解析几何种技巧(终审稿)

合集下载

(完整版)解析几何考点和答题技巧归纳

(完整版)解析几何考点和答题技巧归纳

解析几何考点和答题技巧归纳一、解析几何的难点从解题的两个基本环节看:1、翻译转化:将几何关系恰当转化(准确,简单),变成尽量简单的代数式子(等式 / 不等式),或反之…2、消元求值:对所列出的方程 / 不等式进行变形,化简,消元, 计算,最后求出所需的变量的值/范围 等等难点:上述两个环节中 ⎩⎪⎨⎪⎧变量、函数/方程/不等式的思想灵活性和技巧性分类讨论综合应用其他的代数几何知不小的计算量二、复习建议分两个阶段,两个层次复习: 1、基础知识复习:落实基本问题的解决,为后面的综合应用做好准备。

这个阶段主要突出各种曲线本身的特性,以及解决解析问题的一般性工作的落实,如: ① 直线和圆:突出平面几何知识的应用(d 和r 的关系!);抛物线:突出定义在距离转化上的作用,以及设点消元上与椭圆双曲线的不同之处。

② 圆锥曲线的定义、方程、基本量(a 、b 、c 、p )的几何意义和计算③ 直线和圆锥曲线的位置关系的判断(公共点的个数)④ 弦长、弦中点问题的基本解法⑤ 一般程序性工作的落实:设点、设直线(讨论?形式?)、联立消元、列韦达结论… 中的计算、讨论、验…2、综合复习:重点攻坚翻译转化和消元求值的能力① 引导学生在 “解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想② 积累常见的翻译转化, 建立常见问题的解决模式③ 一定量的训练, 提高运算的准确性、速度, 提高书写表达的规范性、严谨性● 具体说明1、引导学生在“解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想建议在例题讲解时,总是在具体计算之前进行“解题路径规划”:① 条件和结论与哪几个变量相关?解决问题需要设哪些变量?② 能根据什么条件列出几个等式和不等式?它们之间独立吗?够用了吗?③ 这些等式/不等式分别含有什么变量?如何消元求解最方便?④ 根据这些等式和不等式,能变形、消元后得到什么形式的结论(能消掉哪些变量?得到两个变量的新等式/不等式?变量的范围?求出变量的值?)好处: ①选择合适的方法;②避免中途迷失[注] 关于消元常用的消元法: ⎩⎪⎨⎪⎧代入消元加减/乘除消元韦达定理整体代入消掉交点坐标 点差法 弦中点与弦斜率的等量关系 ……换元,消元的能力非常重要2、积累常见翻译转化,建立常见问题的解决模式(1)常见的翻译转化:① 点在曲线上 点的坐标满足曲线方程② 直线与二次曲线的交点⎣⎢⎡点坐标满足直线方程点坐标满足曲线方程x 1 + x 2 = …‚ x 1x 2= …y 1 + y 2 = …‚ y 1y 2 = … ③ 两直线AB 和CD 垂直 01AB CD AB CD k k ⎡⋅=⎢⋅=-⎣④ 点A 与B 关于直线l 对称⎩⎨⎧中: AB 的中点l 垂: AB ⊥l ⑤ 直线与曲线相切 ⎣⎡圆: d = r 一般二次曲线: 二次项系数 ≠ 0 且∆ = 0⑥ 点(x 0,y 0)在曲线的一侧/内部/外部 代入后 f (x 0,y 0) > 0或f (x 0,y 0) < 0⑦ ABC 为锐角 或 零角 BA → ∙ BC → > 0⑧ 以AB 为直径的圆过点C⎣⎢⎡CA → ∙ CB → = 0|CA |2 + |CB |2 = |AB |2 ⑨ AD 平分BAC → ⎣⎢⎢⎡AD ⊥x 轴或y 轴时:k BA = − k AC AD 上点到AB 、AC 的距离相等AD →∥(AB → + AC →)⑩ 等式恒成立系数为零或对应项系数成比例○11 A 、B 、C 共线 → ⎣⎢⎢⎡AB →∥BC→k AB = k BC C 满足直线AB 的方程……[注] 关于直线与圆锥曲线相交的列式与消元:① 如果几何关系与两个交点均有关系,尤其是该关系中,两个交点具有轮换对称性,那么可优先尝试利用韦达定理得到交点坐标的方程,然后整体消元如果几何关系仅与一个交点相关, 那么优先尝试“设点代入”(交点坐标代入直线方程和曲线方程);② 如果几何关系翻译为交点的坐标表示后, 与x 1 + x 2, y 1 + y 2相关 (如:弦的中点的问题),还可尝试用 “点差法”(“代点相减” 法) 来整体消元,但仍需保证∆ > 0(2)建立常见题型的“模式化”解决方法 (不能太过模式化,也不能没有模式化)如:① 求曲线方程: ⎩⎪⎨⎪⎧待定系数法直译法定义法相关点法参数法… 难度较大,上海常考的是待定系数法、定义法和相关点法。

