量子力学真题
量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
量子力学考研真题

一. (类似1999年第一题)质量为m 的粒子,在一维无限深势阱中()⎩⎨⎧><∞≤≤=a x x a x x V ,0 ,0,0 中运动,若0=t 时,粒子处于()()()()x x x x 3212131210,ϕϕϕψ+-=状态上,其中,()x n ϕ为粒子的第n 个本征态。
(1) 求0=t时能量的可测值与相应的取值几率;(2) 求0>t 时的波函数()t x ,ψ及能量的可测值与相应的取值几率解:非对称一维无限深势阱中粒子的本征解为()xa n a x n n maE n n πϕπsin 2,3,2,1 ,22222===(1) 首先,将()0,x ψ归一化。
由12131212222=⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛c可知,归一化常数为1312=c于是,归一化后的波函数为()()()()x x x x 3211331341360,ϕϕϕψ++-=能量的取值几率为()()()133;134 ;136321===E W E W E W 能量取其它值的几率皆为零。
(2) 因为哈密顿算符不显含时间,故0>t时的波函数为()()()()⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-=t E x t E x t E x t x 332211i e x p 133i exp 134i exp 136, ϕϕϕψ(3) 由于哈密顿量是守恒量,所以0>t 时的取值几率与0=t 时相同。
三. 设厄米特算符Hˆ的本征矢为n,{n 构成正交归一完备系,定义一个算符()n m n m U ϕϕ=,ˆ(1) 计算对易子()[]n m U H,ˆ,ˆ;(2) 证明()()()p m U q p U n m U nq ,ˆ,ˆ,ˆδ=+;(3)计算迹(){}n m U ,ˆT r ;(4) 若算符Aˆ的矩阵元为n m mnA A ϕϕˆ=,证明()n m UA A nm m n ,ˆˆ,∑=(){}q p U A A pq ,ˆˆTr +=解:(1)对于任意一个态矢ψ,有()[]()()()()()()ψψψψϕϕψϕϕψψψn m U E E n m U E n m U E H H H n m U n m U Hn m U Hn m n m n m n m ,ˆ,ˆ,ˆˆˆˆ,ˆ,ˆˆ,ˆ,ˆ-=-=-=-=故()[]()()n m U E E n m U Hn m,ˆ,ˆ,ˆ-=(2)()()()p m Uq p U n m U nq p q n m,ˆ,ˆ,ˆδϕϕϕϕ==+(3)算符的迹为(){}()mnm n k n k m kkkk n m U n m U δϕϕϕϕϕϕϕϕ====∑∑,ˆ,ˆT r(4)算符()n m UA A A A nm mnnn m nm m m mm ,ˆˆˆˆ,,∑∑∑===ϕϕϕϕϕϕ而()(){}q p U Aq p U A A A A A k kk kkp q k qk kk p q p pq ,ˆˆT r ,ˆˆˆˆˆ++=====∑∑∑ϕϕϕϕϕϕϕϕϕϕϕ五. (见2001年第五题)两个质量皆为μ的非全同粒子处于线谐振子位中,若其角频率都是ω,加上微扰项21 ˆx x W λ-=(21,x x 分别为第一个粒子与第二个粒子的坐标)后,试用微扰论求体系基态能量至二级修正、第二激发态能量至一级修正。
河西学院量子力学试题及答案 2

第1页 共2页河西学院2011—2012学年第二学期期末考试试卷一、选择题1.用Bohr-Sommerfeld 的量子化条件得到的一维谐振子的能量为( ,2,1,0=n )A.E n n = ω.B.E n n =+()12ω.C.E n n =+()1 ω.D.E n n =2 ω. 2.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限. 3.几率流密度矢量的表达式为A. J =∇ψ-2μ()**ψψ∇ψ B. J i =∇ψ-2μ()**ψψ∇ψ.C. J i =-∇ψ2μ()**ψ∇ψψ. D. J =-∇ψ2μ()**ψ∇ψψ.4.质量流密度矢量的表达式为A. J =∇ψ-2()**ψψ∇ψ. B. J i =∇ψ-2()**ψψ∇ψ.C. J i =-∇ψ2()**ψ∇ψψ. D. J =-∇ψ2()**ψ∇ψψ.5. 电流密度矢量的表达式为A. J q =∇ψ-2μ()**ψψ∇ψ. B. J iq =∇ψ-2μ()**ψψ∇ψ. C. J iq =-∇ψ2μ()**ψ∇ψψ. D. J q =-∇ψ2μ()**ψ∇ψψ. 6.