江西省南昌市2015届高三第一轮复习训练 数学(5)(三角函数试题1)
2015届新课标高考数学一轮三角函数复习题

新课标高考数学一轮三角函数复习题(二)一、选择题(每小题5分,共60分,每小题给出的选项中只有一个符合题目的要求) 1、△ABC 中,“A >B ”是“sin A >sin B ”的………………………………………………( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件2、(理)给出下面四个函数,其中既是区间(0,)2π上的增函数又是以π为周期的偶函数的函数是( )A .x y 2tan = B.x y sin = C.y =cos2x D.x y cos =(文)已知函数f (x )=sin (πx -2π)-1,则下列命题正确的是 A.f (x )是周期为1的奇函数 B.f (x )是周期为2的偶函数C.f (x )是周期为1的非奇非偶函数D.f (x )是周期为2的非奇非偶函数 3、用五点法作x y 2sin 2=的图象时,首先应描出的五点的横坐标可以是( )A .ππππ2,23,,2,0 B.ππππ,43,,4,0 C .ππππ4,3,2,,0 D .32,2,3,6,0ππππ4、(理)ABC ∆的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为 (A)6π (B)3π (C) 2π(D) 23π(文)在△ABC 中,如果(a +b +c)(b +c -a)=3bc ,则A 等于( ) A .150°B .120°C .60°D .30°5、若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在A.第一象限B.第二象限C.第三象限D.第四象限6、(理)若c Cb B aA cos cos sin ==,则△ABC 是( ) A .等边三角形 B .有一个内角是30°的直角三角形 C .等腰直角三角形 D .有一个内角是30°的等腰三角形 (文)若1)cos()cos()cos(=---A C C B B A 则△ABC 是( )A .直角三角形B .等腰直角三角形C .等边三角形D .顶角为1200的等腰三角形 7、(理)函数x xy cos 2sin 3-=的值域为( )(A )]1,1[- (B )]3,3[- (C )[]1,3-]1,3[- (D )]3,1[-(文)已知函数f (x )=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,则ϖ的最小值等于A.32 B.23C.2D.3 8、(理)设0<|α|<4π,则下列不等式中一定成立的是 A.sin2α>sin α B.cos2α<cos α C.tan2α>tan αD.cot2α<cot α(文)△ABC 中,B =600,则C A cos cos 的取值范围是( )(A )[]41,0 (B )(]4121,- (C )[)2141, (D )[)0,41-9、若函数f (x )=sin (ωx +ϕxy2ππO 33-1如下图所示,则ω和ϕ的取值是A.ω=1,ϕ=3π B.ω=1,ϕ=-3πC.ω=21,ϕ=6π D.ω=21,ϕ=-6π10、(理)如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则( )A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形(文)在△ABC 中,若2cos B ·sin A =sin C ,则△ABC 的形状一定是 A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 11、已知y =f (x )是周期为2π的函数,当x ∈[0,2π)时,f (x )=sin 2x ,则f (x )=21的解集为A.{x |x =2k π+3π,k ∈Z } B.{x |x =2k π+3π5,k ∈Z } C.{x |x =2k π±3π,k ∈Z }D.{x |x =2k π+(-1)k3π,k ∈Z } 12、关于函数f (x )=sin 2x -(32)|x |+21,有下面四个结论, ①f (x )是奇函数 ②当x >2003时,f (x )>21恒成立 ③f (x )的最大值是23④f (x )的最小值是-21其中正确结论的个数为 A.1 B.2 C.3 D.4 二、填空题(每小题4分,共16分,将答案填在题后的横线上)13、若方程sin x +cos x =k 在0≤x ≤π上有两解,则k 的取值范围是 . 14、函数y =lg (cos x -sin x )的定义域是_______.15、设函数())()cos30f x x ϕϕπ=+<<。
江西省南昌市2015届高三第一轮复习训练 数学(2)(函数1)

2014-2015学年度南昌市新课标高三第一轮复习训练题数学(二)(函数1)命题人:黄润华 学校:江西师大附中 审题人:刘倍倍 学校:南昌二中一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知)(x f 是奇函数,)(x g 是偶函数,且4)1()1(,2)1()1(=-+=+-g f g f ,则)1(g 等于A .4B .3C .2D .12.函数)1ln(x x y -=的定义域为A .(0,1)B .(0,1]C .[0,1)D .[0,1]3.若函数ax y =与xby -=在),0(+∞上都是减函数,则bx ax y +=2在),0(+∞上 A .单调递减 B .单调递增 C .先增后减 D .先减后增4.下列函数中,在(1,1)-内有零点且单调递增的是A .2log (2)y x =+B .21x y =-C D .3y x =- 5.若a b c <<,则函数()()()()()f x x a x b x a x c =--++--的两个零点分别位于区间A .(,)a b ,(,)b cB .(,)a -∞,(,)a bC .(,)b c ,(,)c +∞D .(,)a -∞,(,)c +∞ 6.定义在R 上的函数)(x f y =在),(a -∞上是增函数,且函数)(a x f y +=是偶函数, 当a x a x ><21,,且a x a x -<-21时,有A .)()(21x f x f >B .)()(21x f x f ≥C .)()(21x f x f <D .)()(21x f x f ≤7.设函数)(2)(2R x x x g ∈-=,⎩⎨⎧≥-<++=)(,)(),(,4)()(x g x x x g x g x x x g x f ,则)(x f 的值域是A .9[,0](1,)4-+∞B .[0)+∞,C .9[,)4-+∞D .9[,0](2,)4-+∞8.已知函数)(x f 对任意R x ∈都有)3(2)()6(f x f x f =++,)1(-=x f y 的图像关于点)0,1(对称,且4)1(=f ,则=)2015(f A .0 B .4- C .8- D .16-9.函数()y f x =,x D ∈,若存在常数C ,对任意的1x D ∈,存在唯一的2x D ∈,使得C =,则称函数()f x 在D 上的几何平均数为C .已知3()f x x =,[1,2]x ∈,则函数()f x 在[1,2]上的几何平均数为A.2 B .2C .4D .2210.在如图所示的锐角三角形空地中,欲建一个面积不小于2300m 的内接矩形花园(阴影部分),则其边长x (单位:m )的取值范围是 A .]20,15[ B .]25,12[ C .]30,10[ D .]30,20[二、填空题:本大题共5小题;每小题5分,共25分,把答案填在题中的横线上.11.若)(x f 的定义域为R ,2)(>'x f 恒成立,2)1(=-f ,则42)(+>x x f 解集为 .12.已知函数()f x 是定义在(,0)(0,)-∞+∞上的奇函数,在(0,)+∞上单调递减,且0)3()21(>->f f ,则方程()0f x =的根的个数为 . 13.若存在正数x 使1)(2<-a x x 成立,则a 的取值范围是 .14.若函数14)(2+=x xx f 在区间)12,(+m m 上是单调递增函数,则m 的取值范围是 . 15.若函数)(x f y =的值域是]3,1[,则函数)3(21)(+-=x f x F 的值域是 .三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或推演步骤.16.已知⎩⎨⎧<-≥-=-=.0,2,0,1)(,1)(2x x x x x g x x f(1)求)]2([g f 和)]2([f g 的值;(2)求)]([x g f 和)]([x f g 的表达式.17.