考研数学解析几何必备技巧

考研数学解析几何必备技巧

考研数学解析几何必备技巧解析几何是考研数学中重要且难度较高的一个部分,在备考过程中,掌握必备的技巧是非常重要的。

本文将介绍一些解析几何的必备技巧,帮助广大考生提高解析几何的解题能力。

一、直线与平面的交点在解析几何中,直线与平面的交点问题是常见且基础的考点。

解决该类问题时,有以下几个技巧可供参考:1. 利用方程求解:对于已知的直线与平面方程,通过联立方程求解得到交点的坐标。

例如,对于直线L:x+y=3和平面P:2x+3y+z=6,可以通过联立方程求解得到交点的坐标。

2. 使用向量法:直线可以用向量表示,平面也可以用法向量表示。

通过求解直线向量与法向量的关系,可以得到直线与平面的交点。

例如,对于已知的直线向量a(1,2,3)和法向量n(2,1,-1),可以通过向量积计算得到交点。

二、曲线的方程解析几何中常涉及曲线的方程求解,下面介绍两种常见的曲线方程求解技巧:1. 圆的方程:对于已知圆心坐标和半径的圆,可以用标准方程表示。

例如,圆心为(2,3),半径为5的圆,其方程可以表示为(x-2)^2 +(y-3)^2 = 25。

2. 椭圆的方程:椭圆是解析几何中重要的曲线,解析椭圆方程的技巧是必不可少的。

例如,已知椭圆的焦点坐标和长轴、短轴的长度,可以通过标准方程推导得到椭圆的方程。

三、曲面的方程解析几何中,曲面的方程是一个重要的考点,下面介绍两种常见的曲面方程求解技巧:1. 球面的方程:对于已知球心坐标和半径的球面,可以通过标准方程表示。

例如,球心为(2,3,4),半径为5的球面,其方程可以表示为(x-2)^2 + (y-3)^2 + (z-4)^2 = 25。

2. 锥面的方程:锥面也是解析几何中经常出现的曲面。

通过已知的焦点和直线方程可以求得锥面的方程。

例如,已知焦点为(2,3,4),直线方程为x+y+z=1,可以通过公式推导得到锥面的方程。

四、参数方程的转换在解析几何中,参数方程是常见的表达形式。

对于已知的参数方程,有时需要将其转换为标准的方程形式。

解析几何解题技巧归纳

解析几何解题技巧归纳

解析几何解题技巧归纳
1.熟练掌握向量运算解析几何中,向量是一个非常重要的概念,因此熟练掌握向量的基本运算是解析几何解题的基础。

包括向量的加减、数量积、向量积等运算。

2.熟悉平面和直线的方程解析几何中,平面和直线的方程是解题的关键。

因此,熟悉平面和直线的各种方程形式,如点法式、一般式、截距式等,能够帮助我们更快地解决问题。

3.熟练掌握空间几何图形的性质解析几何中,空间几何图形的性质是解题的基础。

因此,熟练掌握空间几何图形的各种性质,如平行四边形的对角线互相平分、垂直平分线的交点是中心等,能够帮助我们更快地解决问题。

4.熟练掌握向量的坐标表示解析几何中,向量的坐标表示是解题的基础。

因此,熟练掌握向量的坐标表示,如向量的起点和终点的坐标表示、向量的坐标表示与向量的模长的关系等,能够帮助我们更快地解决问题。

5.熟练掌握向量的投影解析几何中,向量的投影是解题的关键。

因此,熟练掌握向量的投影,如向量在某个方向上的投影、向量在某个平面上的投影等,能够帮助我们更快地解决问题。

(word完整版)高中数学解析几何解题方法~

(word完整版)高中数学解析几何解题方法~

解析几何常规题型及方法(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x i ,y 1),(X 2,y 2),代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

2典型例题给定双曲线X2— 1。

过A (2, 1)的直线与双曲线交于两点P1及P 2,求线段P1 P 2的中点P2的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点 P,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

2y _.八, __________________: 1 上任一点,F [( c,0), F 2(c,0)为焦点, PF 1F 2 , PF 2F 1 。

b/(1)求证离心率 e --------sin.一33 .(2)求 |PF 1| PF 2I 的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合 的办法 典型例题抛物线方程y2p(x 1) (p 0),直线x y t 与x 轴的交点在抛物线准线的右边。

