阶“曼德拉数列”,{}(1,2,3,,)i S i n = 记数列的前k 项和为,则.{}(1,2,3,,)i S i n = k T 12k T ≤,1212m m T S S S ∴=+++≤又,1211,02m m S S S S -=∴==== .12110,2m m a a a a -∴===== 又,1212m m n a a a +++++=- ,12,,,0m m n S S S ++∴≥ ,123123n n S S S S S S S S ∴++++=++++ 又与不能同时成立,1230n S S S S ++++= 1231n S S S S ++++= ∴数列不为n 阶“曼德拉数列{}(1,2,3,,)i S i n =。
河南省实验中学2024-2025学年九年级上学期9月阶段性检测化学试卷(含答案)

阶段性评估1九年级科目:化学命题人:审题人:(时间:50分钟,满分:50分)一、选择题(本题包括14个小题,每小题1分,共14分。
每题只有一个选项符合题意)1.我国的古代发明及应用所包含的下列物质变化中,不涉及化学变化的是()A.粮食酿酒B.陶瓷烧制C.活字印刷D.火药爆炸2.空气中含量最多且化学性质不活泼的气体是()A.氧气B.二氧化碳C.氮气D.氖气3.下列化学实验操作正确的是()A.加热固体B.点燃酒精灯C.滴加液体D.倾倒液体4.空气污染是引起多种疾病的原因之一。
下列物质中属于空气污染物的是()A.二氧化碳B.水蒸气C.氩气D.二氧化氮5.下列各组元素中,元素符号的第二个字母相同的一组是()A.钠、氯B.铝、金C.锂、钛D.铅、铂6.下列实例中不属于缓慢氧化的是()A.农家肥腐熟B.酒精灯平稳燃烧C.铁锅生锈D.动植物细胞的呼吸作用7.警示标志能传达安全信息。
下列物质运输时应张贴下图标志的是()A.酒精B.红磷C.镁条D.纯净水38.下列有关实验现象的描述,正确的是()A.氢氧化钠溶液加入硫酸铜溶液后产生黑色沉淀B.镁在空气中燃烧,发出耀眼白光,放热,生成白色固体C .红磷在空气中燃烧,发出黄白色火焰,放热,生成大量白色烟雾D .细铁丝在氧气中剧烈燃烧,火星四射,放热,生成黑色的四氧化三铁9.常温常压下,下列物质不适合用物理性质区分的是( )A .酒精和白醋B .红磷和硫粉C .二氧化碳和二氧化硫D .氧气和氮气10.下列物质均属于纯净物的是( )A .清新的空气、蒸馏水B .冰水混合物、液氦C .红磷、过氧化氢溶液D .稀有气体、人体呼出的气体11.用托盘天平称量3.8g 固体试剂时,发现指针向右偏,此时应该( )A .向左盘中加试剂B .调节游码C .从左盘中减试剂D .调节平衡螺母12.下列反应中既属于化合反应,又属于氧化反应的是( )A .铁+硫酸铜硫酸亚铁+铜B .石蜡+氧气二氧化碳+水C .氧化汞汞+氧气D .铜+氧气氧化铜13.下列关于氧气的说法,正确的是( )A .氧气能支持燃烧,可以用作燃料B .氧气的化学性质很活泼,能与所有物质发生化学反应C .鱼类能在水中生存说明氧气易溶于水D .工业上通过分离液态空气法得到的氧气为混合物14.某同学将一定量过氧化氢溶液缓慢加入盛有二氧化锰的试管中,下列图像不正确的是()A .B .C .D .二、填空题(本题包括6个小题,每空1分,共16分)15.用化学知识回答:(1)发现元素周期律的科学家是_________;(2)空气中稀有气体占空气体积的_________%(填数字);(3)Si 的名称为_________。
重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题(含解析)

注意事项:1.答题前、考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2、答选择题时、必须使用2B 铅笔填涂:答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷学生保存,以备评讲).一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题符合题目要求的.1. 已知集合{}2128,5016x A x B x x x ⎧⎫=<<=+>⎨⎬⎩⎭则A B = ( )A. ()4,3-B. ()0,3C. ()3,0-D. ()4,0-【答案】B 【解析】【分析】先分别求出集合A B ,,再进行集合的交集运算【详解】由12816x <<解得43x -<<,∴{}43A x x =-<<,由250x x +>解得0x >或5x <-,所以{0B x =>或5}x <-,所以A B = (0,3)故选:B.2. 已知点()()()1,2,1,4,,1A B C x -,若A ,B ,C 三点共线,则x 的值是( )A. 1 B. 2C. 3D. 4【答案】B 【解析】【分析】利用向量共线的坐标表示即可得解.【详解】因为()()()1,2,1,4,,1A B C x -,所以()()2,2,1,1AB AC x =-=--,因为A ,B ,C 三点共线,则,AB AC共线,则()212(1)x -⨯-=⨯-,解得2x =.故选:B.3. “1x >”是“11x-<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】将11x -<化简,再根据充分必要条件关系判断.【详解】()1110101x x x x x x+-<⇔>⇔+>⇔<-或0x >,由1x >成立可以推出1x <-或0x >,但1x <-或0x >成立不能推出1x >,所以1x >是11x-<的充分不必要条件.故选:A.4. 若0.10.13125,,log 352a b c --⎫⎫⎛⎛=== ⎪⎪⎝⎝⎭⎭,则a ,b ,c 的大小关系为( )A. a c b << B. c a b<< C. b c a<< D. c b a<<【答案】D 【解析】【分析】首先化解,a b ,再根据中间值1,以及幂函数的单调性比较大小,即可判断.【详解】00.1.11331a -⎛⎫= ⎪=⎭>⎝,01.10.51225b -⎛⎫=> ⎪⎝⎭⎛⎫= ⎪⎝⎭,()35log 0,12c =∈,0.1y x =在()0,∞+上单调递增,532>,所以a b >,所以a b c >>.故选:D5. 设m ,n 是不同的直线,,αβ为不同的平面,下列命题正确的是( )A. 若,,n m n αβαβ⊥⋂=⊥,则m α⊥.B. 若,//,//n m n m αβα= ,则//m β.C. 若,,//,//m n m n ααββÌÌ,则//αβ.D. 若//,,m n m n αβ⊥⊥,则//αβ.【答案】D 【解析】【分析】根据空间直线、平面间的位置关系判断.【详解】对于A ,直线m 与平面α可能平行、相交或直线m 在平面α内,故错误;对于B ,//m β或m β⊂,故错误;对于C ,平面α与平面β平行或相交,故错误;对于D ,//,,m n m α⊥则n α⊥,又n β⊥,所以//αβ,D 正确;故选:D .6. 若曲线1()ln f x x x=+在2x =处的切线的倾斜角为α,则()sin cos cos 1sin2αααα-=-( )A. 1712-B. 56-C. 175-D. 【答案】A 【解析】【分析】根据导数的几何意义先求出函数()f x 在2x =处的导数值,即可得到在2x =处切线的斜率,进而得到倾斜角α的正切值,再根据tan α求出题中式子的值.【详解】由题意得,211()f x x x'=-,所以411(2)241f '=-=,于是()f x 在2x =处切线的斜率为14,即1tan 4α=.又()22sin cos sin cos cos 1sin2cos (sin 2sin cos cos )ααααααααααα--=--+2sin cos 1cos (sin cos )cos (sin cos )αααααααα-==--222sin cos sin cos cos ααααα+=-,将原式分子分母同时除以2cos α得,2222sin cos tan 1sin cos cos tan 1ααααααα++=--,代入1tan 4α=可得最终答案为1712-.故选:A.7. 已知数列{}n a 的首项12025a =,前n 项和n S ,满足2n n S n a =,则2024a =( )A.12025B.12024C.11012D.11013【答案】C 【解析】【分析】根据2n n S n a =得到211(1)n n S n a --=-,两式相减得到221(1)n n n a n a n a -=--,求出n a 即可求解.【详解】因为2n n S n a =,所以211(1)(2)n n S n a n --=-≥,两式相减得221(1)n n n a n a n a -=--,所以11(2)1n n a n n a n --=≥+,所以1321221123121213121(1)n n n n a a a n n a a a n a n a n n -------⋅⋅⋅⋅=⋅⋅⋅⋅=++++L L ,所以12(2)(1)n a n a n n =≥+,所以4050(2)(1)n a n n n =≥+,所以202411012a =.故选:C.8. 已知1x 是函数()()2ln 1f x x x =---的零点,2x 是函数()2266g x x ax a =+--的零点,且满足1234x x -<,则实数a 的取值范围是( )A. )3,-+∞B. 253,8⎫-⎪⎭C. 7125,,568⎫⎫⎛⎛-∞-+∞ ⎪ ⎪⎝⎝⎭⎭ D. 7125,568⎫⎛-⎪⎝⎭【答案】B 【解析】【分析】利用导数研究函数的单调性可证明函数()f x 存在唯一零点,即12x =,可得()g x 在511,44⎛⎫ ⎪⎝⎭有零点,利用参变分离可求解.