已知函数)(x f y =的定义域为R ,且对任意R b a ∈,,都有)()()(b f a f b a f +=+. 且当0>x 时,0)(<x f 恒成立,.3)3(-=f (1)证明:函数)(x f y =是R 上的减函数; (2)证明:函数)(x f y =是奇函数;(3)试求函数)(x f y =在),](,[*N n m n m ∈上的值域. .18.已知函数)(x f 的定义域为R ,且满足)()2(x f x f -=+.若f (x )为奇函数,且当10≤≤x 时,x x f 21)(=,求使21)(-=x f 在区间]2014,0[上的所有x 的个数.19.设()f x 是定义在R 上的奇函数,且对任意实数x ,恒有(2)()f x f x +=-. 当[0,2]x ∈时,2()2f x x x =-. (1)求证:()f x 是周期函数;(2)当[2,4]x ∈时,求()f x 的解析式;(3)计算(0)(1)(2)(2014)f f f f ++++L .20.(1)已知函数()y f x =的定义域为R ,且当R x ∈时,()()f m x f m x +=-恒成 立,求证()y f x =的图象关于直线x m =对称;(2)若函数2log |1|y ax =-的图象的对称轴是2x =,求非零实数a 的值.21.已知函数x b b ax x f ⋅-+-=22242)(,).,()(1)(2R b a a x x g ∈---=(1)当0=b时,若)(x f 在]2,(-∞上单调递减,求a 的取值范围;(2)求满足下列条件的所有整数对),(b a :存在0x ,使得0()()f x f x 是的最大值,0()()g x g x 是的最小值.2014-2015学年度南昌市新课标高三第一轮复习训练题数学(二)参考答案一.选择题:本大题共10小题,每小题5分,共50分11.(1)-+∞, 12.2 13.(1)-+∞, 14.(-1,0] 15.[51]--,三.解答题:本大题共6小题,共75分 16.解:(1)由已知,g (2)=1,f (2)=3,∴f [g (2)]=f (1)=0,g [f (2)]=g (3)=2.(2)当x ≥0时,g (x )=x -1,∴f [g (x )]=(x -1)2-1=x 2-2x ; 当x <0时, g (x )=2-x ,∴f [g (x )]=(2-x )2-1=x 2-4x +3;⎩⎨⎧<+-≥-=∴.0,34,0,2)]([22x x x x x x x g f当x ≥1或1-≤x 时,f (x )≥0,∴g [f (x )]=f (x )-1=x 2-2;当11<<-x 时,0)(<x f ,.3)(2)]([2x x f x f g -=-=∴⎩⎨⎧<<---≤≥-=∴.11,3,11,2)]([22x x x x x x f g 或 17.(1)证明:设任意R x x ∈21,,且21x x <,f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)=f (x 1)+f (x 2-x 1)<f (x 1), 故f (x )是R 上的减函数.(2)证明:∵f (a +b )=f (a )+f (b )恒成立, ∴可令a =-b =x ,则有f (x )+f (-x )=f (0). 又令a =b =0,则有f (0)=f (0)+f (0),∴f (0)=0.从而任意的R x ∈,f (x )+f (-x )=0,∴f (-x )=-f (x ).)(x f y =∴是奇函数. (3)解:)(x f y = 是R 上的单调递减函数,)(x f y =∴在],[n m 上也是减函数, 故f (x )在],[n m 上的最大值f (x )max =f (m ),最小值f (x )min =f (n ).)1()1()1()]1(1[)(nf n f f n f n f ==-+=-+= ,同理f (m )=mf (1). 又f (3)=3f (1)=-3,.)(,)(,1)1(n n f m m f f -=-=∴-=∴ )(x f y =∴在],[n m 上的值域为].,[m n --18. 解:当0≤x ≤1时,1()2f x x =,设-1≤x ≤0,则0≤-x ≤1,∴11()()22f x x x -=-=-∵f (x )是奇函数,∴f (-x )=-f (x ).∴1()2f x x -=-,即1()2f x x =.).11(21)(≤≤-=∴x x x f又设1<x <3,则-1<x -2<1. ∴f (x -2)=12(x -2).又)()]([]2)[()2()2(x f x f x f x f x f -=---==--=--=- ,).2(21)(-=-∴x x f )31)(2(21)(<<--=∴x x x f .⎪⎩⎪⎨⎧<<--≤≤-=∴.31),2(21,11,21)(x x x x x f由21)(-=x f ,解得1-=x .又∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),)(x f ∴是以4为周期的周期函数.21)(-=∴x f 的所有)(14Z n n x ∈-=. 令2014140≤-≤n ,则4201541≤≤n , 又Z n ∈ ,).(5031Z n n ∈≤≤∴ ∴在]2014,0[上共有503个x 使.21)(-=x f19.解:(1))()2(x f x f -=+ ,).()2()4(x f x f x f =+-=+∴ )(x f ∴是周期为4的周期函数.(2)当]0,2[-∈x 时,]2,0[∈-x ,由已知得.2)()(2)(22x x x x x f --=---=- 又)(x f 是奇函数,.2)(,2)()(22x x x f x x x f x f +=∴--=-=-∴ 又当]4,2[∈x 时,]0,2[4-∈-x ,).4(2)4()4(2-+-=-∴x x x f 又)(x f 是周期为4的周期函数,∴f (x )=f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. ∴当]4,2[∈x 时,.86)(2+-=x x x f(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1.又)(x f 是周期为4的周期函数, f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7) == f (2 009)+f (2010)+f (2011)+f (2012)=0. 又0)2()1()2014()2013(=+=+f f f f ,.0)2014()2()1()0(=++++∴f f f f 20.解:(1)设P (x 0,y 0)是y =f (x )图象上任意一点,则y 0=f (x 0). 又P 点关于x =m 的对称点为P ′,则P ′的坐标为(2m -x 0,y 0).又f (x +m )=f (m -x ),得f (2m -x 0)=f [m +(m -x 0)]=f [m -(m -x 0)]=f (x 0)=y 0. 即P ′(2m -x 0,y 0)在y =f (x )的图象上.∴y =f (x )的图象关于直线x =m 对称. (2)对定义域内的任意x ,有f (2-x )=f (2+x )恒成立.∴|a (2-x )-1|=|a (2+x )-1|恒成立,即|-ax +(2a -1)|=|ax +(2a -1)|恒成立. 又0≠a ,012=-∴a ,.21=∴a 21.解: (1)当0b =时,()24f x ax x =-,若0a =,()4f x x =-,则()f x 在]2,(-∞上单调递减,符合题意;若0a ≠,要使()f x 在]2,(-∞上单调递减,必须满足0,42,2a a>⎧⎪⎨≥⎪⎩∴01a <≤.综上所述,a 的取值范围是]1,0[.(2)若0a =,()f x =-,则()f x 无最大值,故0a ≠,∴()f x 为二次函数, 要使)(x f 有最大值,必须满足20,420,a b b <⎧⎨+-≥⎩即0a <且11b ≤,此时,0x ()f x 有最大值.又()g x 取最小值时,0x a =,a =∈Z,则2a =,∵0a<且11b≤,∴)20a a <≤∈Z ,得1a =-,此时1b =-或3b =.∴满足条件的整数对(),a b 是()()1,1,1,3---.。
【2015南昌一模】江西省南昌市2015届高三第一次模拟测试数学理试题 Word版含答案

