冲刺!高考数学经典题型及解题技巧
高考数学各题型答题技巧

高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
2024年高考数学复习各题型解答方法总结

2024年高考数学复习各题型解答方法总结一、选择题解答方法:选择题是高考数学中常见的题型,解答时需要注意以下几点:1. 仔细阅读题目:选择题通常给出了多个选项,要在其中选择正确的答案,所以需要仔细阅读题目,理解题意。
2. 排除法:如果对某个选项确定是错误的,可以直接排除掉,这样可以缩小范围,提高解题效率。
通过排除法,可以找出正确答案。
3. 筛选法:某些选择题的选项中有多个是正确答案,这时可以通过筛选法找出所有正确答案。
首先找出其中一个正确答案,然后再观察其他选项,看是否满足条件,以确定所有正确答案。
4. 推理法:有些选择题需要通过推理来确定答案,需要将题目中给出的条件进行分析,并运用相关知识进行推理,找出正确答案。
二、填空题解答方法:填空题是高考数学中另一种常见的题型,解答时需要注意以下几点:1. 明确题目要求:填空题通常要求填入一个数值,有时也可以是一个表达式。
在填写答案前,要先弄清楚题目要求填什么。
2. 利用已知条件:填空题中常会给出一些已知条件,可以根据这些条件来确定答案。
通过将已知条件代入等式或运用相关关系,可以得到待填空的数值,或者用待填空的变量表达式表示答案。
3. 反推法:有些填空题通过反推法也可以确定答案。
通过比较题目中给出的条件和填空选项的关系,可以反推出待填空的数值或表达式。
4. 多种途径:填空题可以有多种解法,可以多角度思考和尝试。
如果一种方法无法确定答案,可以尝试其他方法,找出最适合的解答途径。
三、解答题解答方法:解答题是高考数学中相对较难的题型,解答时需要注意以下几点:1. 理清思路:解答题一般需要通过一系列的步骤来解决问题,首先要理清思路,明确步骤和方法,避免盲目性解题。
2. 规范书写:解答题需要写清楚解题过程和推理思路,并在重要的步骤和结论处用画线等方式标注出来,以便阅卷人员清晰地看到解题思路。
3. 合理估算:有些解答题中给出的数据量较大,可以通过合理估算或化简计算来简化解答过程,提高解题效率。
高考数学常考题型和答题技巧

高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4.换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元一换兀一解兀一还元5.待定系数法待定系数法是在已知对象形式式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(__)(__)=0两种情况为或型②配成平方型:(__)2+(__)2=0两种情况为且型数学中两个最伟大的解题思路求值的思路列欲求值字母的方程或方程组2)求取值范围的思路列欲求范围字母的不等式或不等式组数学解题小技巧1、精神要放松,情绪要自控最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的方法有三种:①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。
②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。
③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。
冲刺高考文科数学必看题型归纳

冲刺高考文科数学必看题型归纳随着高中阶段的学习即将结束,文科同学们的高考备战也进入冲刺阶段。
作为高考的一大考试科目,数学在文科生的备考中显得尤其重要。
为此,本篇文章将对文科数学的必看题型进行归纳,帮助同学们在时间紧迫、压力巨大的备考过程中更好地掌握知识点,备战高考。
一、函数1. 函数的奇偶性:(1)$f(-x)=-f(x)$,则函数为奇函数;(2)$f(-x)=f(x)$,则函数为偶函数;(3)$f(x)\ne f(-x)$,则函数既不是奇函数也不是偶函数。
2. 函数的周期性:(1)对于任意一个实数$x$,都有$f(x+T)=f(x)$,则函数是以$T$($T>0$)为周期的周期函数,$T$ 称为函数的周期;(2)当$T$ 为最小正周期时,函数是最简周期函数。
3. 函数的单调性:(1)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)<f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递增的;(2)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)>f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递减的。
4. 函数极值问题:(1)极大值:若存在$x_0\in D_f$,使得$f(x)\le f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极大值;(2)极小值:若存在$x_0\in D_f$,使得$f(x)\ge f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极小值;(3)极值:极大值和极小值统称为极值。
二、解析几何1. 点、向量的基本概念:(1)点:在xoy 坐标系中,设坐标轴OX、OY 的交点为坐标原点O,则任意一点$P(x,y)$ 都可表示为向量$\overrightarrow{OP}(x,y)$。
(2)向量:向量是具有大小和方向的几何量,用向量符号$\overrightarrow{a}$ 表示。
高考数学题型分析与解题技巧

