加氢与脱氢

合集下载

化工工艺加氢与脱氢过程

化工工艺加氢与脱氢过程

化工工艺加氢与脱氢过程化工工艺是为了提高产品质量和生产效率而进行的一系列生产过程。

其中,加氢和脱氢是常见的化工反应过程,主要用于原料的转化和产品的改性。

以下将对加氢和脱氢过程进行详细介绍。

一、加氢过程加氢是指在反应中向化合物中加入氢气的过程。

该过程通常涉及氢气与有机物之间的反应,目的是将有机物中的不饱和键加氢饱和,或是将有机物中的官能团与氢气反应生成其他目标化合物。

1.加氢工艺的原理加氢工艺主要依靠催化剂来实现。

通常使用的催化剂是金属催化剂,如铜、镍、铱等。

这些催化剂能够吸附氢气分子,并为氢气分子提供吸附位点,从而促使氢气与有机物发生反应。

在反应中,催化剂可以提供活化能,使加氢反应得以进行。

2.加氢反应的应用加氢反应在化工工艺中具有广泛的应用。

常见的应用有:加氢脱气、重整反应、加氢裂化和加氢脱硫等。

(1)加氢脱气:将氢气加入原料中,去除其中的气体成分,从而降低气体浓度,达到控制反应环境的目的。

(2)重整反应:通过加氢反应,将低碳烃转化为高碳烃,从而提高产物的价值。

(3)加氢裂化:将高碳烃加氢后进行裂化,得到较小分子量的产物。

这样做不仅能提高燃料的质量,也能减少环境污染。

(4)加氢脱硫:将含硫化合物加氢后,使其转化为易于处理和回收的化合物,从而达到脱除硫化物的目的。

二、脱氢过程脱氢是指在化学反应中去除化合物中的氢原子的过程。

通常涉及碳氢化合物与氧化剂反应,形成不饱和化合物或氧化产物。

1.脱氢工艺的原理脱氢工艺主要依靠高温、高压和催化剂来实现。

脱氢反应需要高温和高压来提供足够的能量,以克服反应的活化能。

同时,催化剂的存在可以加速反应速率,降低反应温度和压力等条件。

2.脱氢反应的应用脱氢反应在化工工艺中也具有广泛的应用。

常见的应用有:脱氢加氢反应、脱氢氧化反应和脱氢重排等。

(1)脱氢加氢反应:通过去除部分氢原子,将饱和化合物转化为不饱和化合物,从而改变产物的性质和用途。

(2)脱氢氧化反应:通过去除氢原子和加入氧原子,使得有机物部分氧化为醛、酮或羧酸,从而提高产品的氧化潜能。

加氢与脱氢过程

加氢与脱氢过程
过国家评估。 (20)海南中海石油化学公司60万吨/年甲醇,2006年上半年
建成投产。
催化加氢
合成甲醇
1923年,BASF公司实现工业化生产,高压法 (T>380℃ ,P=30MPa)
1966年,ICI, 低压法 1972年,ICI, 中压法 1973年,Lurgi,低压法
6.4.1 合成甲醇的基本原理
― 1~25 10~50
6.4.3 合成甲醇工艺条件
(1)温度
a.可逆放热反应,存在最适宜温度。 b.因催化剂种类而异。
活性→最低进料温度 稳定性→最高出口温度
(2)压力
P ↑,r ↑
P=f (T),T↓ ,P↓ ;T↑ ,P ↑。
高压: 30 MPa ZnO-Cr2O3 中压:10 ~ 15MPa , CuO-ZnO-Al2O3 低压:5 ~10MPa,CuO-ZnO-Al2O3
H 2
活F e 性3 O 组4 分 H H 2 2 O
F e 2 O 3
3. 动力学
催化脱氢
催化剂 粒度的影响 催化剂粒度小,反应速率和选择性增加.
催化剂催的化颗剂粒的度颗对粒乙度苯对脱乙氢苯反脱应氢速选度择的性影的响影响
6.4 甲醇的合成
我国甲醇产销现状及分析
我国现有甲醇生产企业约150家。
2004年国内甲醇企业产量前五位的企业
(11)中国石油集团青海油田30万吨/年甲醇装置于2004年8 月在格尔木炼油厂开工建设。于2006年8月投产。
(12)重庆长寿85万吨/年甲醇装置,2007年上半年建成投产.
(13)上海焦化公司在宁夏建设30万吨/年煤基甲醇装置2006 年建成.
(14)中国石油集团公司玉门油田年产10万吨甲醇2006年一季 度投产。