(1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为 A 、B,且OALOB,求p 关于t 的函数f ⑴的表达式。

(4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数, 三角函数,均值不等式)求最值。

典型例题 已知抛物线y2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点 A 、B, |AB|w 2P(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N,求^ NAB 面积的最大值。

(2)设AB 的垂直平分线交 AB 与点Q,令其坐标为(X3,y3),则由中点坐标公式得: (5)求曲线的方程问题1 .曲线的形状已知 --------- 这类问题一般可用待定系数法解决。

解答解析几何问题的几个“妙招”

解答解析几何问题的几个“妙招”

解题宝典仔细研究可以发现,解析几何问题通常具有以下几个特点:(1)解题过程中的运算量较大;(2)选择题和填空题侧重于考查抛物线、椭圆、双曲线的定义和几何性质,解答题侧重于考查直线与椭圆、抛物线、双曲线的位置关系;(3)可从代数和几何两个角度入手,寻找解题的思路.在解答解析几何问题时,我们要抓住解析几何问题的特点,选用一些技巧来简化运算,提升解题的效率.一、巧用定义在解答与圆锥曲线定义有关的问题时,要将问题中的动点、定点、定直线与圆锥曲线上的点、焦点、准线等关联起来,根据圆锥曲线的定义来建立关于动点的关系式,求得各个参数a 、b 、c 、p 、r 的值,便可求得动点的轨迹方程或焦半径的长.例1.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2且斜率为-3的直线与双曲线在第一象限的交点为A ,若 AF 1·AF 2=0,a =3-1,则F 2的坐标为.解:因为 AF 1·AF 2=0,所以AF 1⊥AF 2,因为k AF 2=-3,所以∠AF 1F 2=π6,则AF 1=3c ,AF 2=c ,由双曲线的定义得AF 1-AF 2=3c -c =2a ,则c =3=2,所以F 2已知条件中涉及了双曲线的两个焦半径AF 1、AF 2,于是联想到双曲线的定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹,据此建立关于AF 1、AF 2的关系式,即可解题.运用圆锥曲线的定义来解题,能快速建立起焦点弦、参数之间的联系,起到简化运算的效果.二、数形结合在解答解析几何问题时,根据题意画出相应的曲线、直线,并将数量关系转化为几何关系,这样把数形结合起来,可使问题变得更加直观,便于分析.运用数形结合法解题,关键是画出相应的平面几何图形,灵活运用平面几何知识,如三角形、圆、平行四边形、梯形的性质来求解.例2.(2021年高考数学上海卷,第11题)已知抛物线C :y 2=2px (p >0),若第一象限内的点A ,B 在抛物线C 上,焦点为F ,且|AF |=2,|BF |=4,|AB |=3,则直线AB 的斜率为______.解:如图所示,过点A ,B 作抛物线C 的准线的垂线,垂足分别为P ,Q ,作AM ⊥BQ ,垂足为M ,根据抛物线的定义可知|AP |=|MQ |=|AF |=2,|BQ |=|BF |=4,则|BM |=2,在Rt△AMB 中,由|AB |=3可得|AM |=|AB |2-|BM |2=5,所以直线AB 的斜率k =tan ∠ABM =|AM ||BM |=根据题目中所给的条件,作出相应的平面几何图形,将题目中的数量关系转化为几何关系,便可将数形结合起来,通过合理添加辅助线,构造出直角三角形,根据直角三角形的性质和勾股定理就能求得直线AB 的斜率.三、设而不求设而不求是指设出相关的参数,但不求出参数的具体值,得到直线的方程、曲线的方程、点的坐标等,将其代入题设中进行运算,最后通过消元求得问题的答案.利用设而不求法解答解析几何问题,只需设出相关的参数,根据题意建立关系式,合理进行整体代换、消元即可.例3.(2021年福建省福州市高考数学调研试卷)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右顶点分别为A ,B ,O 为坐标原点.正方形OPBQ 的顶点P ,Q 在椭圆C 上.(1)求C 的离心率;(2)若a=2,直线l 过点(1,0)且x 轴不重合,与椭圆C 交于M ,N 两点(M 在x 轴上方),直线AM ,BN 的斜率分别为k 1,k 2,试判断k 1k 2是否为定值.若是,求出定值;若不是,请说明理由.解:(1)略;(2)当a =2时,b =,所以椭圆C 的方程为x 2+3y 2=4,设直线l 的方程为x =my +1,m ≠0,M (x 1,y 1),N (x 2,y 2),则y 2<0<y 1,由题意可得ìíîx =my +1,x 2+3y 2=4,消去x 可得(m 2+3)y 2+2my -3=0,得y 1+y 2=-2m m 2+3,y 1y 2=-3m 2+3,林毓琴41解题宝典N k OM 42。