高考数学题型分析与解题技巧高考数学作为高考中的重要科目,对于考生的总成绩有着举足轻重的影响。
了解高考数学的题型,并掌握相应的解题技巧,是取得高分的关键。
以下将对高考数学常见的题型进行分析,并分享一些实用的解题技巧。
一、选择题选择题在高考数学中所占比例较大,通常考查基础知识和基本概念。
1、直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论。
2、排除法从选项入手,逐一排除不符合条件的选项,从而得出正确答案。
这种方法在解决一些具有明显错误选项的题目时非常有效。
3、特殊值法通过选取特殊值,代入题目中进行验证,从而快速得出答案。
比如在函数问题中,可以选取特殊的点来判断函数的性质。
4、数形结合法将抽象的数学语言与直观的图形结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化,抽象问题具体化。
二、填空题填空题注重考查考生的计算能力和对概念的准确理解。
1、直接计算对于一些简单的填空题,直接进行计算即可得出答案。
2、概念理解有些填空题考查的是对数学概念的深入理解,需要考生准确把握概念的内涵和外延。
3、分类讨论当题目中存在多种情况时,要进行分类讨论,确保答案的完整性。
三、解答题解答题是高考数学中的重头戏,分值较高,考查的知识点也较为综合。
1、三角函数与解三角形这类题目通常会涉及到三角函数的公式运用、化简求值以及解三角形等问题。
解题技巧在于熟练掌握三角函数的基本公式,如正弦定理、余弦定理等,并能灵活运用。
2、数列数列问题常见的有求通项公式、前 n 项和等。
要掌握等差数列和等比数列的通项公式和求和公式,同时注意错位相减法、裂项相消法等求和方法的运用。
3、立体几何证明线面平行、垂直关系,计算几何体的体积、表面积等是常见的考点。
解题时要善于运用空间向量法或者传统的几何方法,建立空间直角坐标系可以简化很多问题。
4、概率与统计概率问题要明确各种概率模型,如古典概型、几何概型等。
高考数学常考题型与答题技巧

高考数学常考题型与答题技巧高考数学常考题型与答题技巧(一览)根据不同高考数学题型,我们应该有不同的答题策略,根据题型特点,我们也可以更好地答题,以下是小编整理的一些高考数学常考题型与答题技巧,欢迎阅读参考。
高中数学考试选择题蒙题技巧1、区间法,这类方法也成为排除法,靠着大概计算出的数据或者猜一些数据。
比如一个题目里给了几个角度,30°,90°。
很明显,答案里就肯定是90±30度,120加减30度。
或者一些与30,60,90度有关的答案。
2、代入法,这列方法往往是给定了一些条件,比如a大于等于0,小于等于1。
b 大于等于1,小于等于2.这些给定了一些特殊的条件,然后让你求一个ab组合在一起的一些式子,可能会很复杂。
但是如果是选择题,你可以取a=0.5,b=1.5试一试。
还有就是可以把选项里的答案带到题目中的式子来计算。
3、函数法,这个就是要把一些计算转化为函数,首先带入答案,之后移项,把方程一边变成零,然后就可以把函数的表达式大概画出来,看与零点有没有唯一焦点,这样就可以大概判断答案,或者找最接近零点的答案。
高中数学答题注意事项选择题解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
关于填空题,常见的错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。
关于解答题,考生不仅要提供出最后的结论,还得写出主要步骤,提供合理、合法的说明。
填空题则无此要求,只要填写结果,而且所填结果应力求简练、概括的准确。
其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。
高考数学各题型答题技巧及解题思路