第四章 加氢与脱氢过程

第四章 加氢与脱氢过程

C2H5
+CH4
C2H5
+H2
+C2H6
C2H5
8C+5H2
二、乙苯催化脱氢
2、反应条件及催化剂
(1) 温度
表 5-2 乙苯脱氢反应温度的影响 催化剂 温度/℃ 580 600 620 640 转化率 53.0% 62.0% 72.5% 87.0% 选择性 4.3% 93.5% 92.0% 89.4% 催化剂 温度/℃ 580 600 620 640 转化率 47.0% 63.5% 76.1% 85.1% 选择性 98.0% 95.6% 95.0% 93.0%
二、氨的合成
1.生产方法简介
(1) 以固体燃料(煤或焦炭)为原料
煤或焦炭
水蒸气 空气
造气
脱硫
CO变换 脱CO2
精制
压缩 合成 氨
合成尿素 尿素
二、氨的合成
1.生产方法简介
(2) 以天然气或轻油为原料
天然气 (轻油)
水蒸气 空气 CO低变 脱硫 一段转化 二段转化
CO高变
压缩
合成 氨
甲烷化
脱CO2
A+ * C* + * 动力学方程式根据控速步骤写出: r k A B A* B+ * B* A*+ B*
bR PR k1 b b P P A H2 A H2 KP r R的净生成速度= 1 bA PA bR PR n
A+ H2
k1
R
C*
C+ *
CO+2H2 Cu CH3OH Cu (CH3)2CHOH(异丙醇) (CH3)2CO(丙酮) + H2 RCOOH +2H2

4.3加氢与脱氢过程

4.3加氢与脱氢过程

②反应压力
A乙苯脱氢反应是体积增大的反应,降低压 力对反应有利。B反应温度随着压力的降低可 适当降低。如表,压力从0.1降到0.01MPa,达 到相同转化率所需要的温度降低100 ℃。
③水蒸气用量
工业上降低物料分压的方法有两种:
一,减压操作(高温减压不安全,环境气体容
易进入)
二,采用惰性气体做稀释剂。
物中加入适量的氧或空气,使上步生成的氢气转 化为水,使脱氢反应朝正向进行。
(1)反应原理
苯 甲苯 乙苯 焦油
(2)催化剂
A 活性组分 B 颗粒影响
(3) 工艺条件选择
①反应温度
乙苯脱氢是强吸热反应。故升温对脱氢 反应有利。 但是,副反应活化能高,高温有利于副 反应发生,同时由于烃类物质在高温下不稳 定,所以脱氢不能在太高温度下进行。 580-600℃。
采用水蒸气作为稀释剂来减压。
高温水蒸气作用:(1)惰性载体,降低反
应产物平衡分压,提高转化率和选择性。 (2)反应热载体,为反应提高热量。(3) 消炭剂,高温条件下与炭反应,避免催化剂 结焦。 绝热反应器 n(水蒸气)/ n(乙苯)=14:1 等温多管反应器为一半。
(4) 工艺流程 乙苯催化脱氢是吸热反应,供热方式
△ H0298 = - 90.8KJ/mol
副反应
选择催化剂,抑制副反应。
操作条件
(1)催化剂
催化剂的活性低
压力
操作温度高
加大
ZnO-Cr2O3,380 ~ 400℃,30MPa,活性低,有毒,
机械强度和耐热性能好,寿命长.
CuO-ZnO-Al2O3,230 ~ 270℃,5-10MPa,活性高,
热稳定性
化学稳定性:金属氧化物不被还原为金属