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.7.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的.8.线性谐振子的能级为 A.(/),(,,,...)n n +=12123 ω. B.(),(,,,....)n n +=1012 ω. C.(/),(,,,...)n n +=12012 ω. D.(),(,,,...)n n +=1123 ω. 9.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 10.线性谐振子的能量本征方程是A.[]-+= 222222212μμωψψd dx x E .B.[]--= 22222212μμωψψd dx x E . C.[] 22222212μμωψψd dx x E -=-. D.[] 222222212μμωψψd dx x E +=-. 11.氢原子的能级为A.- 2222e n s μ. B.-μ22222e n s . C.242ne s μ -. D. -μe n s 4222 . 12.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为A.r r R nl )(2.B.22)(r r R nl .C.rdr r R nl )(2.D.dr r r R nl 22)(.13. F和 G 是厄密算符,则 A. FG必为厄密算符. B. FG GF -必为厄密算符. C.i FGGF ( )+必为厄密算符. D. i FG GF ( )-必为厄密算符. 14.已知算符 x x =和 pi xx =- ∂∂,则 A. x 和 p x 都是厄密算符. B. xp x 必是厄密算符. C. xp p x x x +必是厄密算符. D. xp p x x x -必是厄密算符.15.自由粒子的运动用平面波描写,则其能量的简并度为 A.1. B. 2. C. 3. D. 4.16.二维自由粒子波函数的归一化常数为(归到δ函数)A.1212/()/π .B.12/()π .C.1232/()/π .D.122/()π 17.若不考虑电子的自旋,氢原子能级n=3的简并度为 A. 3. B. 6. C. 9. D. 12. 18.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小. 19一粒子在中心力场中运动,其能级的简并度为n 2,这种性质是 A. 库仑场特有的. B.中心力场特有的.专业:物理学课程:量子力学第2页 共2页C.奏力场特有的.D.普遍具有的.20.体系处于ψ=C kx cos 状态,则体系的动量取值为A. k k ,-.B. k .C. - k .D. 12k .二、填空题1. 对易关系[, ]x px 等于 2. 对易关系[, ]L zy 等于 3. 对易关系[, ]x p y 等于 4. 对易关系[ , ]LL xz等于 5. 对易关系[ , ]L L x2等于 6. 对易关系[, ]L p x y 等于 7. 对易关系[ , ]Lp zy等于 8. .对易式[ ,]Fc 等于(c 为任意常数)三、计算题1.算符 F和 G 的对易关系为[ , ] F G ik =,则 F 、 G 的测不准关系是2.已知[ , ]xp i x = ,则 x 和 p x 的测不准关系是3.类氢原子体系的能量是量子化的,其能量表达式为。
量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。
2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。
3. 描述量子隧道效应,并解释它在实际应用中的重要性。
三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。
求该粒子的能量E。
2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。
求该电子的动量分布。
答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。
这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。
2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。
