线性卷积_循环卷积_循环卷积定理(DFT)_FFT
循环卷积与线性卷积的matlab实现

循环卷积与线性卷积的实现1、实验目的:(1)进一步理解并掌握循环卷积与线性卷积的概念。
(2)理解掌握二者的关系。
三、实验原理两个序列的N点循环卷积定义为从定义中可以看到,循环卷积和线性卷积的不同之处在于:两个N 点序列的N点循环卷积的结果仍为N点序列,而他们的线性卷积的结果的长度则为2N-1;循环卷积对序列的移位采取循环移位,而线性卷积对序列采取线性位移。
正式这些不同,导致了线性卷积和循环卷积有不同的结果和性质。
循环卷积和线性卷积虽然是不用的概念,但是它们之间有一个有意义的公式联系在一起其中也就是说,两个序列的N点循环卷积是他们的线性卷积以N为周期的周期延阔。
设序列的长度为,序列的长度为,此时,线性卷积结果的序列的点数为;因此如果循环卷积的点数N小于,那么上述周期性延阔的结果就会产生混叠,从而两种卷积会有不同的结果。
而如果N满足的条件,就会有这就会意味着在时域不会产生混叠。
因此,我们得出结论:若通过在序列的末尾填充适当的零值,使得和成为店序列,并作出这两个序列的循环卷积与线性卷积的结果在范围内相同。
根据DFT循环卷积性质中的卷积定理便可通过两种方法求两个序列的循环卷积:一是直接根据定义计算;二是根据性质先分别求两个序列的N点DFT,并相乘,然后取IDFT以得到循环卷积。
第二种方法看起来要经过若干个步骤,但由于求序列的DFT和IDFT都有快速算法,因此它的效率比第一种方法要高得多。
同样,根据线性卷积和循环卷积的关系,可以通过计算循环卷积以求得线性卷积,提高计算序列线性卷积的效率。
4、实验内容输入程序序列如下:n=[0:1:4];m=[0:1:3];x1=1+n;x2=4-m; %生成函数x1和x2L1=length(x1)-1;L2=length(x2)-1; %取函数的长度y1=conv(x1,x2); %直接用函数conv计算线性卷积n1=[0:1:L1+L2];subplot(3,1,1);stem(n1,y1) %绘制线性卷积图形xlabel('n');ylabel('y(n)'); %标注x、y轴N2=5; %求5点圆卷积if length(x1)>N2error('N必须大于序列x1的长度')endif length(x2)>N2error('N必须大于序列x2的长度')end %以上语句判断两个序列的长度是否小于N X21=fft(x1,N2); %作序列1的FFTX22=fft(x2,N2); %作序列2的FFTy2=ifft(X21.*X22); %求两序列的循环卷积(时域)n2=[0:1:N2-1];subplot(3,1,2);stem(n2,y2) %绘制两序列循环卷积图形axis([0,7,0,40]) %修改x、y轴长度N3=8if length(x1)>N3error('N必须大于序列x1的长度')endif length(x2)>N3error('N必须大于序列x2的长度')endx31=[x1,zeros(1,N3-length(x1))]x32=[x2,zeros(1,N3-length(x2))]X31=fft(x31)X32=fft(x32)y3=ifft(X31.*X32)n3=[0:1:N3-1]subplot(3,1,3);stem(n3,y3)将程序输入MATLAB运行结果如下:MATLAB运行显示的图形为:五、实验心得:本次实验对我意义很大,让我熟练的运用了matlab软件。
实验二 DFT(FFT)的应用—利用FFT实现快速卷积

姓名:高铭遥 班级:16131701 学号:1120171450 成绩:实验二 DFT/FFT 的应用-利用FFT 实现快速卷积[实验目的]1.深刻理解DFT/FFT 的概念和性质,进一步掌握圆周卷积和线性卷积两者之间的关系。
2.掌握DFT/FFT 的应用。
理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好地利用FFT 进行数字信号处理。
[实验内容及要求]1.给定两个序列()[]2,1,1,2x n =,()[]1,1,1,1h n =--。
首先直接在时域计算两者的线性卷积;然后用FFT 快速计算二者的线性卷积,验证结果。
(1)线性卷积 程序代码:figure(1);N1=4; N2=4; xn=[2,1,1,2]; hn=[1,-1,-1,1];N=N1+N2-1;%卷积后的序列长度 yn=conv(xn,hn);%线性卷积 x=0:N-1;stem(x,yn);title('线性卷积'); 运行结果:(2)FFT 卷积快速卷积 程序代码: figure(1); n=0:1:3; m=0:1:3;N1=length(n);%xn 的序列长度 N2=length(m);%hn 的序列长度 xn=[2,1,1,2]; hn=[1,-1,-1,1];姓名:高铭遥 班级:16131701 学号:1120171450 成绩:N=N1+N2-1;%卷积后的序列长度XK=fft(xn,N);%xn 的离散傅里叶变换 HK=fft(hn,N);%hn 的离散傅里叶变换 YK=XK.*HK;yn=ifft(YK,N);%逆变换if all(imag(xn)==0)&&(all(imag(hn)==0))%实序列的循环卷积仍为实序列 yn=real(yn); endx=0:N-1;stem(x,yn);title('FFT 卷积'); 运行结果:结果分析:对比(1)和(2)直接线性卷积和FFT 快速卷积的结果可以验证,用FFT 线性卷积的结果是与直接卷积的结果相同的,FFT 可以实现快速卷积,提高运算速度。
数字信号处理DFT性质