加氢与脱氢过程

加氢与脱氢过程
2 催化剂
脱氢催化剂应满足下列要求:首先是具有良 好的活性和选择性,能够尽量在较低的温度条 件下进行反应。其次催化剂的热稳定性好,能 耐较高的操作温度而不失活。第三是化学稳定 性好,金属氧化物在氢气的存在下不被还原成 金属态,同时在大量的水蒸气下催化剂颗粒能 长期运转而不粉碎,保持足够的机械强度。第 四是有良好的抗结焦性能和易再生性能。
二、催化脱氢反应的一般规律
3 脱氢反应动力学 脱氢反应的速率控制步骤是表面化学反应,都可按双位吸附理 论来描述其动力学方程,其速率方程可用双曲模型来表示。
铁系催化剂脱氢反应时催化剂颗粒大小对反应速率和选择性都 有影响,图6-2是催化剂颗粒度反应速率的影响,而图6-3是催化剂 颗粒度对选择性的影响。
化学工艺学电子教案——第六章
加氢与脱氢过程
第六章 加氢与脱氢过程
内容提要:
加氢与脱氢反应的一般规律;乙苯和苯乙烯 的性质、用途、主要生产方法和工艺流程; 乙苯脱氢制苯乙烯的主副反应、操作参数 等。
第一节 概 述
通常催化加氢系指有机化合物中一个或几个不炮和的 官能团在催化剂的作用下与氢气加成。H2和N2反应生成 合成氨以及CO和H2反应合成甲醇及烃类亦为加氢反应。 而在催化剂作用下,烃类脱氢生成两种或两种以上的新物 质称为催化脱氢。催化加氢和催化脱氢在有机化工生产中 得到广泛应用。如合成氨、合成甲醇、丁二烯的制取,苯 乙烯的制取等都是极为重要的化工产品。催化加氢反应分 为多相催化加氢和均相催化加氢两种,相比之下,多相催 化加氢的选择性较低,反应方向不易控制,而均相催化加 氢采用可溶性催化剂,选择性较高,反应条件较温和。
一、加氢反应的类型
1 不饱和炔烃、烯烃重键的加氢
2 芳烃加氢
一、加氢反应的类型

化工工艺 加氢与脱氢过程

化工工艺 加氢与脱氢过程
应热变化小,易于控制
◆温度对平衡常数的影响
高温高压,非理想气体,逸度表示Kf只与温度有关
K f exp(13.1652 9263.26 / T 5.92839ln T 0.352404102T 0.102264104T 2 0.769446108T 3 0.238531011T 4 ) 0.1013252
CH3OH+ H2O → CO2+3H2-49.5 KJ/mol ⑴ CH3OH → CO+2H2 -90.7 KJ/mol ⑵ CO+H2O → CO2+H2 +41.2 KJ/mol ⑶ 重整反应生成的H2和CO2, 再经过变压吸附法(PSA)将H2和CO2 分离,得到高纯氢气。
甲醇的产能
甲醇的产能
+ H2
+ 2H2
●芳烃加氢
苯核加氢、苯核外的双键加氢、或二者兼有
●含氧化合物加氢
醛、酮、酸、酯
加氢

加氢能力:醛>酮,酸>酯;醇和酚加氢困难
●含氮化合物加氢 -CN,-NO2 加氢 -NH2
●氢解
指加氢过程有裂解,产生小分子混合物。酸、酯、 醇、烷基芳烃加氢时可产生氢解。
COOC2H5
cat.
●合成甲醇反应热力学 ◆化学反应
主反应:
CO+2H2 CH3OH(g)+90.8kJ/mol
CO2+3H2
CH3OH(g)+H2O(g)+ 58.6kJ/mol
反应热随温度和压力变化而变化,
反应温度越低,压力越高,反应热越大
★反应温度低、压力高, 放热大
★高压,同时采用高温 ★低压,同时采用低温 ★20MPa,300-400℃, 反

加氢和脱氢过程

加氢和脱氢过程
稀释剂 降低烃的分压
水蒸气作为稀释剂
产物易分离;热容量大;既可提高脱氢反应的平 衡转化率,又可消除催化剂表面的积炭或结焦。
2019/3/31
东南大学化学化工学院
6.2.2.2 催化剂
脱氢催化剂应满足下列要求:
首先是具有良好的活性和选择性。
其次催化剂的热稳定性好。 第三是化学稳定性好。 第四是有良好的抗结焦性能和易再生性能。
+ 2 C2H5OH
东南大学化学化工学院
6.1.2 选择性加氢
1.同一化合物有2个可加氢官能团:不同官能团处加氢
如:
CH=CH2
Cu Ni
C2H5
C2H5
2.催化体系中有多个加氢物质:个别或几个物质加氢
如:裂解汽油加氢
3.炔烃或二烯烃加氢:加氢深度不同
CH
2019/3/31
CH
CH2 = CH2
CH3CH3
2019/3/31
东南大学化学化工学院
加氢反应的影响因素
从热力学分析可将加氢反应分三种类型。
第一类是加氢反应在热力学上是很有利的。
第二类是加氢反应的平衡常数随温度变化较大,当反应
温度较高时,平衡常数降低,但数值仍较大。
第三类是加氢反应在热力学上是不利的,常采用高压方
法来提高平衡转化率。
2019/3/31
2019/3/31
东南大学化学化工学院
6.2.2.2 催化剂
① Cr2O3/Al2O3 烷烃 烯
不能有水(侵占活性中心)
减压操作 失活快(易结焦),用含O2的烟道气再生。
2019/3/31
东南大学化学化工学院
催化剂
②氧化铁系催化剂
FeO Fe3O4 (活性组分) Fe2O3