例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。
3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。
量子力学期末试题及答案

(11)
⎛−i⎞
1⎜ ⎟
ψ1
=
2
⎜ ⎜
⎝
2 ⎟;
i
⎟ ⎠
ψ2 =
⎛1⎞
1
⎜⎟ ⎜ 0 ⎟;
2
⎜ ⎝
1
⎟ ⎠
⎛i⎞
1⎜ ⎟
ψ3
=
2
⎜ ⎜
⎝
2⎟
−
i
⎟ ⎠
(12)
Lˆ x 满足的本征方程为
相应的久期方程为 将其化为
ℏ 2
⎛ ⎜
⎜ ⎜⎝
0 1 0
1 0 1
0 ⎞ ⎛ c1 ⎞
⎛ c1 ⎞
1
⎟ ⎟
⎜ ⎜
c2
c1
⎞ ⎟
⎛ ⎜
c1
⎞ ⎟
0 − i⎟ ⎜ c2 ⎟ = λ ⎜ c2 ⎟
i
0
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
iℏ
−λ −
0
2
iℏ
−λ
− iℏ = 0
2
2
0
iℏ
−λ
2
(8) (9)
λ3 − ℏ 2λ = 0
(10)
得到三个本征值分别为 λ1 = ℏ; λ 2 = 0; λ 3 = −ℏ
将它们分别代回本征方程,得到相应的本征矢为
Wˆ ψ 0
显然,求和号中不为零的矩阵元只有
ψ 0 Wˆ ψ 23
= ψ 23 Wˆ ψ 0
λ =−
2α 2
于是得到基态能量的二级修正为
E0(2)
=
E00
1 − E20
λ2 4α 4
λ2ℏ =−
8µ 2ω 3
量子力学考研试题及答案

量子力学考研试题及答案一、单项选择题(每题5分,共20分)1. 量子力学中,波函数的平方代表粒子的什么物理量?A. 动量B. 能量C. 位置D. 概率密度答案:D2. 以下哪项是海森堡不确定性原理的表述?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程描述的是:A. 经典力学B. 电磁学C. 量子力学D. 热力学答案:C4. 泡利不相容原理适用于:A. 光子B. 电子C. 质子D. 中子答案:B二、填空题(每题5分,共20分)1. 根据量子力学,一个粒子的波函数可以表示为 \(\psi(x, t)\),其中 \(x\) 代表粒子的________,\(t\) 代表时间。
答案:位置2. 量子力学中的波粒二象性表明,粒子既表现出________的性质,也表现出粒子的性质。
答案:波动3. 量子力学中,一个粒子的能量可以表示为 \(E =\frac{p^2}{2m}\),其中 \(p\) 代表粒子的________。
答案:动量4. 量子力学中的隧道效应是指粒子可以穿过________的势垒。
答案:经典物理认为不可能三、简答题(每题10分,共30分)1. 简述德布罗意波的概念及其在量子力学中的意义。
答案:德布罗意波是指物质粒子(如电子)具有波动性,其波长与粒子的动量成反比。
在量子力学中,这一概念是波函数理论的基础,它表明粒子的行为不能完全用经典力学来描述,而是需要用波动方程来描述。
2. 描述一下量子力学中的量子态叠加原理。
答案:量子态叠加原理是指一个量子系统可以同时处于多个可能状态的叠加,直到进行测量时,系统才会坍缩到其中一个特定的状态。
这一原理是量子力学的核心特征之一,它导致了量子力学的非经典行为和概率解释。
3. 解释什么是量子纠缠,并给出一个实际应用的例子。
答案:量子纠缠是指两个或多个量子粒子之间存在的一种非经典的强关联,即使它们相隔很远,一个粒子的状态改变会即时影响到另一个粒子的状态。
量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。
A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。
答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。
答案:±1/23. 薛定谔方程描述的是粒子的_________。
答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。
答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。
答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。
答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。
在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。