【详解】由()()2ln 1f x x x =---,1x >,可得()12111x x f x x --=-'-=,当12x <<时,()0f x '<,此时()f x 在()1,2单调递减;当2x >时,()0f x '>,此时()f x 在()2,+∞单调递增;又因为()20f =,所以函数()f x 存在唯一的零点,即12x =.因为122324x x x -=-<,解得2511,44x ⎛⎫∈ ⎪⎝⎭.即()2266g x x ax a =+--在511,44⎛⎫⎪⎝⎭上有零点,故方程2623x a x -=-在511,44⎛⎫⎪⎝⎭上有解,而263336(3)333x x x x x x -⎡⎤=---=-+-+⎢⎥---⎣⎦,因为511,44x ⎛⎫∈⎪⎝⎭,故713,44x ⎛⎫-∈ ⎪⎝⎭,故349(3)34x x ≤-+<-,所以25624a ≤<2538a -≤<故选:B.【点睛】方法点睛:对于一元二次方程根与系数的关系的题型常见解法有两个:一是对于未知量为不做限制的题型可以直接运用判别式解答(本题属于这种类型);二是未知量在区间(),m n 上的题型,一般采取列不等式组(主要考虑判别式、对称轴、()(),f m f n 的符号)的方法解答.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9. 在下列函数中,最小正周期为π且在π0,2⎛⎫⎪⎝⎭为减函数的是( )A. ()cos f x x= B. ()1πsin 23f x x ⎛⎫=-⎪⎝⎭C. ()22cos sin f x x x=- D. ()πtan 4f x x ⎫⎛=-⎪⎝⎭【答案】ACD【解析】【分析】根据三角函数图象与性质,以及复合函数的单调性判断方法逐项判断即可.【详解】对于A ,()cos f x x =的最小正周期为π,当π0,2x ⎛⎫∈ ⎪⎝⎭时,cos 0x >,()cos cos f x x x ==,根据余弦函数的单调性可知,此时函数单调递减,故A 正确;对于B ,()1πsin 23f x x ⎛⎫=- ⎪⎝⎭的最小正周期2πT=4π12=,故B 不正确;对于C ,()22cos sin f x x x =-cos 2x =,所以最小正周期2πT=π2=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()20,πx ∈,根据余弦函数的单调性可知,此时函数单调递减,故C 正确;对于D ,最小正周期πT=π1=-,当π0,2x ⎛⎫∈ ⎪⎝⎭时,πππ,444x ⎛⎫-∈- ⎪⎝⎭,由复合函数单调性判断方法可知,此时()πtan 4f x x ⎛⎫=- ⎪⎝⎭单调递减,故D 正确.故选:ACD.10. ABC V中,BC =BC 边上的中线2AD =,则下列说法正确的有( )A. 4AB AC +=B. AB AC ⋅为定值C. 2220AC AB +=D.BAD ∠的最大值为45︒【答案】ABD 【解析】【分析】由中线的性质结合向量的线性运算判断A 选项;由中线的性质和向量数量积的运算有22AB AC AD DB ⋅=- ,求值判断B 选项;C 选项,由πADB ADC ∠+∠=,结合余弦定理求22AC AB +的值;D 选项,ABD △中,余弦定理得22cos 4AB BAD AB+∠= ,结合均值不等式求解.【详解】A .24AB AC AD +==,故A 正确;的B .22()()()()422AB AC AD DB AD DC AD DB AD DB AD DB ⋅=+⋅+=+⋅-=-=-= ,故B 正确;C .πADB ADC ∠+∠= ,cos cos 0ADB ADC ∴∠+∠=,由余弦定理知,222222022AD BD AB AD CD AC AD BD AD CD+-+-+=⋅⋅0=,化简得2212AC AB +=,故C 错误;D .22cos 4AB BAD AB +∠==≥=AB =时等号成立,由于090BAD <∠< ,所以BAD ∠的最大值为45 ,故D 正确;故选:ABD .11. 在正方体1111ABCD A B C D -中,6AB =,,P Q 分别为11C D 和1DD 的中点,M 为线段1B C 上一动点,N 为空间中任意一点,则下列结论正确的有( )A. 直线1BD ⊥平面11AC DB. 异面直线AM 与1A D 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦C. 过点,,B P Q的截面周长为+D. 当AN BN ⊥时,三棱锥A NBC -体积最大时其外接球的体积为【答案】ACD 【解析】【分析】利用线面垂直的判定定理,结合正方体的性质可判断A 正确;由11A D B C 转化异面直线所成的角,在等边1AB C △中分析可知选项B 错误;找出截面图形,利用几何特征计算周长可得选项C 正确;确定三棱锥体积最大时点N 的位置,利用公式可求外接球的半径和体积,得到选项D 正确.【详解】A.∵11111111111,,AC B D AC B B B D B B B ⊥⊥= ,11B D ⊂平面11BDD B ,1BB ⊂平面11BDD B ,∴11A C ⊥平面11BDD B ,∵1BD ⊂平面11BDD B ,∴111A C BD ⊥,同理可证,11DC BD ⊥,∵1111A C DC C ⋂=,11AC ⊂平面11AC D ,1DC ⊂平面11AC D ,∴直线1BD ⊥平面11AC D ,选项A 正确.B. 如图,连接1,AB AC ,由题意得,11A D B C ,11AB AC B C ===直线AM 与1A D 所成的角等于直线AM 与1B C 所成的角,在等边1AB C △中,当点M 与1,B C 两点重合时,直线AM 与1B C 所成的角为3π,当点M 与1B C 中点重合时,1AM BC ⊥,此时直线AM 与1B C 所成的角为2π,故直线AM 与1A D 所成角的取值范围是[,]32ππ,选项B 错误.C. 如图,作直线PQ 分别与直线1,CC CD 交于点,S T ,连接BS 与11B C 交于点E ,连接BT 与AD 交于点F ,则五边形BEPQF 即是截面.由题意得,1SPC △为等腰直角三角形,113PC SC ==,由1BB CS ∥得,1112BB B EC S CE==,∴114,2B E C E ==,∴BE =PE =,同理可得,BF QF ==,∵,P Q 分别为11C D 和1DD 的中点,∴PQ =,∴截面周长为+C 正确.D.当AN BN ⊥时,点N 的轨迹为以AB 为直径的球,球心为AB 中点,半径为3,三棱锥A NBC -的体积即为三棱锥N ABC -的体积,点N 到平面ABC 距离的最大值为球的半径,此时点N 在正方形11ABB A 的中心处,三棱锥A NBC -体积有最大值.由题意得,平面NAB ^平面ABC ,NAB △,ABC V 均为等腰直角三角形,NAB △的外接圆半径为132AB r ==,ABC V 的外接圆半径为22ACr ==,∴三棱锥A NBC -的外接球半径R ==,∴外接球体积为3344ππ33R =´=,选项D 正确.故选:ACD.【点睛】方法点睛:本题为立体几何综合问题,求三棱锥外接球半径方法为:(1)在三棱锥A BCD -中若有AB ⊥平面BCD ,设三棱锥外接球半径为R ,则2224h R r =+,其中r为底面BCD △的外接圆半径,h 为三棱锥的高即AB 的长.(2)在三棱锥A BCD -中若有平面ABC ⊥平面BCD ,设三棱锥外接球半径为R ,则2222124l R r r =+-,其中12,r r 分别为,ABC BCD 的外接圆半径,l 为,ABC BCD 公共边BC 的长.三、填空题:本题共3小题,每小题5分,共15分.12. 复数221iz =--(i 是虚数单位),则复数z 的模为________.【解析】【分析】利用复数除法运算化简,再由复数模的计算公式求解.【详解】()()()()21i 22221i 1i 1i 1i 1i z +=-=-=-+=---+,z ∴==.13. 在数列{a n }中,111,34n n a a a +==+,若对于任意的()*,235n n k a n ∈+≥-N 恒成立,则实数k 的最小值为______.【答案】427【解析】【分析】利用构造法分析得数列{}2n a +是等比数列,进而求得2n a +,从而将问题转化为353nn k -≥恒成立,令()()*253nn f n n -=∈N ,分析数列(){}f n 的最值,从而得解.【详解】由134n n a a +=+,得()1232n n a a ++=+,又12123a +=+=,故数列{}2n a +为首项为3,公比为3的等比数列,所以12333n n n a -+=⨯=,则不等式()235n k a n +≥-可化为353nn k -≥,令()()*353n n f n n -=∈N ,当1n =时,()0f n <;当2n ≥时,()0f n >;又()()1132351361333n n n n n nf n f n ++---+-=-=,则当2n =时,()()32f f >,当3n ≥时,()()1f n f n +<,所以()()333543327f n f ⨯-≤==,则427k ≥,即实数k的最小值为427.故答案为:427.14. 若定义在()0,+∞的函数()f x 满足()()()6f x y f x f y xy +=++,且有()3f n n ≥对n *∈N 恒成立,则81()i f i =∑的最小值为________.【答案】612【解析】【分析】由条件等式变形为()()()()222333f x y x y f x x f y y +-+=-+-,再构造函数()()23g x f x x =-,得到()()()g x y g x g y +=+,并迭代得到()()13g n n f =-⎡⎤⎣⎦,由此得到()()23133f n n f n n =+-≥⎡⎤⎣⎦,,并求和,利用放缩法,即可求解最小值.