第3章_催化加氢与脱氢

第3章_催化加氢与脱氢
炸性混合物;爆炸极限为6.0—36%(V)。
●甲醇是仅次于三烯和三苯的重要基础有机化工原料, 广泛用于有机合成、染料、合成纤维、合成橡胶、涂料 和国防等工业。甲醇大量用于生产甲醛和对苯二甲酸二 甲酯; ●以甲醇为原料经羰基化反应直接合成醋酸已经工业化; ●近年来,随着技术的发展的能源结构的改变,甲醇又开 辟了许多新的用途,是合成人工蛋白的重要原料; ●以甲醇为原料生产烯烃和汽油已实现工业化。因此,甲 醇的生产具有十分重要的意义。
进塔气体的组成有关 20000 50.1
ZnO-Cr2O3: 20000-40000h-1 30000 41.5 26.1 -1 40000 CuO-ZnO-Al2O3: 10000h 32.2 28.4
●增加空速在一定程度上能够增加甲醇产量 ●增加空速有利于反应热的移出,防止催化剂过热 ●空速太高:转化率降低,循环气量增加,从而增加能量消耗;
8.杂环化合物加氢
9.甲苯加氢制苯
(2)加氢精制
裂解气中乙烯和丙烯的精制
※从烃类裂解气分离得到的乙烯和丙烯中含有少
量乙炔、丙炔和两二烯等有害杂质,可利用催化 加氢方法,使炔烃和二烯烃进行选择加氢,转化 为相应的烯烃而除去。
(3)精制氢气
氢气中含有一氧化碳杂质,在加氢反应时能使催化 剂中毒。可通过催化加氢反应,使一氧化碳转化为 甲烷,达到精制的目的。其反应式如下:
催化剂活化
低压合成甲醇的催化剂,其化学组成是CuO-ZnOAl2O3 ,只有还原成金属铜才有活性。 还原过程为活化:氮气流升温、还原
CuO-ZnO-Al2O3
还原性气体 0.4MPa,99%N2 缓慢地升温, 20℃/h
催化剂
CuO-ZnO-Al2O3
160~170℃
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甲烷化反应,一般氢气中含有少量的CO时
适用此法。
当有大量CO存在时,采用:
CO + H2O→CO2 + H2 CO2 + 2NaOH→Na2CO3 + H2O 以免耗费大量的氢
4.3.1.1 氢气的性质和来源
1. 氢气的性质 * 氢气的爆炸极限: 与空气混合:4.10—74.20% 与氧气混合:4.65—73.90% * 氢蚀现象: Fe3C + 2H2 → Fe + CH4
(6) 烃类裂解副产氢气 乙烯、丁二烯环化副产氢气, 铂重整副产氢气。
4.3.1.2 加氢反应的一般规律
1. 温度的影响
由热力学方法推导:
δln (
Kp
δT
p
=)
ΔH 0 RT2
加氢反应为放热反应,△H0<0,温度上升,
Kp下降, 在温度小于100℃时,绝大多数加氢反应 的平衡常数都非常大,可看作不可逆反应。
例如:苯液相加氢制环己烷:
乙醇、甲醇作溶剂,几乎不反应; 而用环己烷作溶剂, 反应速度可达103 mlH2/min (采用Co-Cr2O3催化剂,反应温度80℃)
4.3.1.3 加氢反应催化剂
一般对催化剂的要求: (1) 使反应有足够的速度 (2) 有良好的选择性 (3) 催化反应条件尽可能温和 (4) 催化剂寿命要长 (5) 价格便宜
1 级气液相反应: 压力升高——有利氢气在反应液中的溶解 保证在反应温度下反应物为液相
3. 用量比的影响 氢气过量,可以提高平衡转化率,有利于移
走反应热;但氢气过量太多,降低设备的生产 能力,加大氢气循环量,多消耗冷量和动力
一般 H2 : 反应物 = 6~9 : 1
4. 溶剂的影响(气液相反应) 溶剂可溶解反应物、作稀释剂、带走反应热 溶剂对加氢的影响应通过实验选择
氯碱工业中为制取氯气通过电解NaCl水溶液而副产氢气
(3) 水蒸气转化法(甲烷化反应) CH4 + H2O → 3H2 + CO 以天然气为原料的大型化工厂
(4) 部分氧化法 2CH4 来自 O2 → 2H2 + 2CO
该法系非催化反应, 反应温度为1400-1500℃
(5) 水煤气化法 C + H2O → H2 + CO 以煤(焦炭)为原料的合成氨厂制氢气