高考数学各题型答题技巧及解题思路高考数学是考生在高中学习中接触最多的一门学科。
而高考数学中有各种各样的题型,如函数、导数、数列、几何等等。
各个题型的答题技巧和解题思路也需要考生掌握。
本文将就此进行详细介绍。
一.函数题型答题技巧及解题思路1. 函数的分类在高考数学中,函数有三种类型,分别为元函数、复合函数和反函数。
其中元函数是指单个自变量x的函数,如y=f(x),复合函数是指由两个或两个以上函数复合而成的函数,如y=f(g(x)),反函数则是元函数的互逆,如y=f(x)的反函数为x=g(y)。
2. 函数的性质函数有很多性质,如奇偶性、单调性、周期性等等。
其中奇偶性是指函数有没有对称轴,单调性是指函数的递增递减性质,周期性是指函数图像在一定区间内重复出现。
3. 函数的绘图绘制函数图像是函数学习中的重点内容。
在绘图时,需要掌握对称轴、截距以及拐点等。
1. 导数概念导数是指函数在某一点处的变化率。
导数的计算方式为极限值的求解方法。
导数的概念是微积分学的基础,是高考数学中的重要内容。
2. 导数的计算方法导数的计算方法有很多,如用导数定义式、用导数的四则运算法则、用导数的基本函数形式等。
3. 导函数的应用导函数在数学上有广泛的应用,包括求解函数的最值、函数的单调性、函数的图像形态等。
三.数列题型答题技巧及解题思路1. 数列的概念数列是指按照一定的规律排列的一组数的集合。
数列可以分为等差数列、等比数列等。
2. 数列的通项公式数列的通项公式是指可以用来计算任意项的公式。
对于等差数列和等比数列而言,通项公式是非常重要的。
3. 数列的求和公式数列的求和公式是指可以计算数列前n项和的公式。
对于等差数列和等比数列而言,求和公式也是非常重要的。
1. 几何图形的名词在几何学中,几何图形都有自己的命名。
例如,几何图形有点、直线、平面等。
2. 平面几何的性质平面几何图形的性质可以分为有关角、线段、周长、面积等方面的性质。
几何题中需要掌握到位。
高考数学必考题型及答题技巧

高考数学必考题型及答题技巧高考数学必考题型及答题技巧汇总数学这个学科可能是很多人从小到大心中的恐惧,因为它复杂难理解,尤其是文科生,以下是小编整理的一些高考数学必考题型及答题技巧,欢迎阅读参考。
高考数学答题注意事项(1)填写好全部考生信息,检查试卷有无问题;(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);(3)对于不能立即作答的题目,可一边通览,一边粗略地分为a、b两类:a类指题型比较熟悉、容易上手的题目;b类指题型比较陌生、自我感觉有困难的题目,做到心中有数。
高考数学填空题答题技巧1、三角变换与三角函数的性质问题解题方法:①不同角化同角;②降幂扩角;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。
答题步骤:①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
2、解三角形问题解题方法:(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
答题步骤:①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
3、数列的通项、求和问题解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。
答题步骤:①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冲刺2019!高考数学经典题型及解题技巧2019年高考在即,怎样复习容易提高成绩恐怕是所有考生关心的问题。
为了帮助考生在考试中从容应答,小编为大家搜集了高考数学常考题型,一起来看看吧。
一、排列组合篇1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。
选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。
从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2. 判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解答可多得分1. 合理安排,保持清醒。
数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。
然后带齐用具,提前半小时到考场。
2. 通览全卷,摸透题情。
刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。
这样能提醒自己先易后难,也可防止漏做题。
3 .解答题规范有序。
一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。
对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。
比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。
有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
三、数列问题篇数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.四、导数应用篇专题综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1. 导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2. 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。
知识整合1. 导数概念的理解。
2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3. 要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
五、解析几何(圆锥曲线)高考解析几何剖析:1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。
1、几何问题代数化。
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
2、用代数规则对代数化后的问题进行处理。
高考数学常考题型就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!。