【详解】因为()()()6f x y f x f y xy +=++,所以()()()()222333f x y x y f x x f y y +-+=-+-,设()()23g x f x x =-,则()()()g x y g x g y +=+,因此()()()()()()()()11211221g n g n g g n g g g n g =-+=-++=-+()()()()()211321g n g ng n f ==+-==-⎡⎤⎣⎦ ,所以()()23133f n n f n n =+-≥⎡⎤⎣⎦,取1n =,得()13f ≥,所以()8111188822()3133612i i i i f i ii i f =====+-≥=⎡⎤⎣⎦∑∑∑∑,所以81()i f i =∑的最小值为612.故答案:612.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 平面四边形ABCD中,已知4,120,AB BC ABC AC =∠=︒=(1)求ABC V 的面积;(2)若150,BCD AD ∠=︒=ADC ∠的大小.【答案】(1(2)60︒【解析】【分析】(1)由已知,设BC x =,则4AB x =,由余弦定理,可得1x =,利用三角形的面积公式即可求得ABC V 的面积;(2)在ABC V中,由正弦定理,可求得sin ACB ∠=,进而求得cos ACB ∠=,进而求得sin ACD ∠=ACD中,由正弦定理,求得sin ADC ∠=ADC ∠的大小.【小问1详解】由已知,设BC x =,则4AB x =,在ABC V 中,由余弦定理,2222cos AC AB BC AB BC ABC =+-⋅∠,为因为120,ABC AC ∠=︒=,所以22222116421x x x x =++=,解得1x =,所以1BC =,4AB =,所以11sin 4122ABC S AB BC ABC =⋅∠=⨯⨯= .【小问2详解】在ABC V 中,由正弦定理,sin sin ACB ABCAB AC ∠∠=,因为120,ABC AC ∠=︒=,4AB =,所以sin sin 4ABC ACB AB AC ∠∠=⋅==,又在ABC V 中,120ABC ∠=︒,则060ACB ︒<∠<︒,所以cos ACB ∠==,因为150BCD ∠=︒,所以()sin sin 150ACD ACB ∠=︒-∠sin150cos cos150sin ACB ACB=︒∠-︒∠12⎛== ⎝,在ACD 中,由正弦定理,sin sin ADC ACDAC AD∠∠=,又AD ==解得sin ADC ∠=>,所以60ACD ∠>︒,因为0180ADC ︒<∠<︒,则60ADC ∠=︒.16. 如图,在直三棱柱111ABC A B C -中,1,3,4,,,AB AC AC AB AA M N P ⊥===分别为11,,AB BC A B 的中点.(1)求证://BP 平面1C MN ;(2)求二面角1P MC N --的余弦值.【答案】(1)证明见解析(2).【解析】【分析】(1)先证明1,,,M N C A 四点共面,再证明1MA BP ,由线面平行的判定定理可证;(2)以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系,结合空间向量的坐标运算以及二面角公式,带入求解即可.【小问1详解】证明:连接1A M ,因为,M N 分别为,AB BC 的中点,则MN AC ∥,在三棱柱111ABC A B C -中,11ACA C ,则11MN A C ∥,则11,,,M N A C 四点共面,11AB A B = ,且11AB AB ∥,,M P 分别为11,AB A B 的中点,则1BM PA 且1BM PA =,则四边形1BMA P 为平行四边形,则1MA BP ,BP ⊄ 平面1C MN ,1MA ⊂平面1C MN ,则//BP 平面1C MN .【小问2详解】在直棱柱111ABC A B C -中,11,,AA AB AA AC AB AC ⊥⊥⊥,则以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系:则有13(0,0,0),(4,0,0),(0,3,0),(2,0,0),(2,,0),(2,0,4),(0,3,4)2A B C M N P C ,13(2,3,4),(0,,0),(0,0,4)2MC MN MP =-== ,设平面1MPC 的一个法向量为(,,)m x y z = ,平面1MNC 的一个法向量为(,,)n a b c =,则1234040m MC x y z m MP z ⎧⋅=-++=⎪⎨⋅==⎪⎩及12340302n MC a b c n MN b ⎧⋅=-++=⎪⎨⋅==⎪⎩,令3,1x c ==,则有(3,2,0),(2,0,1)m n ==,则cos ,m n m n m n ⋅===,因为二面角1P MC N --为钝角,则所求二面角的余弦值为.17. 已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,点()4,3P 在双曲线C 上.(1)求双曲线C 的方程.(2)设过点()10-,的直线l 与双曲线C 交于M ,N 两点,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出Q 点坐标及此常数的值;若不存在,说明理由.【答案】(1)22143x y -=; (2)存在,29(,0)8Q -,58564.【解析】【分析】(1)根据题意由双曲线的渐近线方程得到ba的值,再根据(4,3)P 在双曲线上,将坐标代入双曲线方程即可解得,a b 的值.(2)设出直线l 方程与M ,N 点坐标1122(,),(,)x y x y ,联立直线与双曲线方程,结合韦达定理可表示出12x x +、21x x 、12y y +、12y y ,再设出Q 坐标(,0)t ,则可以表示出,QM QN 坐标,即可用坐标表示出QM QN⋅的值,再结合具体代数式分析当QM QN ⋅为常数时t 的值.【小问1详解】由题意得,因为双曲线渐近线方程为y x =,所以b b a =⇒=,又点(4,3)P 在双曲线上,所以将坐标代入双曲线标准方程得:221691a b-=,联立两式解得21612a a -=⇒=,b =,所以双曲线的标准方程为:22143x y -=.【小问2详解】如图所示,点(1,0)E -,直线l 与双曲线交于,M N 两点,由题意得,设直线l 的方程为1x my =-,Q 点坐标为(,0)t ,联立221431x y x my ⎧-=⎪⎨⎪=-⎩得,22(34)690m y my ---=,设11(,)M x y ,22(,)N x y ,则122634m y y m +=-,122934y y m -=-,21212122268(1)(1)()223434m x x my my m y y m m +=-+-=+-=-=--,22121212122124(1)(1)()134m x x my my m y y m y y m --=--=-++=-,11)(,t y QM x =- ,22,)(Q x t y N =-,所以21212121212()()()Q t x t y y x x t x x t y M N y Q x +⋅--=-++=+2222212489343434m t t m m m ---=-⋅++---222222121384(34)8293434m t m t t tm m -------=+=+--22829434t t m +=--+-,所以若要使得上式为常数,则8290t +=,即298t =-,此时58564QM QN ⋅= ,所以存在定点29(,0)8Q -,使得QM QN ⋅ 为常数58564.【点睛】关键点点睛:本题(2)问解题关键首先在用适当的形式设出直线l 的方程,当已知直线过x 轴上的定点(,0)n 时,可设直线方程为x my n =+,这样可简化运算,其次在于化简QM QN ⋅时计算要仔细,最后判断何时为常数时要抓住“消掉m ”这个关键,即最后的代数式中没有我们设出的m.18. 已知函数()2sin cos f x x x x x =--.(1)求()f x 在πx =处的切线方程;(2)证明:()f x 在()0,2π上有且仅有一个零点;(3)若()0,x ∞∈+时,()sin g x x =的图象恒在()2h x ax x =+的图象上方,求a 的取值范围.【答案】(1)220x y π+-= (2)证明见解析 (3)1πa <-【解析】分析】(1)根据解析式求出切点,再根据导函数求出斜率,点斜式可得到切线方程;(2)先分析函数的单调性,需要二次求导,再结合函数值的情况进行判断;(3)对于函数图象的位置关系问题,可先特值探路求出参数的取值范围,再证明在该条件不等式恒成立即可.