承受压力能力下降的原因就是产生了氢 蚀现象。高温下,加氢反应器不能使用 碳钢,而应采用合金钢。
2. 氢气的来源 由含氢物质转化而得: H2O、CH4、C2H4 (1) 电解水 : 将水电解成为氢气和氧气。
此法获得的氢气纯度高;耗电量大; 适用于量少、纯度高场合; (2) 电解食盐水 2NaCl + 2H2O 电解 H2 + Cl2 + 2NaOH
加氢催化剂主要为第八族过渡金属元素 (1) 金属催化剂:
如Ni、Pd、Pt 等过渡金属元素 特点: 活性高 反应条件温和 缺点: 易中毒 毒物: 含卤素、S、As、N等的化合物
金属催化剂中毒机理: 有毒化合物(H2S、CO)的电子构
型中有孤电子对,而过渡金属原子存 在d-带空位,孤电子对填入d-带空位即 毒物占据金属催化剂的活性中心— 催化剂失活
在高温高压下,H原子能侵入钢的晶 格中,与钢中的C原子化合生成CH4, 气态的CH4要往外扩散,在晶格中产生 应力,留下气孔,钢结构发生变形变脆, 此现象称为氢蚀,也叫氢脆。
随着反应温度的升高,反应设备所能 承受的压力大大下降。
不同的温度下,碳钢能承受的压力
温 度 ℃100 300 500 压 力 M p 50 15 3
下进行。
(2) 常温 Kp很大,但随着温度的提高, Kp值较快下降
C6H6 + 3H2 → C6H12
T℃
127
227
Kp
7×107 1.86×102
综合考察Kp和 R 两个因素,即温度不能 太低或太高,可选择在127~227℃之间
(3) 常温 Kp不大,随着温度的提高, Kp 急速下降。
CO + 2H2 → CH3OH
加氢与脱氢
4.3.1 加氢反应
催化加氢的目的
1. 合成有机化工产品。 催化加氢反应生产各种有机化工产品
+ 3H2
OH
OH
+ 3H2
CO + H2 → CH3OH 费-托反应: nCO + (2n+1)H2 → CnH2n+2 + nH2O
(CH3)2C=O + H2→ (CH3)2CH-OH
(丙酮)
T℃
0
100
200
300
Kp 6.7×105 12.92 0.019 0.0002 在热力学上是不利的,高温时平衡常数很小,
转化率很低;低温下反应速度太慢,几乎不反
应。为了提高平衡转化率,
反应必须在高温高压下进行
对于平衡常数比较小的可逆加氢反应, 反应温度既影响化学平衡又影响反应速度, 且效果相反。因此,存在最佳的反应温度, 这一温度所对应的反应速度为最快。
(2) 骨架催化剂 又称 Raney-Ni(雷尼镍催化剂)
Ni(40~50%) - Al (合金) + NaOH + H2O→ R-Ni + NaAlO2 + 3/2H2↑
制得多孔、高比表面的催化剂。 常用的有骨架镍和骨架钴催化剂,
R-Ni 催化剂的保存
图4-31 可逆放热反应最佳温度分布曲线
2. 压力的影响
加氢是分子数减少的反应,Kp仅是温度的 函数,升高压力有利于提高平衡产率。
加氢反应多数为 0~1 级反应,有的是分数级 0 级反应: 压力对反应无影响;
1 级气固相反应: 压力升高—反应物吸附力 增加,有利反应进行; 但某些产物的吸附力太强,高压反而使产物 脱附困难;
(异丙醇)
RCOOH + 2H2→ R-CH2OH + H2O
(羧酸)
(伯醇)
2. 加氢精制有机原料或产品
如精制乙烯、丙烯、裂解汽油等
脱炔:C2H2 + H2
C2H4
脱 S、Cl、N、O 等有害物质:
S、 Cl、 N、 O + H2
H2S、HCl、NH3、H2O
脱CO:
CO + 3H2
CH4 + H2O
大于100℃时 可分成三种情况
加氢反应划分成三种情况:
(1) 在高温下Kp值也很大,完全不可逆反应
C2H2 + H2 →C2H4
T℃ 127
227
427
Kp 7.63×1016
1.65×1012
6.5×106
虽然随着温度的上升,Kp有所下降,但绝对
值仍然很大,反应完全能进行到底。提高温度
有利于加快反应速度,这类反应可以在较高温度
相关文档
最新文档