江西省南昌市2015届高三第一次模拟测试 数 学(理)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知i 为虚数单位,则复数12iz i +=在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2、若集合{}1381x x A =≤≤,(){}22log 1x xx B =->,则AB =( )A .(]2,4B .[]2,4C .()[],00,4-∞ D .()[],10,4-∞-3、如图,在正四棱柱1111CD C D AB -A B 中,点P 是面1111C D A B 内一点,则三棱锥CD P -B 的正视图与侧视图的面积之比为( )A .1:1B .2:1C .2:3D .3:2 4、已知过定点()2,0P 的直线l与曲线y =A ,B 两点,O 为坐标原点,当∆AOB 的面积取到最大值时,直线l 的倾斜角为( )A .150B .135C .120D .不存在5、已知实数x ,y 满足1040x y x y y m +-≥⎧⎪+-≤⎨⎪≥⎩,若目标函数2z x y =+的最大值与最小值的差为2,则实数m 的值为( )A .4B .3C .2D .12-6、在C ∆AB 中,角A ,B ,C 所对的边分别是a ,b ,c ,若1c =,45B =,3cos 5A =,则b 等于( )A .53B .107C .57 D.7、以坐标原点为对称中心,两坐标轴为对称轴的双曲线C 的一条渐近线倾斜角为3π,则双曲线C 的离心率为( )A .2B .2或 C. D .28、如图所示程序框图,其功能是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,则这样的x 值有( ) A .2个 B .3个 C .4个 D .5个 9、给出下列命题:①若()523450123451x a a x a x a x a x a x -=+++++,则1234532a a a a a ++++=②α,β,γ是三个不同的平面,则“γα⊥,γβ⊥”是“//αβ”的充分条件③已知1sin 63πθ⎛⎫-= ⎪⎝⎭,则7cos 239πθ⎛⎫-=⎪⎝⎭ 其中正确命题的个数为( )A .0B .1C .2D .3 10、如图,(),x y M M M ,(),x y N N N 分别是函数()()s i n f x xωϕ=A +(0A >,0ω>)的图象与两条直线1:l y m =,2:l y m =-(0m A ≥≥)的两个交点,记S x x NM=-,则()S m 图象大致是( )A .B .C .D . 11、设无穷数列{}n a ,如果存在常数A ,对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有n a ε-A <成立,就称数列{}n a 的极限为A .则四个无穷数列:①(){}12n-⨯;②()()11111335572121n n ⎧⎫⎪⎪+++⋅⋅⋅+⎨⎬⨯⨯⨯-+⎪⎪⎩⎭;③231111112222n -⎧⎫++++⋅⋅⋅+⎨⎬⎩⎭;④{}231222322n n ⨯+⨯+⨯+⋅⋅⋅+⨯,其极限为2共有( )A .4个B .3个C .2个D .1个12、设函数()()()222ln 2f x x a x a =-+-,其中0x >,R a ∈,存在0x 使得()045f x ≤成立,则实数a 的值为( )A .15B .25C .12 D .1二、填空题(本大题共4小题,每小题5分,共20分.)13、a ,b ,c ,d 四封不同的信随机放入A ,B ,C ,D 4个不同的信封里,每个信封至少有一封信,其中a 没有放入A 中的概率是 . 14、已知直三棱柱111C C AB -A B 中,C 90∠BA =,侧面11CC B B 的面积为2,则直三棱柱111C C AB -A B 外接球表面积的最小值为 .15、已知三角形C AB 中,C AB =A ,C 4B =,C 120∠BA =,3C BE =E ,若P 是C B 边上的动点,则AP⋅AE 的取值范围是 .16、已知函数(),01lg ,0ax f x x x x ⎧≤⎪=-⎨⎪>⎩,若关于x 的方程()0f f x =⎡⎤⎣⎦有且只有一个实数解,则实数a 的取值范围为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17、(本小题满分12分)已知等差数列{}na的前n项和为nS,11a=,36S=,正项数列{}nb 满足1232n Snbb b b⋅⋅⋅=.()1求数列{}na,{}nb的通项公式;()2若n nb aλ>对n*∈N均成立,求实数λ的取值范围.18、(本小题满分12分)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布()280,σN(满分为100分),已知()750.3P X<=,()950.1P X≥=,现从该市高三学生中随机抽取三位同学.()1求抽到的三位同学该次体能测试成绩在区间[)80,85,[)85,95,[]95,100各有一位同学的概率;()2记抽到的三位同学该次体能测试成绩在区间[]75,85的人数为ξ,求随机变量ξ的分布列和数学期望ξE.19、(本小题满分12分)如图,CA是圆O的直径,B、D是圆O上两点,C2C2CD2A=B==,PA⊥圆O所在的平面,13BM=BP.()1求证:C //M 平面D PA ;()2若C M 与平面C PA所成角的正弦值为时,求AP 的值.20、(本小题满分12分)已知圆:E 221924x y ⎛⎫+-= ⎪⎝⎭经过椭圆C :22221x y a b +=(0a b >>)的左、右焦点1F 、2F ,且与椭圆C 在第一象限的交点为A ,且1F ,E ,A 三点共线.直线l交椭圆C 于M ,N 两点,且λMN =OA (0λ≠).()1求椭圆C 的方程;()2当三角形AMN 的面积取到最大值时,求直线l 的方程.21、(本小题满分12分)已知函数()()2ln 12xf x ax x =+-+(0a >).()1当12a =时,求()f x 的极值;()2若1,12a ⎛⎫∈ ⎪⎝⎭,()f x 存在两个极值点1x ,2x ,试比较()()12f x f x +与()0f 的大小;()3求证:()12!n n en ->(2n ≥,n ∈N ).请考生在第22-24题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲 如图所示,PA 为圆O 的切线,A 为切点,PO 交圆O 于B ,C 两点,20PA =,10PB =,C ∠BA 的角平分线与C B 和圆O 分别交于点D 和E .()1求证:C C AB⋅P =PA⋅A ; ()2求D A ⋅AE 的值.23、(本小题满分10分)选修4-4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C的参数方程为x t y t ⎧=⎪⎨=⎪⎩(t 为参数).()1曲线C 在点()1,1处的切线为l ,求l 的极坐标方程;()2点A 的极坐标为4π⎛⎫ ⎪⎝⎭,且当参数[]0,t π∈时,过点A 的直线m 与曲线C 有两个不同的交点,试求直线m 的斜率的取值范围.24、(本大题满分10分)选修4-5:不等式选讲 已知函数()f x x x a=-(R a ∈).()1若2a =,解关于x 的不等式()f x x <;()2若对任意的(]0,4x ∈都有()4f x <,求a 的取值范围.江西省南昌市2015届高三第一次模拟测试 数学(理)参考答案及评分标准二、填空题13. 34 14. π4 15.210[,]33- 16),0()0,1(+∞- 三、解答题17. (Ⅰ)解:等差数列}{n a ,11=a ,63=S ,1=∴d ,故n a n = ………3分⎪⎩⎪⎨⎧=⋅⋅⋅⋅=⋅⋅⋅⋅--)2(2)1(211321321 n n S n Sn b b b b b b b b ,)2()1(÷得n a S S n n n n b 2221===--)2(≥n , 222111===S b ,满足通项公式,故nn b 2= ………7分(Ⅱ)设n na b >λ恒成立n n 2>⇒λ恒成立,设n n c c n c n n nn 2121+=⇒=+ 当2≥n 时,1<n c ,}{n c 单调递减, ………10分21)(1max ==∴c c n ,故21>λ. ………12分18. 