【小问1详解】()2sin cos f x x x x x =--,当πx =时,()π2sin ππcos ππ0f =--=,所以切点为()π,0,因为()2cos cos sin 1cos sin 1f x x x x x x x x =-+-=+-',【所以斜线方程的斜率()πcos ππsin π12k f ==+-=-',根据点斜式可得()02πy x -=--可得220x y π+-=,所以()f x 在πx =处的切线方程为220x y π+-=;【小问2详解】由(1)可得()cos sin 1f x x x x =+-',令()()cos sin 1g x f x x x x ==+-',所以()sin sin cos cos g x x x x x x x '=-++=,当π0,2x ⎛⎫∈ ⎪⎝⎭和3π,2π2x ⎛⎫∈ ⎪⎝⎭时,cos 0x >,()0g x '>,()g x 单调递增;当π3π,22x ⎛⎫∈⎪⎝⎭时,cos 0x <,()0g x '<,()g x 单调递减;()πππππ0cos00sin010,cos sin 11022222g g ⎛⎫=+⨯-==+⨯-=-> ⎪⎝⎭,()πcos ππsin π1=2<0g =+--,3π3π3π3π3πcos cos 11022222g ⎛⎫=+-=--< ⎪⎝⎭,()2πcos 2π2πsin 2π10g =+-=,存在0π,π2x ⎛⎫∈⎪⎝⎭使得g (x 0)=0,所以()f x 在()00,x 上单调递增,在()0,2πx 单调递减,又()()02sin 00cos 00,π2sin ππcos ππ0f f =-⨯==-⨯-=,()2π2sin 2π2πcos 2π2π=4πf =---,所以()f x 在()0,2π上有且仅有一个零点;【小问3详解】因为()0,x ∞∈+时,()sin g x x =的图象恒在()2h x ax x =+的图象上方,即2sin x ax x >+恒成立,等价于2sin x xa x -<恒成立,当πx =时,有2sin 1ππa ππ-<=-,下证:2sin 1πx x x -≥-即证21sin πx x x -≥-,()0,x ∞∈+恒成立,令()21sin πs x x x x =-+,当2πx ≥时,2sin 2π4π>01sin πx x x x --++>,当()0,2πx ∈时,()2cos 1πs x x x -+'=,设()2cos 1πt x x x =-+,则()2sin πt x x -'=+,此时()0t x '=在()0,2π有两个不同解1212π,,0π2x x x x <<<<,且当10x x <<或22πx x <<时,()0t x '>,当12x x x <<时,()0t x '<,故()t x 在()12,x x 上为减函数,在()10,x ,()2,2πx 上为增函数,而()()()π0π0,2π402t t t t ⎛⎫====> ⎪⎝⎭,故当π02x <<时,()0t x >,当ππ2x <<时,()0t x <,当π2πx <<时,()0t x >,故()s x 在π0,2⎛⎫ ⎪⎝⎭上为增函数,在π,π2⎛⎫ ⎪⎝⎭为减函数,在()π,2π为增函数,而()()0π0s s ==,故()0,2πx ∈时,()0s x ≥恒成立,综上1πa <-.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数y =g (x )的图象的交点问题.19. 数列{}n b 满足32121222n n b b b b n -++++= ,{}n b 前n 项和为n T ,等差数列{}n a 满足的的1143,a b a T ==,等差数列前n 项和为n S .(1)求数列{}{},n n a b 的通项公式;(2)设数列{}n a 中的项落在区间()21,1m m T T ++中的项数为()m c m N*∈,求数列{}mc 的前n 和n H;(3)是否存在正整数m ,使得3m m m mS T S T +++是{}n a 或{}n b 中的项.若有,请求出全部的m 并说明理由;若没有,请给出证明.【答案】(1)21n a n =-,12n n b -=(2)2121233m m m H +=-+(3)1m =,2m =或5m =【解析】【分析】(1)先利用数列通项与前n 项和的关系求出12n n b -=,然后得到12n n b -=为等差数列,求得n T ,再求得14,a a ,计算数列{a n }的通项公式即可;(2)先求出区间()21,1m m T T ++的端点值,然后明确{a n }的项为奇数,得到()21,1m m T T ++中奇数的个数,得到()m c m N*∈通项公式,然后求和即可;(3)先假设存在,由(1)求得2n S n =,21nn T =-,令3m m m mS T L S T ++=+,然后判断L 的取值,最后验证,不同取值时,m 的值即可.【小问1详解】由题可知,当1n =时,11b =;当2n ≥时,得3121221222n n b b b b n --++++=- 因为32121222n n b b b b n -++++= 两式相减得11122n n n n bb --=⇒=经检验,当*N n ∈时,12n n b -=显然,{b n }是以1为首项,2为公比的等比数列,所以122112nn n T -==--所以1143,17a b a T ====等差数列{a n }的公差71241d -==-所以21n a n =-【小问2详解】由(1)可知,2212,12m m m m T T +=+=因为21n a n =-,所以21n a n =-为奇数;故()m c m N *∈为区间()21,1m m TT ++的奇数个数显然2212,12m m m m T T +=+=为偶数所以21224222m m mm m c --==-所以()2121444412222m mm m m H ---++++=-++++ ()214141122122141233m mm m +--=⨯-=-+--【小问3详解】由(1)可知2n S n =,21nn T =-所以23322121m m m m m m S T m S T m ++++-=++-若3m m m mS T S T +++是{a n }或{b n }中的项不妨令3m m m mS T L S T ++=+,则L *∈N 则有()()()232221118221m m m m L L m L m ++-=⇒--=-+-因为210,20m m -≥>所以18L ≤≤因为L 为数列{a n }或{b n }中的项所以L 的所有可能取值为1,2,3,4,5,7,8当1L =时,得20m =无解,所以不存在;当18L <≤时得28112m L m L --=-令()2*1,2m m g m m -=∈N 得()22ln 2ln 22mm m g m +='-令()22ln 2ln 2h m m m =-+显然()22ln 2ln 2h m m m =-+为二次函数,开口向下,对称轴为()11,2ln 2m =∈()()()120,368ln 20,4815ln 20h h h =>=->=-<所以当3m ≤时,()0g m '>,()2*1,2m m g m m N -=∈单调递增;当3m ≥时,()0g m '<,()2*1,2m m g m m N -=∈单调递减得()()1531,416g g ==因为28112m L m L --=-所以89112L L L -≤⇒≥-所以L 的可能取值有5,7,8我们来验证,当5L =时,得21324m m -=,可得存在正整数解2m =或5m =,故5L =满足;当7L =时,得21126m m -=,当m 为整数时,212m m -分子为整数,分母不能被3整除;所以21126m m -=无正整数解,故7L =不满足;当8L =时,得2102m m -=,得存在正整数解1m =,故8L =满足;综上所诉,1m =,2m =或5m =.【点睛】关键点点睛:(1)需要构造数列,然后合理利用数列通项与前n 项和的关系求解即可;(2)需要明确两个数之间奇数的个数即可;(3)先假设存在,然后确定数列{a n }或{b n }中的项是哪些,最后再反过来求m 的值即可.。
湖南省长沙市2025届高三上学期阶段性检测(一)数学试题含答案

长沙市2024—2025学年度高三阶段性检测(一)数学试卷(答案在最后)时量:120分钟总分:150分一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}1A x x =<,集合{B x y ==,则A B = ()A.()1,1- B.()0,1 C.[)0,1 D.()1,+∞【答案】C 【解析】【分析】求解绝对值不等式和函数定义域解得集合,A B ,再求交集即可.【详解】根据题意,可得{}{}11,0A x x B x x =-<<=≥,故{01}[0,1)A B x x ⋂=≤<=.故选:C .2.已知复数z 满足i 12i =-+z ,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】根据复数的除法运算法则、结合共轭复数的定义、复数在复平面内对应点的特征进行求解即可.【详解】i 12i =-+z 212i (12i)i2i i iz -+-+⋅⇒===+2i z ⇒=-,所以复数z 在复平面内对应的点位于第四象限,故选:D3.已知一个古典概型,其样本空间中共有12个样本点,其中事件A 有6个样本点,事件B 有4个样本点,事件A B +有8个样本点,则()P AB =()A.23B.12C.13D.16【答案】D 【解析】【分析】依题意计算可得()12P A =,()13P B =,()23P A B +=,再由概率的加法公式计算即可得1()6P AB =.【详解】根据概率公式计算可得()61122P A ==,()41123P B ==,()82123P A B +==;由概率的加法公式可知()()()()P A B P A P B P AB +=+-,代入计算可得1()6P AB =故选:D4.已知等差数列{}n a 的前5项和535S =,且满足5113a a =,则等差数列{a n }的公差为()A.-3B.-1C.1D.3【答案】D 【解析】【分析】根据题意得到5151035S a d =+=,511413a a d a =+=,解得答案.【详解】5151035S a d =+=;511413a a d a =+=,解得3d =,11a =.故选:D5.已知()512my x y x ⎛⎫+- ⎪⎝⎭的展开式中24x y 的系数为80,则m 的值为()A.2- B.2C.1- D.1【答案】A 【解析】【分析】根据题意可得55511(2)(2)(2)my x y x y my x y x x ⎛⎫+-=-+-⎪⎝⎭,利用二项式展开式的通项公式1C r n r rr n T ab -+=求出24x y 的项的系数,进而得出结果.