DFT
X2(K)
x1(n)长度是 N1, x2(n)长度是 N2, N≥[N1,N2]。 循环卷积之后序列的长度没有发生变化为N。
四、复共轭序列的DFT: 五、DFT的隐含周期性:
X(k+mN)=X(k)
周期性延拓
主值序列
六、DFT共轭对称性:
1、
x(n)=xr(n)+jxi(n)
2、
x(n)=xep(n)+xop(n) X(K)=XR(K)+jXZ(K)
误差
:
由FT可知,若时间有限则频谱无限宽;若信号的频谱有限 宽,则其持续时间必然为无限长。所以时间有限,频带有界 的信号是不存在的。所以用DFT必然存在误差。
误差分析及改进方法:
1 、截断效应:截取 T P 变成有限长,相应的频域会有一个卷 积 ,与原来的频谱必然有一定的差别,所以要选择合适的窗 函数截取,增加N也可以减弱截断效应。 2、混叠现象:前置预滤波器采样频率fs满足采样定理,否则 就会产生混叠现象,即fs/2≥fc,并使滤波器尽可能的接近理 想滤波器。
其中时域抽样有 N 个抽样点 , 时域截取 Tp=NT, 频域 抽样即在0--fs上采样N点,采样间隔F,F=fs/N。
1、F: 频率分辨率 F=1/Tp=1/NT=Fs/N
可见: Fs一定,T一定,当 N↑时,Tp↑,最终导致F↓, 分辨率升高。
2、谱分析范围:0--Fs/2
DFT的高分辨率频谱与高密度频谱之间的区别:
高分辨率频谱:仅取决于截取连续信号TP的长度,采
样频率不变时,通过改变采样点数 N 可以改变 DFT 的分辨率。(N↑,F↓,分辨率升高)
高密度频谱:信号的时间长度不变,在频域内提高采样频 率,尾部补零可以得到高密度频 谱,但不能改变分辨
数字信号处理知识点总结

数字信号处理知识点总结《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n =当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+-1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式:1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑(6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
利用DFT计算线性卷积PPT课件

x2[n] 1
012
n
第4页/共23页
n 0123
x1[n] 1 012
x2[n] 1
线性卷积与循环卷积的关 系
n
0 1 2 3 n y1[k] {1, 2, 2, 2,1,1}
1
x1[n]
n 2 1 0
1
x1[1n]
1
x1[2n]
1
x1[3n]
n
n
n
1 1
2
3
1
x1[(n)4]
第3页/共23页
线性卷积与循环卷积的关系:
例1:x1[k]={1,1,1}, x 2[k]={1,1,0,1} , 计算 (1) x1[k]和x2[k]的线性卷积y1[k] ; (2) x1[k]和x2[k]的4点循环卷积y4[k] ; (3) x1[k]和x2[k]的5点、6点和7点循环卷积。
解:
谢谢您的观看!
DFT计算卷积
第23页/共23页
x[k] h[k] xn[k nL] h[k] yn[k nL]
n0
n0
y0[k]的非零范围:
0k LM 2
y1[kL]的非零范围: L k 2L M 2
序列 y0[k], y1[k]的重叠部分: L k L M 2
重叠的点数:
[(L+M2)L]+1=M1
依次将相邻两段的M1个重叠点相加,即得到最终的线性卷积结果。
x[k ]
一段分别与短序列进行循环卷积,对重叠部分相加
x0[k]
x1[k ]
x2[k]
x3 [k ]
L
2L
3L
x[k] xn[k nL]
n0
其中
数字信号处理主要知识点整理复习总结

求出对应
的各种可能的序列的表达式。
解: 有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况: 三种收敛域对应三种不同的原序列。
时,
(1)当收敛域
令
,因为c内无极点,x(n)=0;
,C内有极点0,但z=0是一个n阶极点,改为求圆外极点留数,圆外极点有
数字信号处理课程 知识点概要
第1章 数字信号处理概念知识点
1、掌握连续信号、模拟信号、离散时间信号、数字信号的特点及相互关系(时间和幅度的连续性考量) 2、数字信号的产生; 3、典型数字信号处理系统的主要构成。
量化、编码 ——————
采样 ————
模拟信号
离散时间信号
数字信号
5、部分分式法进行逆Z变换 求极点 将X(z)分解成部分分式形式 通过查表,对每个分式分别进行逆Z变换 注:左边序列、右边序列对应不同收敛域 将部分分式逆Z变换结果相加得到完整的x(n)序列 6、Z变换的性质 移位、反向、乘指数序列、卷积
常用序列z变换(可直接使用)
7、DTFT与Z变换的关系
(a) 边界条件 时,是线性的但不是移不变的。
(b) 边界条件 时,是线性移不变的。
令
….
所以:
….
所以:
可见 是移一位的关系, 亦是移一位的关系。因此是移不变系统。
代入差分方程,得:
……..
所以:
因此为线性系统。
3. 判断系统是否是因果稳定系统。
Causal and Noncausal System(因果系统) causal system: (1) 响应不出现于激励之前 (2) h(n)=0, n<0 (线性、时不变系统) Stable System (稳定系统) (1) 有界输入导致有界输出 (2) (线性、时不变系统) (3) H(z)的极点均位于Z平面单位圆内(因果系统)
循环卷积与线性卷积的matlab实现