解:(Ⅰ)(8085)1(75)0.2P X P X ≤<=-≤=,(8595)0.30.10.2P X ≤<=-=,所以所求概率330.20.20.10.024P A =⨯⨯⨯=; ………6分(每个结果各2分) (Ⅱ)(7585)12(75)0.4P X PX ≤≤=-<=, 所以ξ服从二项分别(3,0.4)B ,3(0)0.60.216P ξ===,2(1)30.40.60.432P ξ==⨯⨯=,………8分 2(2)30.40.60.288P ξ==⨯⨯=,3(3)0.40.064P ξ===,………10分所以随机变量ξ的分布列是30.4 1.2E ξ=⨯=(人). ………12分19. 解:(Ⅰ)作AB ME ⊥于E ,连接CE , ME ∴∥AP …①AC 是圆O 的直径,222===CD BC AC ,BC AB DC AD ⊥⊥∴,, 030=∠=∠∴CAD BAC , ………2分 060=∠=∠DCA BCA ,3==AD AB=,3331==BA BE 33tan ==∠BC BE BCE , CAD ECA BCE ∠==∠=∠∴030EC ∴∥AD …②,………4分由①②,且E CE ME = ,∴平面MEC ∥平面PAD ,⊆CM 平面MEC , ⊄CM 平面PAD∴CM ∥ 平面PAD ………6分(Ⅱ)依题意,如图以A 为原点,直线AB ,AP 分别为x,z 轴建立空间坐标系,设a AP =)0,23,23(),,0,0(),0,1,3(),0,0,3(),0,0,0(D a P C B A设面PAC 的法向量为),,(z y x =,设CM 与平面PAC 所成角为θ⎪⎩⎪⎨⎧=+=⋅==⋅030y x az AP n设3=x ,)0,3,3(-=∴, ………8分CM +=+=)3,1,33(a --=∴55123993122||sin 22=+=++⨯===∴a a θ ………10分3=∴a ………12分20.(Ⅰ)解:如图圆E 经过椭圆C 的左右焦点12,F F,1,,F E A 三点共线, ∴1F A 为圆E 的直径, 212AF F F ∴⊥2219(0)24x +-=,2±=∴x ,2=∴c ………2分 189||||||2212122=-=-=F F AF AF ,4||||221=+=AF AF a222a b c =+,解得2,a b ==, ………4分∴椭圆C 的方程22142x y +=, ………5分(Ⅱ)点A的坐标(0)MN OA λλ=≠,, ………6分故设直线的方程为y x m =+22142y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩2220x m ∴+-=,设1122(,),(,)M x y N x y2221212,2,2480x x x x m m m ∴+==-∆=-+>,22m ∴-<< ………8分21||||MN x x =-==点A到直线的距离d =2214|||22AMNm m S MN d m ∆-+=⋅==≤= (10)分当且仅当224m m -=,即m =,直线的方程为y x =± ………12分21.解:(Ⅰ)22)211ln()(+-+=x x x x f ,定义域2020211->⇒⎪⎩⎪⎨⎧≠+>+x x x ,22')2(2)2(421)(+-=+-+=x x x x x f ,)2,2(-∴递减,),2(+∞递增故12ln )2()(-==f x f 极小值,没有极大值. ………3分(Ⅱ)22)1ln()(+-+=x x ax x f ,),1(+∞-∈a x ,222')2)(1()1(4)2(41)(++--=+-+=x ax a ax x ax a x f ………4分)1,21(∈a ,)41,0()1(∈-∴a a , a a a a )1(21--<-∴ 0)1(42=--a ax ,a a a x )1(2-±=∴ ………5分aa a aa a a a a a x f x f 2121421214])1(21ln[])1(21ln[)()(21+-----+-----+-+=+2212442()()ln[(12)]ln[(12)]22121a f x f x a a a a -+=-+=-+---设12-=a t ,当)1,21(∈a 时,)1,0(∈t ,22ln )()()(221-+==+∴t t t g x f x f 设当)1,0(∈t 时,22ln 2)(-+=t t t g ,0)1(222)(22'<-=-=t t t t t g ………7分)(t g 在)1,0(∈t 上递减,0)1()(=>g t g ,即0)0()()(21=>+f x f x f 恒成立综上述)0()()(21f x f x f >+ ………8分(Ⅲ)当)1,0(∈t 时,022ln 2)(>-+=t t t g 恒成立,即011ln >-+t t 恒成立设n t 1=),2(N n n ∈≥,即011ln >-+n n ,n n ln 1>-∴1ln 2,2ln 3,3ln 4,,1ln n n ∴>>>->123(1)ln 2ln 3ln 4ln ln 234n n n ∴++++->++++=⨯⨯⨯⨯=()!ln n>-∴2)1(nn ()!ln n ∴),2(!2)1(N n n n e n n ∈≥>- ………12分22.解:(Ⅰ)∵ PA 为圆O 的切线, ,PAB ACP ∴∠=∠又P ∠为公共角,PCA PAB ∆∆∽ AB PC PA AC ⋅=⋅ …………4分(2)∵PA 为圆O 的切线,BC 是过点O 的割线,2,PA PB PC ∴=⋅ ………6分 40,30PC BC ∴== 又∵022290,900CAB AC AB BC ∠=∴+==又由(Ⅰ)知12AB PA AC AB AC PC ==∴==连接EC ,则,CAE EAB ∠=∠ADB ACE ∆∆∽, ………8分AC ADAE AB =AD AE AB AC 360⋅=⋅== ………10分23.解:(Ⅰ),,x t y t ⎧=⎪⎨=⎪⎩222=+∴y x 点(1,1)C 在圆上,故切线方程为2=+y x ………2分2cos sin =+∴θρθρ,切线的极坐标方程:2)4sin(=+πθρ………5分(Ⅱ)2)2(+-=x k y 与半圆)0(222≥=+y y x 相切时21|22|2=+-kk0142=+-∴k k 32-=∴k ,32+=k (舍去)……….8分设点)0,2(-B222202-=+-=AB K ,故直线m 的斜率的取值范围为]22,32(--. ………10分 24.解:(Ⅰ)当2a =时,不等式()f x x <即|2|x x x -<显然0x ≠,当0x >时,原不等式可化为: |2|1121x x -<⇒-<-<13x ⇒<<……2分 当0x <时,原不等式可化为:|2|121x x ->⇒->或21x -<-3x ⇒>或1x < ∴0x < ………4分综上得:当2a =时,原不等式的解集为{|130}x x x <<<或 ………5分 (Ⅱ)∵对任意(0,4]x ∈都有()4f x < 即4()4x x a -<-<⇒(0,4]x ∀∈,44x a x x x -<<+恒成立 ……….6分设4(),(0,4]g x x x x =-∈,4()p x x x =+,(0,4]x ∈,则对任意(0,4]x ∈, 44x a x x x -<<+恒成立⇔max min ()()g x a p x <<,(0,4]x ∈ ………7分∵24'()1,g x x =+当(0,4]x ∈时'()0g x > ∴函数()g x 在(0,4]上单调递增,∴max ()(4)3g x g == ………8分又∵24'()1p x x =-=2(2)(2)x x x -+,∴()p x 在(0,2]上递减,]4,2[上递增∴min ()(2)4p x p ==. ………9分故)4,3(∈a ………10分。
江西省南昌市2015届高三一模考试数学(理科)

2015 届南昌市第一次模拟考试数学试卷(理科) 参考答案
一、选择题 1 题目 答案
理科一模
2 A
3 A
4 A
5 C
6 C
7 B
8 B
9 B
10 C
11 B
12 A
5
D
二、填空题 13.
3 4
14. 4
15. [
2 10 , ] 3 3
16 ( 1,0) (0,)
三、解答题 17. (Ⅰ)解:等差数列 {a n } , a1 1 , S 3 6 , d 1 ,故 a n n ………3 分
A. 2 或
3
B. 2 或
A.2 个 9. 给出下列命题
B.3 个
C.4 个
D.5 个
5 2 3 4 5 ① 若 (1 x) a 0 a1 x a 2 x a3 x a 4 x a5 x ,则 | a1 | | a2 | | a3 | | a4 | | a5 | 32
12.设函数 f ( x ) ( x a ) 2 (ln x 2 2a) 2 , 其中 ( x 0, a R ) ,存在 x0 使得 f ( x0 ) 实数 a 值是 A.
4 成立,则 5
1 5
B.
2 5
C.