【详解】55511(2)(2)(2)my x y x y my x y x x ⎛⎫+-=-+- ⎪⎝⎭,在51(2)x y x-的展开式中,由155455(2)()(1)2r r r r r r r r x C x y C x y -----=-⋅,令424r r -=⎧⎨=⎩,得r 无解,即51(2)x y x -的展开式没有24x y 的项;在5(2)my x y -的展开式中,由555155(2)()(1)2rrr r r r r r myC x y mC x y ---+-=-⋅,令5214r r -=⎧⎨+=⎩,解得r =3,即5(2)my x y -的展开式中24x y 的项的系数为35335(1)240mC m --⋅=-,又5(2)()x my x y +-的展开式中24x y 的系数为80,所以4080m -=,解得2m =-.故选:A.6.如图,正方形ABCD 中,2,DE EC P = 是直线BE 上的动点,且(0,0)AP x AB y AD x y =+>>,则11x y+的最小值为()A. B. C.43+ D.4【答案】C 【解析】【分析】根据给定图形,用,AB AE 表示向量AD,再利用共线向量定理的推论,结合“1”的妙用求解即得.【详解】正方形ABCD 中,2DE EC =,则2233AD AE ED AE CD AE AB =+=+=- ,而AP xAB y AD =+ ,则(22)()33A B x AE A x P AB y AB y E y A --=++=,又点,,B P E 共线,于是2()13x y y -+=,即13y x +=,而0,0x y >>,因此313111)(444()333x y x x y y x y x y ++=+=+++≥+,当且仅当3x y y x =,即3332y -==时取等号,所以当33,22x y ==时,11x y +取得最小值43+.故选:C 7.设3103a =,ln1.03b =,0.03e 1=-c ,则下列关系正确的是()A.a b c >>B.b a c >>C.c b a >>D.c a b>>【答案】C 【解析】【分析】构造函数()()e 1,0xf x x x =--≥.利用导数判断单调性,证明出0.03e 10.03->.构造函数()()()ln 1,0g x x x x =+-≥.利用导数判断单调性,证明出ln1.030.03<,得到c b >;构造函数()()()ln 1,01xh x x x x =+-≥+.利用导数判断单调性,证明出3ln1.03103>,即为b a >.即可得到答案.【详解】记()()e 1,0xf x x x =--≥.因为()e 1xf x '=-,所以当0x >时,()0f x '>,所以()f x 在0,+∞上单调递增函数,所以当0x >时,()()00f x f >=,即1x e x ->,所以0.03e 10.03->.记()()()ln 1,0g x x x x =+-≥.因为()11011x g x x x-'=-=<++,所以在0,+∞上单调递增函数,所以当0x >时,()()00g x g <=,即()ln 1x x +<,所以ln1.030.03<.所以c b >.记()()()ln 1,01xh x x x x=+-≥+.因为()()()2211111x h x x x x '=-=+++,所以当0x >时,()0h x '>,所以()h x 在0,+∞上单调递增函数,所以当0x >时,()()00h x h >=,即()ln 11x x x +>+,所以0.033ln1.0310.03103>=+.所以b a >.综上所述:c b a >>.故选:C8.已知()1tan 1tan tan 622tan 2⎛⎫⎪--⎡⎤-+-=⎪⎢⎥-⎣⎦ ⎪⎝⎭αβαβαβαβ,tan tan 32⎛⎫-= ⎪⎝⎭παβ,则()cos 44+=αβ()A.7981-B.7981C.4981-D.4981【答案】A 【解析】【分析】结合二倍角公式和两角和差公式化简即可求得.【详解】()1tan 1tan tan 622tan 2⎛⎫ ⎪--⎡⎤-+-= ⎪⎢⎥-⎣⎦ ⎪⎝⎭αβαβαβαβ,222612tan 2tan 21tan1tan 22αβαβαβαβ--⎛⎫ ⎪+= ⎪-- ⎪-⎝⎭-.()()2221tan 2tan 2cos 2261n2si ta n αβαβαβαβαβ--⎛⎫-+ ⎪-= ⎪-- ⎪-⎝⎭,()()221tan 2cos 21s 6ta i 2n n αβαβαβαβ-⎛⎫+ ⎪-= ⎪-- ⎪-⎝⎭,()()()2cos 16c sin os αβαβαβ-⨯=--,()1sin 3αβ-=,1sin cos cos sin 3αβαβ-=,又因为tan tan 32⎛⎫-=⎪⎝⎭παβ,所以sin cos 3cos sin αβαβ=,则11cos sin ,sin cos 62αβαβ==,所以()2sin sin cos cos sin 3αβαβαβ+=+=()()241cos 12sin 129922αβαβ=-=-⨯=++.()()2179cos 442cos 221218181αβαβ+=+-=⨯-=-.故选:A二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg E =4.8+1.5M ,则下列说法正确的是()A.地震释放的能量为1015.3焦耳时,地震里氏震级约为七级B.八级地震释放的能量约为七级地震释放的能量的6.3倍C.八级地震释放的能量约为六级地震释放的能量的1000倍D.记地震里氏震级为n (n =1,2,···,9,10),地震释放的能量为a n ,则数列{a n }是等比数列【答案】ACD 【解析】【分析】根据所给公式,结合指对互化原则,逐一分析各个选项,即可得答案.【详解】对于A :当15.310E =时,由题意得15.3lg10 4.8 1.5M =+,解得7M =,即地震里氏震级约为七级,故A 正确;对于B :八级地震即8M =时,1lg 4.8 1.5816.8E =+⨯=,解得16.8110E =,所以16.81.5115.3101010 6.310E E ==>≠,所以八级地震释放的能量约为七级地震释放的能量的 1.510倍,故B 错误;对于C :六级地震即6M =时,2lg 4.8 1.5613.8E =+⨯=,解得13.8210E =,所以16.83113.821010100010E E ===,即八级地震释放的能量约为六级地震释放的能量的1000倍,故C 正确;对于D :由题意得lg 4.8 1.5n a n =+(n =1,2,···,9,10),所以 4.81.510n n a +=,所以 4.81.5(1)6.31.511010n n n a ++++==所以6.31.5 1.51 4.81.5101010nn n n a a +++==,即数列{a n }是等比数列,故D 正确;故选:ACD10.已知双曲线2222:1x y C a b-=()0,0a b >>的左、右焦点分别为1F ,2F ,点P 在双曲线的右支上,现有四个条件:①120PF PF ⋅=;②1260F F P ∠=︒;③PO 平分12F PF ∠;④点P 关于原点对称的点为Q ,且12PQ F F =,能使双曲线C的离心率为1+)A.①②B.①③C.②③D.②④【答案】AD 【解析】【分析】对各个选项进行分析,利用双曲线的定义找到a,c 的等量关系,从而确定离心率.【详解】③PO 平分12F PF ∠且PO 为中线,可得12PF PF =,点P 在双曲线的右支上,所以不成立;若选①②:120PF PF ⋅=,1260F F P ∠=︒,122F F c =可得2PF c =,1PF =,2c a -=,即离心率为1c e a ===+,成立;若选②④:1260F F P ∠=︒,点P 关于原点对称的点为Q ,且12PQ F F =,可得四边形12F QF P 为矩形,即12PF PF ⊥,122F F c =可得2PF c =,1PF =,2c a -=,即离心率为1c e a ===+,成立;故选:AD11.如图,ABCD 是底面直径为2高为1的圆柱1OO 的轴截面,四边形1OO DA 绕1OO 逆时针旋转()0θθπ≤≤到111OO D A ,则()A.圆柱1OO 的侧面积为4πB.当0θπ<<时,11DD AC ⊥C.当3πθ=时,异面直线1A D 与1OO 所成的角为4πD.1A CD 【答案】BC 【解析】【分析】对于A ,由圆柱的侧面积公式可得;对于B ,由线面垂直的判定定理和性质定理可得;对于C ,由题知,11DO D 为正三角形,根据异面直线所成的角的定义计算得解;对于D ,作1D E DC ⊥,由线面垂直的判定定理和性质定理得1A E DC ⊥.在11Rt A D E 中,1A E ==≤=【详解】对于A ,圆柱1OO 的侧面积为2112ππ⨯⨯=,A 错误;对于B ,因为0θπ<<,所以11DD D C ⊥,又111DD A D ⊥,所以1DD ⊥平面11A D C ,所以11DD AC ⊥,B 正确;对于C ,因为111//A D OO ,所以11DA D ∠就是异面直线1A D 与1OO 所成的角,因为113DO D π∠=,所以11DO D 为正三角形,所以1111DD A D ==,因为111A D DD ⊥,所以114DA D π∠=,C 正确;对于D ,作1D E DC ⊥,垂足为E ,连接1A E ,所以DC ⊥平面11A D E ,所以1A E DC ⊥.在11Rt A D E 中,1A E ==≤=1111222A CD S DC A E =⨯⨯≤⨯= ,所以()1maxA CD S = ,D 错误.故选:BC.三、填空题(本题共3小题,每小题5分,共15分)12.如图,某景区共有,,,,A B C D E 五个景点,相邻景点之间仅设置一个检票口供出入,共有7个检票口,工作人员为了检测检票设备是否正常,需要对每个检票口的检票设备进行检测.若不重复经过同一个检票口,依次对所有检票口进行检测,则共有____________种不同的检测顺序.