高中数学解析几何解题技巧

高中数学解析几何解题技巧

高中数学解析几何解题技巧解析几何是高中数学中的一大难点,也是考试中的重点内容之一。

掌握解析几何的解题技巧,不仅可以提高解题效率,还能够在考试中获得更好的成绩。

本文将从直线、圆和曲线三个方面介绍解析几何的解题技巧,并通过具体题目的分析来说明每个考点。

一、直线的解析几何解题技巧直线是解析几何中最基础的图形,其解题技巧主要包括确定直线的方程和求直线的性质。

在确定直线的方程时,常用的方法有点斜式和两点式。

例如,已知直线过点A(1,2)且斜率为3,求直线的方程。

根据点斜式的公式y-y₁ = k(x-x₁),代入已知条件,可以得到直线的方程为y-2=3(x-1)。

在求直线的性质时,常用的方法有平行和垂直关系的判断。

例如,已知直线l₁的方程为y=2x+1,直线l₂与l₁平行且过点(2,3),求l₂的方程。

根据平行关系的性质可知,l₂的斜率与l₁的斜率相等,因此l₂的方程为y=2x+b。

代入过点(2,3)的条件,可以解得b=-1,所以l₂的方程为y=2x-1。

二、圆的解析几何解题技巧圆是解析几何中的另一个重要图形,其解题技巧主要包括确定圆的方程和求圆的性质。

在确定圆的方程时,常用的方法有标准式和一般式。

例如,已知圆心为(2,-3)且经过点(1,2),求圆的方程。

根据标准式的公式(x-a)²+(y-b)²=r²,代入已知条件,可以得到圆的方程为(x-2)²+(y+3)²=18。

在求圆的性质时,常用的方法有判断点与圆的位置关系和求切线的斜率。

例如,已知圆的方程为(x-2)²+(y+3)²=18,点P(4,-1)在圆上,求点P处切线的斜率。

根据点与圆的位置关系的性质可知,点P处切线的斜率等于圆的斜率,即-(x-2)/(y+3)。

代入点P的坐标,可以求得点P处切线的斜率为-2/4=-1/2。

三、曲线的解析几何解题技巧曲线是解析几何中的较为复杂的图形,其解题技巧主要包括确定曲线的方程和求曲线的性质。

数学新高考二卷解析几何题答题技巧

数学新高考二卷解析几何题答题技巧

数学新高考二卷解析几何题答题技巧数学新高考二卷解析几何题答题技巧引言在数学新高考二卷中,解析几何题占据了相当的比重。

解析几何作为数学的重要分支和应用工具,在高考中占据了相当的重要性。

本文将介绍一些针对解析几何题的答题技巧,帮助考生高效解题。

技巧一:熟悉基本公式和定理•需要熟练掌握点、线、面之间的距离公式和斜率公式,这是解析几何题解答的基础。

•熟悉三角形、四边形等图形的周长和面积公式,能够快速运用并进行变形。

技巧二:画图解题•解析几何题通常需要通过画图来帮助理解和分析。

画图可以更直观地看出问题中的条件和求解思路。

•细心观察图形中给出的线段、角度等信息,合理选择参考点和坐标系,有助于简化计算。

技巧三:几何性质的灵活运用•利用几何性质来解析几何题是解题的关键。

比如利用垂直角、对称性、相似三角形、共线等性质来辅助求解。

•注意总结并熟悉一些常见的几何性质和定理,如垂心、重心、外心等,能够快速应用于解题过程中。

技巧四:建立方程求解•对于一些解析几何题目,可以通过建立方程解决问题。

这要求我们善于将几何条件转化为方程,并利用方程进行进一步的推导。

•熟悉直线、圆等几何图形的方程表达式,并掌握解方程的方法,能够帮助快速解决相关问题。

技巧五:几何题与代数题互相转化•高考数学考题中的解析几何与代数题经常有联系,可以通过将几何问题转化为代数问题或者将代数问题图像化的方式来解决。

•将几何问题转化为代数问题可以通过引入变量、利用直线的斜率等方式进行,能够帮助快速解决相关问题。

结论解析几何作为数学的一部分,在高考中占有重要地位。

熟悉基本公式和定理,善于画图、灵活运用几何性质,掌握建立方程和几何与代数互相转化的技巧,将会有助于考生在解析几何题上取得更好的成绩。

通过不断练习和积累,相信考生们能够更加熟练地运用这些技巧,提高解题效率。

技巧六:分类讨论•在解析几何题中,有时候问题较为复杂,无法直接得到结论。

这时候可以采用分类讨论的方法,将问题进行分情况讨论,找到每种情况下的解决方法。

解析几何求解技巧