1 2
D. 1
第Ⅱ卷
本卷包括必考题和选考题两个部分。第(13)题—第(21)题为必考题,每个考生都必须作答。 第(22)题—第(24)题为选考题,考生根据要求作答。 二.填空题:本大题共四小题,每小题 5 分。 13. a, b.c, d 四封不同的信随机放入 A, B, C , D 4 个不同的信封里,每个信封至少有一封信。其中 a 没有放入 A 中的概率是 14. 直三棱柱 ABC A1 B1C1 中, BAC 90 0 ,矩形 BCC1 B1 的面积为 2 ,则直三棱柱
江西省2015届高三数学理一轮复习备考试题:三角函数

江西省2015届高三数学一轮复习备考试题三角函数一、选择、填空题1、(2014年江西高考)在ABC ∆中,内角A,B,C 所对的边分别是,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC ∆的面积是A.3B.239 C.233 D.332、(2013年江西高考)函数2sin 2y x x =+的最小正周期为T 为3、(2012年江西高考)若tan θ+1tan θ=4,则sin2θ= A .15 B. 14 C. 13 D. 124、(红色六校2015届高三第一次联考)函数()sin()f x A x ωϕ=+(其中A >0,ϕ<π2的图象如图所示,为了得到()sin 3g x x =的图象,只需将()f x 的图象( )A.右平移π4个单位长度 B.左平移π4个单位长度C.右平移π12个单位长度D.左平移π12个单位长度5、(井冈山中学2015届高三第一次月考)定义在R 上的偶函数()f x 满足(2)()f x f x -=,且在[3,2]--上是减函数,,αβ是钝角三角形的两个锐角, 则(sin )f α与(cos )f β的大小关系是A .(sin )(cos )f f αβ> B .(sin )(cos )f f αβ< C .(sin )(cos )f f αβ= D .(sin )(cos )f f αβ≥6、(南昌二中2015届高三上学期第一次考)已知,135)4sin(-=+πx 则x 2sin 的值等于 ( ) A .169120 B .169119 C .169120- D .119169-7、(南昌市八一中学2015届高三8月月考)已知函数f (x )=Acos (ωx+φ)的图象如图所示,f ()=﹣,则f (0)=( )A .﹣B . ﹣C .D .8、(遂川中学2015届高三上学期第一次月考)已知24sin 225α=-,(,0)4πα∈-,则sin cos αα+=( )A.-15B.15C.-75D.759、(吉安一中2014届高三下学期第一次模拟)已知函数()sin cos f x a x b x =-(a 、b 为常数,0,a x R ≠∈)在4x π=处取得最小值,则函数3()4y f x π=-是( ) A. 奇函数且它的图象关于点3(,0)2π对称 B. 奇函数且它的图象关于点(,0)π对称 C. 偶函数且它的图象关于点(,0)π对称 D. 偶函数且它的图象关于点3(,0)2π对称 10、(南昌三中2014届高三第七次考试)已知函数)2,2(tan ππω-=在x y 内是减函数,则( ) A .0<ω≤1 B .-1≤ω<0C .ω≥1D .ω≤-1二、解答题1、(2014年江西高考)已知函数()sin()cos(2)f x x a x θθ=+++,其中,(,)22a R ππθ∈∈-(1)当4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.2、(2013年江西高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cosC+(conA-sinA )cosB=0.(1) 求角B 的大小;若a+c=1,求b 的取值范围3、(2012年江西高考)在△ABC 中,角A,B,C 的对边分别为a ,b ,c 。
南昌市2015届高三调研考试复习 数学理试题答案(2014.12.25)

页眉内容南昌市2015届高三调研考试模拟卷理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中只有一个是符合要求的.1.设{|{|ln(1)}A x y B x y x ====+,则AB =(C )A .{|1}x x >-B .{|1}x x ≤C .{|11}x x -<≤D .ϕ 2.复数5)z i i i -+(i 为虚数单位),则复数z 的共轭复数为( A ) A .2i - B .2i + C .4i - D .4i + 3.下列说法不正确...的是( D ) A.命题“对x R ∀∈,都有20x ≥”的否定为“0x R ∃∈,使得200x <”B.“a b >”是“22ac bc >”的必要不充分条件;C.“若tan α≠3πα≠” 是真命题D. 甲、乙两位学生参与数学模拟考试,设命题p 是“甲考试及格”,q 是“乙考试及格”,则命题“至少有一位学生不及格”可表示为()()p q ⌝∧⌝4.设若2lg ,0,()3,0,ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰((1))1f f =,则a 的值是( C ) A.1- B. 2 C. 1 D. 2-5.阅读如下程序框图,如果输出4i =,那么空白的判断框中应填人的条件是( A )A .?10≤SB .?12≤SC .?14≤SD .?16≤S6.过抛物线24y x =焦点F 的直线交其于,A B 两点,O 为坐标原点.若||3AF =,则AOB ∆的面积为( C ) ABCD.7.一个圆锥被过顶点的平面截去了较小的一部分几何体,余下的几何体的 三视图(如图所示),则余下部分的几何体的表面积为 ( A )A .532323++ππ+1 B .523323++ππ+1 C .53233++ππ D .52333++ππ8.在各项均为正数的等比数列{}n a 中,若112(2)m m m a a a m +-⋅=≥,数列{}n a 的前n 项积为n T ,若21512m T -=,则m 的值为( B )A .4B .5C .6D .79.由()y f x =的图象向左平移3π个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到12sin(3)6y x π=-的图象,则()f x 为( B )A .312sin()26x π+B .12sin(6)6x π-C .312sin()23x π+D .12sin(6)3x π+10. 若不等式lg 1x +2x +…+(n -1)x +(1-a )n xn≥(x -1)lg n 对任意不大于1的实数x 和大于1的正整数n 都成立,则a 的取值范围是( D )(A )[0,+∞) (B )(-∞,0] (C )[ 1 2,+∞) (D )(-∞, 12]11. 已知三棱锥A BCD -中,2,2AB AC BD CD BC AD =====, 直线AD 与底面BCD 所成角为3π,则此三棱锥外接球的表面积为( B )A .4πB .8πC .16πD .312. 已知)()(R x ex x f x∈=,若关于x 的方程01)()(2=-+-m x mf x f 恰好有4个不相等的实数根,则实数m 的取值范围为( C )A.),2()2,1(e e⋃ B.)1,1(e C.)11,1(+e D.),1(e e第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分13. 已知向量a =(2,1),b =(-1,2),若a ,b 在向量c 上的投影相等,且(c -a )·(c -b )=- 52,则向量c的坐标为________.(1 2, 32)14.若实数x ,y 满足条件04(3)(3)0x y x y x y ≤+≤⎧⎨--≤⎩,则2z x y =+的最大值为_______.【答案】715.已知F 是双曲线的右焦点12222=-by a x 的右焦点,点B A ,分别在其两条渐近线上,且满足2=,0=⋅(O 为坐标原点),则该双曲线的离心率为____________.16.ABC ∆中,角C B A 、、所对的边分别为c b a 、、,下列命题正确的是________(写出正确命题的编号). ○1④⑤○1总存在某内角α,使1cos 2α≥ ②若AsinB>BsinA ,则B >A③存在某钝角ABC ∆,有0tan tan tan >++C B A ; ④若02=++AB c CA b BC a ,则ABC ∆的最小角小于6π; ⑤若()10≤<<t tb a ,则tB A <.三、解答题:本大题共6小题,共70分17. (本小题满分12分)已知函数23()2cos 22f x x x =+- (I )求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦的最大值(II )在ABC ∆中,A B C ∠∠∠、、所对的边分别是,,a b c ,2,a =1()2f A =-,求ABC ∆周长L 的最大值.解:(Ⅰ)23()2cos 2f x x x=+-1cos 23222x x +=+-=sin(2)16x π+-所以()f x 最小正周期22T ππ== 70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦ 1sin(2),162x π⎡⎤∴+∈-⎢⎥⎣⎦()f x ∴最大值为0.(Ⅱ) 由1()2f A =-得1sin(2)62A π+= 又132666A πππ<+<5266A ππ∴+=3A π∴= 解法一:由余弦定理得, 222222cos a b c bc A b c bc =+-=+-22223()()()3()44b c b c b c bc b c ++=+-≥+-=即4b c +≤=, 6a b c ∴++≤ (当且仅当2b c ==时取等号)所以6L =解法二:由正弦定理得2sin sin sin3b cB Cπ==,即,b B cC ==, 所以sin )b c B C +=+2sin()]4sin()36B B B ππ=+-=+ 2503666B B ππππ<<∴<+< 1s i n ()126Bπ∴<+≤(当且仅当3B C π==时取最大值) 4b c ∴+≤,∴6a b c ++≤ 所以6L =18. (本小题满分12分)已知等比数列{}n a 满足13223a a a +=,且32a +是24,a a 的等差中项,()n N *∈(1)求数列{}n a 的通项公式;(2)若2log ,n n n n b aa S =+为数列{}nb 的前n 项和,求使1280n n S +--≤成立的n 的 取值集合。