【答案】32【解析】【分析】将5个景区抽象为5个点,见7个检票口抽象为7条路线,将问题化归为不重复走完7条路线,即一笔画问题,分析可得只能从B 或E 处出发才能不重复走完7条路线,再用列举法列出所有可能结果,即可得解.【详解】如图将5个景区抽象为5个点,见7个检票口抽象为7条路线,将问题化归为不重复走完7条路线,即一笔画问题,从B 或E 处出发的线路是奇数条,其余是偶数条,可以判断只能从B 或E 处出发才能不重复走完7条路线,由于对称性,只列出从B 处出发的路线情形即可.①走BA 路线:3126547,3126745,3147526,3147625,3156247,3157426,共6种;②走BC 路线:4137526,4137625,4265137,4267315,4562137,4573126,共6种;③走BE 路线:7513426,7543126,7621345,7624315,共4种;综上,共有()266432⨯++=种检测顺序.故答案为:3213.已知函数()()sin f x x ωω=∈R 在π7π,212⎛⎫ ⎪⎝⎭上是增函数,且π3π244f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则π12f ⎛⎫- ⎪⎝⎭的取值的集合为______.【答案】11,2⎧⎫⎨⎬⎩⎭【解析】【分析】由π3π244f f ⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭可得2π42n T ω==+,由函数在π7π,212⎛⎫ ⎪⎝⎭上是增函数可得12ω≤,然后对ω的取值逐一验证,然后可得π12f ⎛⎫- ⎪⎝⎭取值.【详解】由π3π244f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可知,3πππ2442T nT +=-=,得π,21T n n =∈+Z ,所以2π42n Tω==+,又函数()()sin f x x ωω=∈R 在π7π,212⎛⎫⎪⎝⎭上是增函数,所以7πππ212212T ≥-=,即6πT ≥,所以12ω≤,所以,ω的可能取值为2,6,10±±±.当0ω>时,由ππ2π2π22k x k ω-+≤≤+解得π2ππ2π,22k k x k ωωωω-+≤≤+∈Z ,经检验,2,6,10ω=时不满足题意;当0ω<时,由ππ2π2π22k x k ω-+≤≤+解得π2ππ2π,22k k x k ωωωω+≤≤-+∈Z ,经检验,2,6ω=--时满足题意.所以,12f π⎛⎫-⎪⎝⎭的可能取值为ππ1ππsin ,sin 11262122f f ⎛⎫⎛⎫-==-== ⎪ ⎪⎝⎭⎝⎭.故答案为:11,2⎧⎫⎨⎬⎩⎭【点睛】本题综合考查了三角函数的单调性、最值、周期之间的关系,关键在于能从已知中发现周期的所满足的条件,然后根据周期确定ω的可能取值,再通过验证即可求解.14.斜率为1的直线与双曲线2222:1x y E a b-=(0,0a b >>)交于两点,A B ,点C 是曲线E 上的一点,满足AC BC ⊥,OAC 和OBC △的重心分别为,P Q ,ABC V 的外心为R ,记直线OP ,OQ ,OR 的斜率为1k ,2k ,3k ,若1238k k k =-,则双曲线E 的离心率为______.【解析】【分析】根据直线与双曲线的性质,得出二级结论斜率之积为定值22b a ,取,AC BC 的中点,M N ,得到2122AC BC b k k k k a ⋅=⋅=,再由AC BC ⊥,22OR b k a=,结合所以1238k k k =-,求得b a =c e a ==.【详解】若直线y kx m =+与双曲线22221x ya b-=有两个交点,G H ,设,G H 的中点为K ,联立方程组22221y kx mx y a b =+⎧⎪⎨-=⎪⎩,整理得222222222()20b a k x a kmx a m a b ----=,可得22222G H a km x x b a k +=-,则22222G H K x x a kmx b a k+==-,又由(,)K K K x y 在直线y kx m =+上,可得22222222K a km b my m b a k b a k=+=--,所以22K OKK y b k x ka ==,所以22GH OK b k k a⋅=,即直线l 与双曲线相交线的中点与原点的连线的斜率与直线l 的斜率之积为定值22b a,如图所示,取,AC BC 的中点,M N ,因为OAC 的重心P 在中线OM 上,OBC △的重心Q 在中线ON 上,所以1OP OM k k k ==,2OQ ON k k k ==,可得22OM AC ON BCb k k k k a⋅=⋅=,即2122AC BCb k k k k a⋅=⋅=,又由AC BC ⊥,可得1AC BCk k ⋅=-,可得22122()b k k a⋅=-因为AC BC ⊥,且ABC V 的外心为点R ,则R 为线段AB 的中点,可得22OR ABb k k a ⋅=,因为1AB k =,所以22OR b k a=,所以2321238()b k ak k =-=-,所以b a =,所以c e a ===.【点睛】知识方法:求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程或不等式,然后转化为关于e 的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.设函数()()2ln f x x ax x a =-++∈R .(1)若1a =,求函数()f x 的单调区间;(2)设函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,求实数a 的取值范围.(其中e 是自然对数的底数)【答案】(1)单调递增区间为()0,1,单调递减区间为()1,+∞(2)e11,e ⎛⎤- ⎥⎝⎦【解析】【分析】(1)根据题意,求导可得()f x ',即可得到结果;(2)根据题意,由条件可得ln x a x x =-,构造函数()ln x g x x x =-,其中1,e e x ⎡⎤∈⎢⎥⎣⎦,转化为最值问题,即可求解.【小问1详解】当1a =时,()()2ln ,f x x x x f x =-++的定义域为()0,∞+,()212121x x f x x x x-++=-++=',令()0f x '>,则2210x x --<,解得01x <<,令()0f x '<,则2210x x -->,解得1x >.∴函数()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞.【小问2详解】令()2ln 0f x x ax x =-++=,则ln xa x x=-.令()ln x g x x x =-,其中1,e e x ⎡⎤∈⎢⎥⎣⎦,则()2221ln ln 11x x x x x g x x x ⋅-+-=-='.令()0g x '>,解得1e x <≤,令()0g x '<,解得11ex ≤<.()g x ∴的单调递减区间为1,1e ⎡⎫⎪⎢⎣⎭,单调递增区间为(]1,e ,()min ()11g x g ∴==.又()111e ,e e e e e g g ⎛⎫=+=- ⎪⎝⎭,函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,a ∴的取值范围是e 11,e ⎛⎤-⎥⎝⎦.16.如图,已知四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,四边形11CC D D 为矩形,平面11CC D D ⊥平面,ABCD E 为线段1CD 的中点,且BE CE =.(1)求证:AD ⊥平面11BB D D ;(2)若4,2AB AD ==,直线1A E 与平面11BB D D 所成角的正弦值为155,求二面角1D AB D --的余弦值.【答案】(1)证明见解析(2)55【解析】【分析】(1)先根据直角三角形的性质和平行线的性质得到1D B BC ⊥,再根据面面垂直和线面垂直的性质定理结合平面11CC D D ⊥平面ABCD 得到1AD D D ⊥,最后根据线面垂直的判定定理证明即可.(2)建立空间直角坐标系,设()10DD t t =>,利用已知条件和线面角的坐标公式求出t ,再利用面面角的坐标公式求解即可.【小问1详解】在1BCD 中,E 为线段1CD 的中点,且BE CE =,所以1D E CE BE ==,所以112BE CD =,1BCD 为直角三角形,且190CBD ∠=︒,所以1D B BC ⊥,因为底面ABCD 为平行四边形,AD BC ∥,所以1AD D B ⊥,又因为四边形11CC D D 为矩形,所以1D D DC ⊥,因为平面11CC D D ⊥平面ABCD ,平面11CC D D 平面1,ABCD DC D D =⊂平面11CC D D ,所以1D D ⊥平面ABCD ,因为AD ⊂平面ABCD ,所以1AD D D ⊥,因为11111,,D D D B D D D D B =⊂ 平面11BB D D ,所以AD ⊥平面11BB D D .【小问2详解】因为AD ⊥平面11,BB D D BD ⊂平面11BB D D ,所以AD BD ⊥,由(1)知11,D D AD D D ⊥⊥平面ABCD ,又BD ⊂平面ABCD ,所以1D D BD ⊥,所以1,,DA DB DD 两两垂直,以D 为坐标原点,DA 所在直线为x 轴,DB 所在直线为y 轴,1DD 所在直线为z 轴,建立如图所示的空间直角坐标系,在Rt ADB △中,4,2AB AD ==,所以DB ==,设()10DD t t =>,则()()()()10,0,0,2,0,0,2,0,,,0,2t D A A t E B ⎛⎫- ⎪⎝⎭,所以()1,2,2t A E AB ⎛⎫=--=- ⎪⎝⎭,易知平面11BB D D 的一个法向量为D =2,0,0,设直线1A E 与平面11BB D D 所成的角为θ,则111sin cos ,5A E DAA E DA A E DAθ⋅====,解得t =,所以((110,0,,2,0,D AD =-,设平面1ABD 的法向量为 =s s ,则12020AB m x AD m x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令x =)m = ,易知平面ABCD 的一个法向量为()0,0,1n = ,则cos,5m nm nm n⋅===,易知二面角1D AB D--是锐角,故二面角1D AB D--的余弦值为5.17.