解析几何求解技巧

解析几何求解技巧解析几何是高等数学的重要分支之一,它主要研究几何图形的性质和相关问题的解法。

解析几何的求解技巧是解决几何问题的关键,下面将介绍几种常用的解析几何求解技巧。

一、坐标法:坐标法是解析几何中最常见的求解技巧。

它利用坐标系和坐标代数的方法,通过确定几何图形上的点的坐标,将几何问题转化为代数方程的求解问题。

具体的求解步骤可以概括为:1. 建立坐标系。

根据题目所给条件,确定适当的坐标系,并选择合适的单位长度。

2. 确定几何图形上的点的坐标。

根据题目所给条件,推导出几何图形上点的坐标关系。

可以运用平面几何中的基本性质和定理,通过代数方法求解。

3. 转化为代数方程。

根据几何图形的性质和定理,将几何问题转化为代数方程的求解问题。

这一步骤需要灵活应用代数方程的解法技巧。

4. 求解代数方程。

根据所得的代数方程,运用代数解法将方程求解。

5. 检验结果。

将求得的解代入原方程中,验证是否满足题目所给条件。

如果满足,即为几何问题的解;如果不满足,需重新检查求解过程。

二、向量法:向量法是解析几何中另一种常用的求解技巧。

它运用向量的概念和运算,通过向量的相等、垂直、平行等性质,推导出几何图形和问题的解法。

具体的求解步骤可以概括为:1. 确定坐标系和向量的表示。

建立适当的坐标系,确定向量的表示方法。

常用的表示方法有坐标表示法、定点表示法和参数表示法等。

2. 利用向量的性质和运算推导条件。

根据题目所给条件,利用向量的性质和运算,推导出几何图形上的条件和关系。

3. 利用向量之间的关系求解。

根据所得的几何图形上的条件,利用向量的关系,运用向量的加减、数量积、向量积等运算进行求解。

4. 检验结果。

将求得的解代入原方程中,验证是否满足题目所给条件。

如果满足,即为几何问题的解;如果不满足,需重新检查求解过程。

三、分析法:分析法是解析几何中辅助性的求解技巧。

它通过对几何图形的分析,将几何问题转化为具有明确几何意义的问题,并通过几何性质和定理的应用,求解问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何种技巧
文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
本文节选自《试题调研》数学第2辑的“热点关注”,敬请品读(版权所有,转载请注明出处)。

陕西胡波
从近几年全国各省市新课标高考试题来看,解析几何主要考查直线与圆、直线与圆锥曲线的基本知识等,在选择题、填空题、解答题中都有出现,一般试卷出现3小题1大题.综合类试题多涉及函数、导数、方程、不等式、平面向量、平面几何等知识,所考查的知识点较多,试题难度中等偏上.试题往往会出现计算量较大的情况,怎样在解题中巧妙地降低计算量、减少运算错误是我们广大考生在学习中要体会和感悟的.下面通过一些典型例题的解析,说明解析几何中的解题技巧,以供读者参考学习.
1.活用定义返璞归真
圆锥曲线的定义是圆锥曲线的本质属性.许多性质和结论都是在其定义的基础上展开的,在分析求解时若考虑回归定义,可以使许多问题化繁为简.
2.活用平几
峰回路转
解决解析几何问题时,往往需要求解涉及含多个参数的两个以上方程组成的方程组,运算较为复杂,这对于运算能力稍差的同学,很难准
确迅速求解.若能联想题目所涉及图形的几何性质,并利用相关性质来解决问题,常常可以峰回路转,达到巧妙解题的效果.
【点评】本题重点考查运算能力,这对考生提出了较高的要求.通过对比上述通法与巧法,读者很容易看出:运用平面图形的有关几何性质来解决一些解析几何问题,可以有效地避免复杂的代数运算,达到简捷解题的目的.
3.巧设坐标?水到渠成
【点评】本题如果按常规设点Q(x,y),必将得到一个二元二次方程组,这将加大计算量,使问题复杂化.
4.数形结合一目了然】

5.引进参数柳暗花明

6.设而不求欲擒故纵

7.整体代换绝处逢生

8.引入向量轻车熟路

更多有关解析几何的解题技巧详见《试题调研》第2辑—三角函数、平面向量、解析几何。

本辑定会让你识得了三角、解得了几何、破得了向量,真正做到好题先体验,笑在百花前!。

相关文档
最新文档