上海电力学院信号与系统实验报告题目:循环卷积与线性卷积的实现班级:2011023专业:电气工程及其自动化学号:201112572013年12月17日循环卷积与线性卷积的实现一、实验目的1、进一步理解并掌握循环卷积与线性卷积的概念;2、理解掌握二者的关系;二、实验原理两个序列的N 点循环卷积的定义为:()()[]()()()N N k N m n x m h n x n h -=⊗∑-=10()N N <≤0从定义中可以看到,循环卷积和线性卷积的不同之处在于:两个N 点序列的N 点循环卷积的结果仍为N 点序列,而它们的线性卷积的结果的长度则为2N-1;循环卷积对序列的位移采取循环位移,而线性卷积对序列采取线性位移。
正是这些不同,导致了线性卷积和循环卷积有不同的结果和性质。
循环卷积和线性卷积虽然是不同的概念,但它们之间由一个有意义的公式联系在一起:()()()[]()()n G rN n y n x n h n y N r N⎪⎭⎫ ⎝⎛-'=⊗=∑∞-∞=其中()()()n x n h n y *='。
也就是说,两个序列的N 点循环卷积是他们的线性卷积以N 为周期延拓。
设序列()n h 的长度为N1,序列()n x 的长度为N2,此时,线性卷积结果的序列的点数为121-+='N N N ;因此如果循环卷积的点数N 小于121-+N N ,那么上述周期性延拓的结果就会产生混叠,从而两种卷积会有不同的结果。
而如果N 满足N N '=的条件,就会有()()n y n y '=()N n <≤0这就意味着在时域不会产生混叠。
因此,我们得出结论:若通过在序列的末尾填充适当的零值,使得()n x 和()n h 成为121-+N N 点序列,并作出这两个序列的121-+N N 循环卷积,那么循环卷积与线性卷积的结果在N n <≤0范围内相同。
根据DFT 循环卷积性质中的卷积定理()()[]{}()[]()[]n h DFT n x DFT n x n h DFT N ∙=⊗便可通过两种方法求两个序列的循环卷积:一是直接根据定义计算;二是根据性质先分别求两个序列的N 点DFT,并相乘,然后取IDFT 以得到循环卷积。
数字信号处理毕业设计

摘要数字信号处理是将信号以数字方式表示并处理的理论和技术。
数字信号处理与模拟信号处理是信号处理的子集。
本书介绍了利用DFT的线性卷积、误差分析、快速傅里叶变换、划分和组合方法、基一2FFT算法、MATLAB 实现……。
关键字:DFT FFT MA TLAB目录利用DFT的线性卷积 (3)误差分析 (5)块卷积 (7)快速傅里叶变换 (11)划分和组合方法 (14)基一2FFT算法 (15)MA TLAB实现 (17)快速卷积 (19)高速块卷积 (21)致谢 (35)利用DFT 的线性卷积在线性系统中最重要的运算之一足线性卷积。
事实上,FIR 滤波器枉实际中一般都是用这种线性卷积实现的。
另一方面,DFT 、又是在频域实现线性系统运算的一条实际途径;稍后还会看到,通过计算这还是一种高效的运算。
然而,其巾存在一个问题:DFT 运算所得到的是一个循环卷积(我们不想要的东西),而不是我们想要的线性卷积。
现在要看看如何应用DFT"来吏现线性卷积(或等效为如何让循环卷积做戚与线性卷积一样)。
在例题5.15中曾间接提到过这一问题。
令1()x n 是1N 点序列,2()x n 是2N 点序列。
定义3()x n 为1()x n 和2()x n 的线性卷积,即*312()()()x n x n x n1112120()()()()N k x k x n k x k x n k ∞---∞=-=-∑∑ 那么3()x n 是一个12(1)N N +-点序列。
如果选取12max(,)N N N =,并计算 N 点的循环卷积12()()x n Nx n ,那么就得到N 点序列,它显然不同于3()x n 。
这样的观点也提供了一个线索,为什么不选12(1)N N N =+-,并做12(1)N N +-点的循环卷积呢,这样至少这两个卷积都有相同的样本数。
因此,令121N N N =+-并将1()x n 和2()x n 都当作N 点序列对待。