软笔书法又称中国书法,是我国的国粹之一,琴棋书画中的“书”指的正是书法.作为我国的独有艺术,软笔书法不仅能够陶冶情操,培养孩子对艺术的审美还能开发孩子的智力,拓展孩子的思维与手的灵活性,对孩子的身心健康发展起着重要的作用.近年来越来越多的家长开始注重孩子的书法教育.某书法培训机构统计了该机构学习软笔书法的学生人数(每人只学习一种书体),得到相关数据统计表如下:书体楷书行书草书隶书篆书人数2416102010(1)该培训机构统计了某周学生软笔书法作业完成情况,得到下表,其中60a≤.认真完成不认真完成总计男生5a a女生总计60若根据小概率值0.10α=的独立性检验可以认为该周学生是否认真完成作业与性别有关,求该培训机构学习软笔书法的女生的人数.(2)现从学习楷书与行书的学生中用分层随机抽样的方法抽取10人,再从这10人中随机抽取4人,记4人中学习行书的人数为X,求X的分布列及数学期望.参考公式及数据:()()()()()22,n ad bcn a b c da b c d a c b dχ-==+++++++.α0.100.050.01xα2.7063.841 6.635【答案】(1)20(2)分布列见解析,()85E X=【解析】【分析】(1)由已知数据完成列联表,根据独立性检验的结论列不等式求出a 的值,可得女生人数;(2)由分层抽样确定两组人数,根据X 的取值计算相应的概率,得分布列,计算数学期望.【小问1详解】根据题意,完成列联表如下:认真完成不认真完成总计男生45a5a a女生4605a -205a -80a-总计602080由题意可得()()2244802060555516 2.7066020801580a a a a a a a a χ⎡⎤⎛⎫⎛⎫⨯--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==≥⨯⨯⨯--,得57.38a >.易知a 为5的倍数,且60a ≤,所以60a =,所以该培训机构学习软笔书法的女生有806020-=(人).【小问2详解】因为学习软笔书法的学生中学习楷书与行书的人数之比为24:163:2=,所以用分层随机抽样的方法抽取的10人中,学习楷书的有310632⨯=+(人),学习行书的有210432⨯=+(人),所以X 的所有可能取值为0,1,2,3,4,()46410C 1510C 21014P X ====,()3164410C C 8081C 21021P X ====,()2264410C C 9032C 2107P X ====,()1364410C C 2443C 21035P X ====,()44410C 14C 210P X ===.X 的分布列为:X01234P114821374351210所以()1834180123414217352105E X =⨯+⨯+⨯+⨯+⨯=.18.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()12,,2,3F F A 为椭圆C 上一点,且到1F ,2F 的距离之和为8.(1)求椭圆C 的标准方程;(2)设B 为A 关于原点O 的对称点,斜率为k 的直线与线段AB (不含端点)相交于点Q ,与椭圆C 相交于点,M N ,若2MNAQ BQ⋅为常数,求AQM V 与AQN △面积的比值.【答案】(1)2211612x y +=(2)1【解析】【分析】(1)根据题意,列出关于,,a b c 的方程,代入计算,即可得到结果;(2)根据题意,表示出直线MN 的方程,联立与椭圆的方程,结合韦达定理代入计算,然后代入弦长公式,即可得到结果.【小问1详解】由椭圆的定义得1228AF AF a +==,所以4a =.又()2,3A 为椭圆C 上一点,所以22491a b+=,将4a =代入,得212b =,所以椭圆C 的标准方程为2211612x y +=.【小问2详解】因为B 为A 关于原点O 的对称点,所以()2,3B --,直线AB 的方程为32y x =.设()()2,311Q t t t -<<,则直线MN 的方程为()32y t k x t -=-,联立得()221161232x y y t k x t ⎧+=⎪⎨⎪-=-⎩,可得()()()222243832432480k x kt k x t k ++-+--=,由点Q 在椭圆内,易知Δ0>,不妨令()()1122,,,M x y N x y ,则()12282343kt k x x k -+=+,()221224324843t k x x k --⋅=+,所以()()()()()()()2222222221212122248116123211443k k t k MNkx x k x x x x k ⎡⎤++--⎣⎦⎡⎤=+-=++-=⎣⎦+.又()()()()()2222222332233131AQ BQ t t t t t ⋅=-+-+++=-,所以()()()()2222222248116123213431k k t k MN AQ BQ k t ⎡⎤++--⎣⎦=⋅+-为常数,则需满足()22221612321k t k t+---为常数,(此式为与t 无关的常数,所以分子与分母对应成比例)即()22161232k k +=-,解得12k =-.将12k =-代入()12282343kt k x x k -+=+,可得124x x t +=,得1222x x t +=,所以Q 为MN 的中点,所以1AQM AQNS MQ S NQ== .【点睛】关键点睛:本题主要考查了直线与椭圆相交问题,以及椭圆中三角形面积问题,难度较大,解答本题的关键在于结合弦长公式以及将面积比转化为边长比.19.设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为()2,3,4,n n =⋅⋅⋅阶“曼德拉数列”:①1230n a a a a +++=⋅⋅⋅+;②1231n a a a a +++⋅⋅⋅+=.(1)若某()*2k k ∈N阶“曼德拉数列”是等比数列,求该数列的通项na(12n k ≤≤,用,k n 表示);(2)若某()*21k k +∈N阶“曼德拉数列”是等差数列,求该数列的通项na (121n k ≤≤+,用,k n 表示);(3)记n 阶“曼德拉数列”{}n a 的前k 项和为()1,2,3,,k S k n =⋅⋅⋅,若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,试问:数列{}()1,2,3,,i S i n =⋅⋅⋅能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.【答案】(1)()1112n n a k -=-或()1112n n a k-=--(2)()()*1,211n na n n k k k k ∴=-∈≤++N 或()()*1,211n n a n n k k k k=-+∈≤++N (3)不能,理由见解析【解析】【分析】(1)结合曼德拉数列的定义,分公比是否为1进行讨论即可求解;(2)结合曼德拉数列的定义,首先得120,k k a a d ++==,然后分公差是大于0、等于0、小于0进行讨论即可求解;(3)记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,进一步()11,2,3,,2k S k n ≤=⋅⋅⋅,结合前面的结论以及曼德拉数列的定义得出矛盾即可求解.【小问1详解】设等比数列()1232,,,,1k a a a a k ⋅⋅⋅≥的公比为q .若1q ≠,则由①得()21122101kk a q a a a q-++⋅⋅⋅+==-,得1q =-,由②得112a k =或112a k=-.若1q =,由①得,120a k ⋅=,得10a =,不可能.综上所述,1q =-.()1112n n a k -∴=-或()1112n n a k-=--.【小问2详解】设等差数列()12321,,,,1k a a a a k +⋅⋅⋅≥的公差为d ,123210k a a a a ++++⋅⋅⋅+= ,()()11221210,02k k dk a a kd +∴++=+=,即120,k k a a d ++=∴=,当0d =时,“曼德拉数列”的条件①②矛盾,当0d >时,据“曼德拉数列”的条件①②得,()23211212k k k k a a a a a a +++++⋅⋅⋅+==-+++ ,()1122k k kd d -∴+=,即()11d k k =+,由10k a +=得()1101a k k k +⋅=+,即111a k =-+,()()()()*1111,21111n n a n n n k k k k k k k ∴=-+-⋅=-∈≤++++N .当0d <时,同理可得()1122k k kd d -+=-,即()11d k k =-+.由10k a +=得()1101a k k k -⋅=+,即111a k =+,()()()()*1111,21111n n a n n n k k k k k k k ∴=--⋅=-+∈≤++++N .综上所述,当0d >时,()()*1,211n n a n n k k k k ∴=-∈≤++N ,当0d <时,()()*1,211n n a n n k k k k =-+∈≤++N .