高考数学一轮复习《三角函数》复习练习题(含答案)1.docx
高考数学一轮复习《三角函数》复习练习题(含答案)一、单选题2TC1.已知cos。
= 一,0 < a < 勿,贝!jtan( -------- a)=( )3 4A.--B. -7C. -4A/5 - 9D. 4右-92.设函数f(x) = x3,若0<6><yHt, 恒成立,则实数扪的取值范围是A. (-8,1)B. [一°°,;]C.(YO,0)D. (0,1)3.如图,为了测量山坡上灯塔CD的高度,某人从高为人=40的楼/W的底部《处和楼顶B处分别测得仰角6=60。
,a=30。
,若山坡高为a=35,则灯塔的高度是( )A. 20B. 25C. 20^/2D. 30TT4.已知函数/(x) = A sin — x, g (x) = - 2), fc > 0. & 知A = 1 时,函数/z(x) = y(x)-g(x)的所有零点之和为6,贝。
当A = 2时,函数h(x) = f(x)-g(x)的所有零点之和为A. 6B. 8C. 10D. 125.下列说法中正确的是A.若数列{%}为常数列,贝州%}既是等差数列也是等比数列;B.若函数六了)为奇函数,贝0/(0) = 0;C.在AABC中,A>B是sinA>sinB的充要条件;D.若两个变量X,,的相关系数为「,贝越大,x与 > 之间的相关性越强.6.要得到函数y = 4sin]4x-f|的图像,只需要将函数y = 4sin4x的图像( )A.向左平移尚个单位B.向右平移%个单位C.向左平移:个单位D.向右平移:个单位7. 将函数f (x) = cos(2x-g)向左平移中(9>0)个单位长度,所得图像的对应函数为g(x),则“9 =;‘是“g(x)为奇函数"的( )取值范围是( )变横坐标压缩为原来的?,得到函数顼:的图象,则使球为增函数的一个区间是12.时钟的分针在1点到3点20分这段时间里转过的弧度为二、填空题13. A>4BC 的内角 4、B 、C 的对边分别为 a, b, c,已知 c+b (sinA - cosA) =0, c= ^2 , a =1,则人=.14. 在 AABC 中,若Z? = 2asinB,则 A 等于15. 甲船在岛A 处南偏西50。
2015届高考数学(理)一轮专题复习特训:三角函数(人教A版)
2015届高考数学(理)一轮专题复习特训:三角函数一、选择题 错误!未指定书签。
1.(山东省德州市平原一中2014届高三9月月考数学(理)试题)点P(tan α,cos α)在第三象限,则角α的终边在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B2错误!未指定书签。
.(山东师大附中2014届高三第一次模拟考试数学试题)已知tan 2x =,则2sin 1x += ( )A .0B .95C .43D .53【答案】B 3.(山东省德州市平原一中2014届高三9月月考数学(理)试题)如果sinx+cosx=15,且0<x<π,那么tanx 的值是 ( )A .-43B .-43或-34C .-34D .43或-34【答案】 ( ) A .4错误!未指定书签。
.(山东省德州市平原一中2014届高三9月月考数学(理)试题)sin(1920)-的值为 ( )A .B .12-CD .12【答案】A错误!未指定书签。
5.(山东省烟台市莱州一中2014届高三10月阶段测试数学试题(理))点P 从(1,0)出发,沿单位圆221x y +=逆时针方向运动23π弧长到达Q 点,则Q 的坐标为 ( )A .12⎛- ⎝⎭B .12⎛⎫- ⎪ ⎪⎝⎭C .1,2⎛- ⎝⎭D .12⎛⎫ ⎪ ⎪⎝⎭【答案】 ( ) A .6错误!未指定书签。
.(山东省烟台市莱州一中2014届高三10月阶段测试数学试题(理))已知3sin cos ,cos sin 842ππααααα=<<-且,则的值是( )A .12B .12-C .14-D .12±【答案】 B .7错误!未指定书签。
.(山东省桓台第二中学2014届高三第二次阶段性测试数学试题)已知sin cos αα-=,α∈(0,π),则tan α= ( ) A .-1 B.2-C.2D .1 【答案】A错误!未指定书签。
2015届高三数学第一轮复习:三角函数、解三角形
第一讲:任意角的三角函数考纲要求:1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.一、了解任意角的概念.必修四第2页到第5页 1、角的概念的推广:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
按 时针方向旋转所形成的角叫正角,按 时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个 角。
射线的起始位置称为 ,终止位置称为 。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是 角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
㊣课本第5页练习第3题 3. 终边相同的角的表示:(1)与α角终边相同的角的集合: ; (2)α终边在x 轴上的角的集合: ; (3)α终边在y 轴上的角的集合: ; (4)α终边在坐标轴上的角的集合: ; (5)α终边在第一象限的角的集合: ; (6)α终边在第二象限的角的集合: ; (7)α终边在第三象限的角的集合: ; (8)α终边在第四象限的角的集合: ; ㊣正确理解角判断:(1)小于90°的角是锐角.( ) (2)终边相同的角相等.( ) (3)已知角α是第二象限角,则角2α是第一象限角.( ) ㊣课本第5页练习第4题(1)、(2);第5题(2) ㊣在下列各组角中,终边不相同的一组是( )A ︒60与︒-300B ︒230与︒950C ︒1050与︒-300D ︒-1000与︒80探究点 角的概念.(1)如果角α是第三象限角,那么α-,απ-,απ+角的终边落在第几象限;(2)写出终边落在直线y =3x 上的角的集合;(3)如图所示,已知角α的终边在阴影表示的范围内(不包括边界),则角α用集合可表示为______________________________.变式迁移:若α是第二象限的角,试分别确定α2,2α的终边所在位置.㊣课本第10页习题1.1A 组第5题二、了解弧度制的概念,能进行弧度与角度的互化.必修四第6页到第9页1.弧度制:若圆心角所对的弧长为l ,则圆心角的弧度数α= ,其中r 是圆的半径。
2015届高考数学一轮总复习 阶段性测试题4(三角函数与三角形)
阶段性测试题四(三角函数与三角形)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014·威海期中)角α的终边经过点P (sin10°,-cos10°),则α的可能取值为( ) A .10° B .80° C .-10° D .-80°[答案] D[解析] 由条件知tan α=-cos10°sin10°=-tan80°=tan(-80°),故选D.2.(文)(2014·北京海淀期中)在△ABC 中,若tan A =-2,则cos A =( ) A.55B .-55 C.255 D .-255[答案] B[解析] 在△ABC 中,若tan A =-2,则A ∈(π2,π),cos A =-11+tan 2A=-15=-55,故选B.(理)(2014·三亚市一中月考)若tan α=2,则cos2α+sin2α的值为( ) A .0 B.15 C .1 D.54[答案] B[解析] ∵tan α=2,∴cos2α+sin2α=cos 2α-sin 2α+2sin αcos αsin 2α+cos 2α=1-tan 2α+2tan αtan 2α+1=15.3.(文)(2014·江西临川十中期中)已知sin(θ+π2)=35,则cos2θ等于( )A.1225B .-1225C .-725D.725[答案] C[解析] ∵sin(θ+π2)=cos θ=35,∴cos2θ=2cos 2θ-1=-725.(理)(2014·枣庄市期中)化简cos (π+α)cos (π2+α)cos (11π2-α)cos (π-α)sin (-π-α)sin (9π2+α)的结果是( ) A .-1 B .1 C .tan α D .-tan α[答案] C[解析] 原式=-cos α·(-sin α)·(-sin α)-cos α·sin α·cos α=tan α,故选C.4.(2014·山东省菏泽市期中)要得到y =sin(2x -2π3)的图象,只要将函数y =sin(2x +π3)的图象向右平移( )个单位即可( )A.π3 B .π C.2π3 D.π2 [答案] D[解析] ∵sin[2(x -π2)+π3]=sin(2x -2π3),∴只需将y =sin(2x +π3)的图象向右平移π2个单位可得到y =sin(2x -2π3)的图象.5.(2014·九江市七校联考)在△ABC 中,AC =7,∠B =2π3,△ABC 的面积S =1534,则AB =( )A .5或3B .5C .3D .5或6 [答案] A[解析] 设AB =x ,BC =y ,则x >0,y >0,由条件得,⎩⎨⎧72=x 2+y 2-2xy cos 2π3,12xy sin 2π3=1534,即⎩⎪⎨⎪⎧x 2+y 2+xy =49,xy =15, 则⎩⎪⎨⎪⎧ x =3,y =5,或⎩⎪⎨⎪⎧x =5,y =3,∴AB =3或5. 6.