波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。
2. 请简要说明量子力学中的不确定性原理。
答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。
浙江大学量子力学98-08考研真题

浙江大学1998年攻读硕士学位研究生入学考试试题考试科目 量子力学第一题:(10分)(1) 写出玻尔-索末菲量子化条件的形式。
(2) 求出均匀磁场中作圆周运动的电子轨道的可能半径。
(利用玻尔-索末菲量子化条件求,设外磁场强度为B)第二题:(20分)(1) 若一质量为μ的粒子在一维势场0,0(),,0x aV x x a x ≤≤⎧=⎨∞><⎩中运动,求粒子的可能能级。
(2) 若某一时刻加上了形如sinxe aω,(1e )的势场,求其基态能级至二级修正(ω为一已知常数)。
(3) 若势能()V x 变成221,0()2,0x x V x x μω⎧>⎪=⎨⎪∞<⎩,求粒子(质量为μ)的可能的能级。
第三题:(20分)氢原子处于基态,其波函数形如raceψ-=,a 为玻尔半径,c 为归一化系数。
(1) 利用归一化条件,求出c 的形式。
(2) 设几率密度为()P r ,试求出()P r 的形式,并求出最可几半径r 。
(3) 求出势能及动能在基态时的平均值。
(4) 用何种定理可把ˆV<>及ˆT <>联系起来?第四题:(15分)一转子,其哈密顿量222ˆˆˆˆ222y x z x y zL L L HI I I =++,转子的轨道角动量量子数是1, (1) 试在角动量表象中求出角动量分量ˆx L ,ˆy L ,ˆzL 的形式; (2) 求出ˆH的本征值。
第五题:(20分)若基态氢原子处于平行板电场中,电场是按下列形式变化00,0,0t t E e t τε-≤⎧⎪=⎨>⎪⎩ ,τ为大于零的常数,求经过长时间后,氢原子处于2P 态的几率。
(设ˆH'为微扰哈密顿,()805100,210ˆ3ta e He τε-'=⋅;(当0t >)()100,211ˆ0H ±'=)。
第六题:(15分)(1) 用玻恩近似法,求粒子处于势场0()r aV x V e-=-,(0a >)中散射的微分散射截面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国科学院量子力学真题
一、回答下列各问题(共30分)
1.计算对易关系ˆ,L μν⎡⎤⎣⎦,其中,,,x y z μν=。
(4分) 2.分别说明什么样的状态是束缚态、简并态和负宇称态(3分)
3.粒子自旋处于/2z s =的本征态10α⎡⎤=⎢⎥⎣⎦
,试求x s 和y s 的不确定关系:
?=。
(5分) 4.粒子在宽为a 的无限深方势阱中运动,估算其基态能量。
(3分)
5.写出电子自旋z s 的二本征值和对应的本征态。
(2分)
6.设粒子处于(,)lm Y θϕ状态下,求2()x L ∆和2()y L ∆(6分)
7.计算下列对易式2(1),?(2),?d d x x dx dx ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦。
(4分) 8.何谓光的吸收?何谓光的受激辐射?何谓光的自发辐射?给出光学定理的表达式并说明它的意义。
(3分)
二、(共10分)
两个自旋1/2、质量为m 的无相互作用的全同费米子同处线性谐振子场中,写出基态和第一激发态的能量本征值和本征函数,并指出简并度。
三、(共20分)
已知氢原子在0t =时处于状态
21311112(,0)()()()000333r r r r ψψψ⎛⎫⎛⎫⎛⎫ψ=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
其中,()n r ψ为氢原子的第n 个能量本征态。
求能量及自旋z 分量的取值概率与平均值,写出0t >的波函数。
四、(共20分)
一个一维无限深方势阱如图所示,在x =0和x =L 处有两个无限高壁,两个宽为a ,高为0V 的小微扰势垒中心位于/4x L =和3/4x L =处,a 是小量(例如/100a L )。
试用一级微扰论计算修正后的基态能量值及2n =和4n =的能级差。
五、(共20分)
在0t =时,处于势2212
V x m x ω=()中的粒子,由波函数
,0()n n x x ψψ∑n ()=A
描述,n ψ是能量本征态,()n n nn ψψδ''=,求
(1) 归一化常数A ;
(2) 给出0t >时,,x t ψ()的表达式;
(3) 证明2
,x t ψ()是一个周期函数,求出其最长的周期;
(4) 求出0t =时,体系能量的平均值。
V 0。