【小问3详解】记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,得12A =,12B =-,1122k B S A -=≤≤=,即()11,2,3,,2k S k n ≤=⋅⋅⋅.若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,由前面的证明过程知:10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-.若数列{}()1,2,3,,i S i n =⋅⋅⋅为n 阶“曼德拉数列”,记数列{}()1,2,3,,i S i n =⋅⋅⋅的前k 项和为k T ,则12k T ≤.1212m m T S S S ∴=++⋅⋅⋅+≤,又12m S =,1210m S S S -∴==⋅⋅⋅==,12110,2m m a a a a -∴==⋅⋅⋅===.又1212m m n a a a ++++⋅⋅⋅+=-,1m S +∴,2m S +,⋅⋅⋅,0n S ≥,123123n n S S S S S S S S ∴+++⋅⋅⋅+=+++⋅⋅⋅+,又1230n S S S S +++⋅⋅⋅+=与1231n S S S S +++⋅⋅⋅+=不能同时成立,∴数列{}()1,2,3,,i S i n =⋅⋅⋅不为n 阶“曼德拉数列”.【点睛】关键点点睛:第三问的关键是得到10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-,由此即可顺利得解.。
山东名校考试联盟2024年10月高三年级阶段性检测语文试题及参考答案

山东名校考试联盟2024年10月高三年级阶段性检测语文试题一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分) 阅读下面的文字,完成1~5题。
材料一:《红楼梦》中有一个聚讼纷纭的案例,学界产生了多篇专论之文,但仍有可深入探讨之处。
在第四十回中,贾母带领众人去蘅芜苑,从荇叶渚上船。
宝玉道:“这些破荷叶可恨,怎么还不叫人来拔去。
”宝钗笑道:“今年这几日,何曾饶了这园子闲了,天天逛,那里还有叫人来收拾的工夫。
”林黛玉道:“我最不喜欢李义山的诗,只喜他这一句:‘留得残荷听雨声’。
偏你们不留着残荷了。
”宝玉道:“果然好句,以后咱们就别叫人拔去了。
”首先,探讨一下林黛玉引用时的改字问题。
其实,这是一种“随文立训”式的改动。
据文本内容来推,本回故事当发生在八月二十五日。
因为巧姐发热,彩明念《玉匣记》云“八月二十五日,病者在东南方得遇花神”,此时之荷尚未枯,用“残”字更贴切。
关于此,《红楼梦》中恰有可以援证之文,第六十七回袭人“刚来到沁芳桥畔,那时正是夏末秋初,池中莲藕新残相间,红绿离披”,这个夏末秋初大概是何时,书中并未明言,但亦可推知,第六十六回中柳湘莲对贾琏说“不过月中就进京的”,后又说“八月内湘莲方进了京”,然后是尤三姐自刎、柳湘莲出家等,则应该是八月下旬。
黛玉为了加强说服力,把形容此时秋景本不特别贴切的诗句改了一个字,这一改动在她引用之后的语言中也有非常清楚的显示。
事实上,这种引用时的随文改动正是古人常有之例。
因此,虽然可以确定李商隐的原文与曹雪芹的引文有一字之不同,但这却绝非一个校勘学上的“他校”问题。
接下来,我们从情节前后的脉络出发,来讨论黛玉引此诗的背后逻辑。
理解这一段对话的关键就藏在上引的原文之中,或者说,存在于作者对宝、黛、钗三人关系的设定之中。
在这三人的关系中,黛玉一直是最为警惕的那一个,面对来自宝钗的威胁,她总是下意识地防范,甚至会主动出击。
仔细看一下原文。
先是宝玉说“这些破荷叶可恨,怎么还不叫人来拔去”,这时,如果宝钗未接话,黛玉或许也可能赞同宝玉的意见,然而心思细密又喜欢给人讲道理的宝姐姐这时肯定会有所表现,所以她立刻就接着说:“今年这几日,何曾饶了这园子闲了,天天逛,那里还有叫人来收拾的工夫。
重庆市2024-2025学年高三上学期11月阶段性检测地理试题含答案

高2025届高三上11月阶段性检测地理试题(答案在最后)(满分:100分;考试时间:75分钟)注意事项:1.答题前,考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上。
2.答选择题时,必须使用2B铅笔填涂;答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整。
3.考试结束后,将答题卡交回(试题卷学生保存,以备评讲)。
一、选择题:本题共15小题,每小题3分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
中国商用飞机有限责任公司生产的C919飞机是具有自主知识产权的大型喷气式民用飞机,总部设在上海(负责研发、总装、销售等工作),全国有22个省市、200多家企业、36所高校参与研制及配套工作。
下图为C919大飞机主要零部件的生产企业示意图。
据此完成下面小题。
1.C919飞机总装工作选择在上海的主要原因是()A.市场广阔B.产业协作好C.土地充足D.劳动力丰富2.公司零部件配套企业的布局特点是()A.靠近高等院校和科研机构B.集中布局于东部沿海地带C.集中布局于长江经济带D.民航机场密度较大区域【答案】1.B 2.A【解析】【1题详解】我国国产飞机的潜在市场广阔,不仅有国内市场,还有国际市场,不是专门针对上海地区,A错误;飞机总装对土地及劳动力数量要求不高,且上海土地并不充足,C、D错误;飞机的总装工作需要多家企业生产协作,上海的产业基础好,相关产业协作能力强,B正确。
故选B。
【2题详解】由图可知,为C919大型飞机提供重要零部件的西飞、哈飞、洪都(南昌)、沈飞和成飞并没有分布在东部沿海地带,B错误;也不集中布局于长江经济带,C错误;更不是民航机场密集地带,D错误;西安、哈尔滨、南昌、沈阳、成都等城市有较多著名的高等院校以及长期从事航空航天工作的科研单位和生产单位,能够为公司零部件的研制、配套生产及维修提供有力保障,A正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空
1、5.6时=(5 )时(36 )分 (2 ) 升(80)毫升=2.08升
2、甲数的与乙16数的15
相等,乙数是10,甲数是乙的( 120 )% 3、320的15比他的16多(323
) 4、一段路,甲车要用10分钟驶完全程,乙车要12分钟驶完全程,甲车速度比乙车速度快(15
) 5、水结成冰体积要增加110,那么冰化成水体积要减少(111
) 6、、学校种了1000棵树,结果死了15棵,成活率是(98.5%)。
7、甲数是25 ,乙数是20,乙数比甲数少(20)%
二、选择
1、甲、乙二人从A 地到B 地,甲的速度比乙快16
,已知甲行这段路是用42分钟, 乙行这段路用(49)分钟。
A :36
B :42
C :48
D :49
2、李华和王芳共有图书84本,如果王芳的书再增加
31,两人的书就一样多了。
李华比王芳多(A )本。
A :12
B :14
C :24
D :28
3、如果一个矩形的长增加101,宽缩小10
1,那么这个矩形的面积是原来面积的( B )% A : 100 B : 99 C :98 D :96
4、甲乙两根同样长的绳子,甲用去13 米,乙用去13 ,当两根绳子都(①)时,
两根绳子剩下的一样长;当两根绳子都( ③)时,甲绳剩下的长;当两根绳子都(②)时,乙绳剩下的长。
① 等于1米 ② 小于1米 ③ 大于1米
三、计算、
1、1.25×1.9+3.6×114 +212 ×114
2、113×6.81+2.19×10113+9÷18
3 =1.25(1.9+3.6+2.5) =113×(6.81+2.19)+9×811
+2.19×10 =10 =9×(
113+811)+2.19×10=30.9 四、应用题
1、青草晒干后失去原重量的 34 ,某养猪厂收购了3000千克的干草,问是由多
少千克青草晒成的?3000÷(1-34 )=1200(千克)
2、某工程甲单独干10天完成,乙单独干15天完成,他们合干多少天可完成工程的一半?
0.5÷(111015
+)=3(天) 3、粮店有大米和面粉共1300袋,大米卖出38 , 面粉卖出15
后,共剩下大米和面粉共900袋,原来大米和面粉各有多少袋?
1300-900=400(袋) 1300×15 =260(袋) (400-260)÷(38 -15
)=800(袋) 1300-800=500(袋)
4、孙师傅加工一批机器零件,原计划每天加工 40 个。
由于任务紧迫,需 12 . 5 天完成,这就需要比原计划每天多加工零件 20 %。
问原计划多少天完成?
40×(1+20%)×12.5÷40=15(天)
5、一项工程,甲、乙、丙三人合作,4小时可以完成,如果甲工作4小时后,乙、丙合作2小时,可以完成这项工作的
1318,如果甲、乙合作2小时,丙做4小时,也可以完成这项工作的1118
,如果由甲、丙合作,需几小时完成? 甲每小时完成这项工作的:1311(2)(42)1849
-⨯÷-= 丙每小时完成这项工作的:1111(2)(42)18418
-⨯÷-= 甲、丙合作时间为:111()6918
÷+=(小时) 6、一种录像机现在每台售价3120元,比原来降低了1680元,降低了几分之几?
1680÷(3120+1680)= 720
7、仓库里原来存的大米和面粉的袋数相等,运出800袋大米和500袋面粉后,仓库里所剩的大米是面粉的
34
,仓库里原来有大米和面粉各多少袋? (800-500)÷(1-34)=1200(袋) 1200+500=1700(袋) 8、二年级两个班共有学生90人,其中少先队员有71人,一班少先队员人数占本班人数的75%,二班少先队员人数占本班人数的
56,一班少先队员比二班少先队员多几人? (90×56-71)÷(56
-75%)=48(人) 48×75%-(90-48)×56
=1(人)。