(2014·山东省菏泽市期中)已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A .2B .2sin1C .2sin -11D .sin2[答案] C[解析] 设圆半径为R ,由条件知sin1=1R ,∴R =1sin1,∴l =2R =2sin1,故选C.7.(文)(2014·辽宁师大附中期中)在△ABC 中,角A 、B 均为锐角,且cos A >sin B ,则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形[答案] C[解析] ∵cos A =sin(π2-A )>sin B,0<π2-A <π2,0<B <π2,∴π2-A >B ,∴A +B <π2,∴C >π2,故选C.(理)(2014·安徽程集中学期中)在△ABC 中,“sin(A -B )cos B +cos(A -B )sin B ≥1”是“△ABC 是直角三角形”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] 由条件式得sin A ≥1,∴sin A =1,∴A 为直角,但△ABC 为直角三角形时,不一定A 为直角,故选A.8.(2014·浙江省五校联考)函数y =2sin(π4-x 2)sin(π4+x2)的图象的一条对称轴为( )A .x =-π2B .x =π2C .x =πD .x =3π2[答案] C[解析] y =2sin(π4-x 2)sin(π4+x 2)=2sin(π4-x 2)cos(π4-x 2)=sin(π2-x )=cos x ,其对称轴方程为x =k π,k ∈Z .9.(文)(2014·江西白鹭洲中学期中)函数y =cos2x 在下列哪个区间上是减函数( ) A .[0,π2]B .[π4,3π4]C .[-π4,π4]D .[π2,π][答案] A[解析] 由2k π≤2x ≤2k π+π得k π≤x ≤k π+π2(k ∈Z ),令k =0知选A.(理)(2014·福州市八县联考)已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12]D .(0,2] [答案] A[解析] 由2k π+π2≤ωx +π4≤2k π+3π2及ω>0得,2k πω+π4ω≤x ≤2k πω+5π4ω,k ∈Z . ∵f (x )在(π2,π)上单调递减,∴(π2,π)⊆[2k πω+π4ω,2k πω+5π4ω], ∴k =0,⎩⎨⎧π4ω≤π2,5π4ω≥π.∴12≤ω≤54,故选A. 10.(2014·营口三中期中)函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.12B.22C.32D .1[答案] C[解析] ∵x 1,x 2∈(-π6,π3)时,f (x 1)=f (x 2),∴x 1+x 2=-π6+π3=π6,∴f (x 1+x 2)=f (π6),由图象知,T 2=π3-(-π6)=π2,∴T =2πω=π,∴ω=2,∴f (x )=sin(2x +φ),由于f (x )的图象过点(π12,1),∴sin(π6+φ)=1,∴φ=π3,∴f (π6)=sin(2×π6+π3)=sin 2π3=32,故选C.11.(2014·哈六中期中)2sin 225°-1sin20°cos20°的值为( )A .-1B .-2C .1D .2[答案] B[解析] 原式=-cos50°12sin40°=-2.12.(文)(2014·威海期中)函数f (x )=sin x +cos2x 的图象为( )[答案] B[解析] f (0)=sin0+cos0=1,排除A 、D ;f (-π)=sin(-π)+cos(-2π)=1,排除C ,故选B. (理)(2014·山东省菏泽市期中)函数f (x )=2x -tan x 在(-π2,π2)上的图象大致为( )[答案] C[解析] ∵f (-x )=-2x -tan(-x )=-(2x -tan x )=-f (x ), ∴f (x )为奇函数,排除A 、B ; f ′(x )=(2x -sin x cos x )′=2-1cos 2x ,令f ′(x )≥0得,cos 2x ≥12,∴cos x ≥22或cos x ≤-22, ∵x ∈(-π2,π2),∴-π4≤x ≤π4,故选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·华安、连城、永安、漳平、泉港一中、龙海二中六校联考)在△ABC 中,三边a 、b 、c 所对的角分别为A 、B 、C ,若a 2+b 2-c 2+2ab =0,则角C 的大小为________.[答案] 135°[解析] ∵a 2+b 2-c 2+2ab =0, ∴cos C =a 2+b 2-c 22ab =-22,∵0°<C <180°,∴C =135°.14.(文)(2014·甘肃临夏中学期中)函数f (x )=3sin(2x -π3)的图象为C ,则如下结论中正确的序号是________.①图象C 关于直线x =1112π对称;②图象C 关于点(2π3,0)对称;③函数f (x )在区间(-π12,5π12)内是增函数;④由y =3sin2x 的图象向右平移π3个单位长度可以得到图象C .[答案] ①②③[解析] ①当x =11π12时,f (11π12)=3sin 3π2=-3,∴正确;②当x =2π3时,f (2π3)=0,∴正确;③由2k π-π2≤2x -π3≤2k π+π2可得k π-π12≤x ≤k π+5π12,k ∈Z ,∴f (x )的单调递增区间为[k π-π12,k π+5π12](k∈Z ),∴正确;④y =3sin2x 的图象向右平移π3个单位长度得到y =3sin2(x -π3),∴④错误.(理)(2014·威海期中)将函数y =sin(x -π3),x ∈[0,2π]的图象上各点的纵坐标不变横坐标伸长到原来的2倍,再向左平移π6个单位,所得函数的单调递增区间为____________.[答案] [-π6,3π2],[7π2,23π6][解析]由2k π-π2≤12x -π4≤2k π+π2得,4k π-π2≤x ≤4k π+3π2,k ∈Z ,由已知函数中x ∈[0,2π]得所求函数的定义域为[-π6,23π6],令k =0得,-π2≤x ≤3π2,令k =1得,7π2≤x ≤11π2,故所求函数的单调增区间为[-π6,3π2]和[7π2,23π6].15.(文)(2014·吉林省实验中学一模)设α为锐角,若cos(α+π6)=45,则sin(2α+π3)=________.[答案]2425[解析] ∵α为锐角,∴0<α+π6<π,∵cos(α+π6)=45,∴sin(α+π6)=35,∴sin(2α+π3)=2sin(α+π6)·cos(α+π6)=2×35×45=2425.(理)(2014·吉林延边州质检)设△ABC 的三个内角A 、B 、C 所对的三边分别为a 、b 、c ,若△ABC 的面积为S =a 2-(b -c )2,则sin A1-cos A=________.[答案] 4[解析] ∵S =12bc sin A ,a 2-(b -c )2=2bc -(b 2+c 2-a 2)=2bc -2bc cos A ,S =a 2-(b -c )2,∴12bc sin A =2bc -2bc cos A ,∴sin A 1-cos A=4. 16.(2014·浙江省五校联考)已知O (0,0),A (cos α,sin α),B (cos β,sin β),C (cos γ,sin γ),若kOA →+(2-k )OB →+OC →=0(0<k <2),则cos(α-β)的最大值是________.[答案] -12[解析] ∵kOA →+(2-k )OB →+OC →=0,OA →=(cos α,sin α),OB →=(cos β,sin β),OC →=(cos γ,sin γ),∴⎩⎪⎨⎪⎧k cos α+(2-k )cos β+cos γ=0,k sin α+(2-k )sin β+sin γ=0, ∵cos 2γ+sin 2γ=1,∴k 2+(2-k )2+2k (2-k )cos αcos β+2k ·(2-k )sin αsin β=1, ∴cos(α-β)=-2k 2+4k -3-2k 2+4k =1+32k 2-4k , ∵0<k <2,∴-2≤2k 2-4k <0,∴cos(α-β)≤-12.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(文)(2014·甘肃省金昌市二中期中)已知函数f (x )=2sin x (sin x +cos x ). (1)求f (x )的最小正周期;(2)当x ∈[0,π2]时,求f (x )的最大值.[解析] f (x )=2sin x (sin x +cos x )=2sin 2x +2sin x cos x =1-cos2x +sin2x=2(22sin2x -22cos2x )+1 =2sin(2x -π4)+1,(1)f (x )的最小正周期T =2π2=π.(2)∵0≤x ≤π2,∴-π4≤2x -π4≤3π4,∴当2x -π4=π2,即x =3π8时,f (x )取得最大值,且最大值为f (3π8)=2sin π2+1=2+1.(理)(2014·北京东城区联考)已知函数f (x )=3sin x cos x -cos 2x . (1)求f (x )的最小正周期;(2)当x ∈[0,π2]时,求函数f (x )的最大值及相应的x 的值.[解析] (1)因为f (x )=32sin2x -12cos2x -12=sin(2x -π6)-12,所以T =2π2=π,故f (x )的最小正周期为π.(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.所以当2x -π6=π2,即x =π3时,f (x )有最大值12.18.(本小题满分12分)(文)(2014·辽宁师大附中期中)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. [解析] (1)∵cos B =45,∴sin B =35.由正弦定理a sin A =b sin B ,可得a sin30°=103.∴a =53.(2)∵△ABC 的面积S =12ac sin B ,sin B =35,S =3,∴ac =10.由余弦定理b 2=a 2+c 2-2ac cos B 得, 4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.∴(a +c )2-2ac =20,(a +c )2=40,∴a +c =210.(理)(2014·威海期中)△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A +b sin B -c sin C =a sin B .(1)求角C ;(2)若a +b =5,S △ABC =323,求c 的值.[解析] (1)根据正弦定理a sin A =b sin B =csin C ,原等式可转化为:a 2+b 2-c 2=ab , ∴cos C =a 2+b 2-c 22ab =12,∵0°<C <180°,∴C =60°.(2)S △ABC =12ab sin C =12ab ·32=332,∴ab =6,c 2=a 2+b 2-2ab ·cos C =(a +b )2-3ab =25-18=7, ∴c =7.19.(本小题满分12分)(2014·江西白鹭洲中学期中)在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,已知tan A +tan B 1-tan A ·tan B=-3,c =7,三角形面积为332.(1)求∠C 的大小; (2)求a +b 的值.[解析] (1)∵tan(A +B )=tan A +tan B1-tan A tan B =-3,且tan C =tan[π-(A +B )]=-tan(A +B ), ∴tan C =3,又∵0<C <π,∴∠C =π3.(2)由题意可知:S △ABC =12ab sin C =12ab sin π3=34ab =332,∴ab =6.由余弦定理可得:c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , ∴(a +b )2=3ab +c 2=3×6+(7)2=25, 又a >0,b >0,∴a +b =5.20.(本小题满分12分)(文)(2014·马鞍山二中期中)已知A ,B ,C 的坐标分别为A (3,0),B (0,3),C (cos α,sin α),α∈(π2,3π2).(1)若|AC →|=|BC →|,求角α的值;(2)若AC →·BC →=-1,求2sin 2α+sin2α1+tan α的值. [解析] (1)∵AC →=(cos α-3,sin α),BC →=(cos α,sin α-3),∴AC →2=(cos α-3)2+sin 2α=10-6cos α,BC →2=cos 2α+(sin α-3)2=10-6sin α,由|AC →|=|BC →|,可得AC →2=BC →2,即10-6cos α=10-6sin α,得sin α=cos α.又∵α∈(π2,3π2),∴α=5π4. (2)由AC →·BC →=-1,得(cos α-3)cos α+sin α(sin α-3)=-1,∴sin α+cos α=23.① 又2sin 2α+sin2α1+tan α=2sin 2α+2sin αcos α1+sin αcos α=2sin αcos α. 由①式两边分别平方,得1+2sin αcos α=49, ∴2sin αcos α=-59.∴2sin 2α+sin2α1+tan α=-59. (理)(2014·辽宁师大附中期中)已知向量a =(2sin x ,sin x -cos x ),b =(cos x ,3(cos x +sin x )),函数f (x )=a ·b +1.(1)当x ∈[π4,π2]时,求f (x )的最大值和最小值; (2)求f (x )的单调区间.[解析] (1)f (x )=sin2x -3cos2x +1=2sin(2x -π3)+1. ∵π4≤x ≤π2,∴π2≤2x ≤π,∴π6≤2x -π3≤2π3, ∴12≤sin(2x -π3)≤1,∴1≤2sin(2x -π3)≤2, 于是2≤2sin(2x -π3)+1≤3, ∴f (x )的最大值是3,最小值是2.(2)由2k π-π2≤2x -π3≤2k π+π2,k ∈Z 得2k π-π6≤2x ≤2k π+5π6,k ∈Z , ∴k π-π12≤x ≤k π+5π12,k ∈Z , 即f (x )的单调递增区间为[k π-π12,k π+5π12],k ∈Z , 同理由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z 得,f (x )的单调递减区间为[k π+5π12,k π+11π12],k ∈Z . 21.(本小题满分12分)(2014·马鞍山二中期中)如图A 、B 是海面上位于东西方向相距5(3+3)n mile 的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203n mile 的C 点的救援船立即前往营救,其航行速度为30n mile/h ,该救援船到达D 点需要多长时间?[解析] 由题意知AB =5(3+3)n mile ,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°, ∴∠ADB =180°-(45°+30°)=105°,在△DAB 中,由正弦定理得,DB sin ∠DAB =AB sin ∠ADB∴DB =AB ·sin ∠DAB sin ∠ADB=5(3+3)·sin45°sin105°=5(3+3)·sin45°sin45°·cos60°+sin60°·cos45°=53(3+1)3+12=103(n mile). 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203(n mile),在△DBC 中,由余弦定理得,CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1200-2×103×203×12=900, ∴CD =30(n mile),则需要的时间t =3030=1(h). 答:救援船到达D 点需要1h.22.(本小题满分14分)(文)(2014·安徽程集中学期中)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π2)的图象过点(0,12),最小正周期为2π3,且最小值为-1.(1)求函数f (x )的解析式;(2)若x ∈[π6,m ],f (x )的值域是[-1,-32],求m 的取值范围. [解析] (1)由函数的最小值为-1,可得A =1,因为最小正周期为2π3,所以ω=3.可得f (x )=cos(3x +φ),又因为函数的图象过点(0,12),所以cos φ=12,而0<φ<π2,所以φ=π3,故f (x )=cos(3x +π3). (2)由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3,因为f (π6)=cos 5π6=-32,且cosπ=-1,cos 7π6=-32, 由余弦曲线的性质知,π≤3m +π3≤7π6,得2π9≤m ≤5π18,即m ∈[2π9,5π18]. (理)(2014·浙江省五校联考)已知函数f (x )=(3sin ωx +cos ωx )cos ωx -12,其中ω>0,f (x )的最小正周期为4π.(1)求函数f (x )的单调递增区间;(2)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.[解析] f (x )=3sin ωx ·cos ωx +cos 2ωx -12=32sin2ωx +12cos2ωx =sin(2ωx +π6). (1)∵2π2ω=4π,∴ω=14,f (x )=sin(x 2+π6). 由2k π-π2≤x 2+π6≤2k π+π2(k ∈Z )得: 4k π-4π3≤x ≤4k π+2π3. ∴f (x )的单调递增区间是[4k π-4π3,4k π+2π3](k ∈Z ). (2)由正弦定理得,(2sin A -sin C )cos B =sin B ·cos C ,∴2sin A cos B =sin(B +C ),∵sin(B +C )=sin(π-A )=sin A >0,∴cos B =12,∵0<B <π,∴B =π3, ∴0<A <2π3,π6<A 2+π6<π2,∴f (A )∈(12,1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年度南昌市新课标高三第一轮复习训练题数 学(五)(三角函数试题1)命题人:喻瑞明 学校:南昌一中 审题人:曾志勇 学校:南昌一中一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若一个扇形的周长与面积的数值相等,则该扇形所在圆的半径不可能等于A .5B .2C .3D .42.“θ=2π3”是“tan θ=2cos(π2+θ)”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.若3sin α+cos α=0,则1cos 2α+sin 2α的值为A .103B .53C ..23D .-24.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值是A .25-B .25C .2-D .25.△ABC 中,若sin 2A=sin 2B+sin 2C ,则△ABC 为A .锐角三角形B . 钝三角形C .直角三角形D .锐角或直角三角形6.已知1sin 23α=,则2cos ()4πα-= A .13- B .23- C .13 D .237.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan a c b B +-=,则角BC .6π38所对的边分别为,,a b c ,其中120,1b =,且ABC ∆面积A C D 9.若S n =sin π7+sin 2π7+…+sin n π7(n ∈N *),则在S 1,S 2,…,S 100中,正数的个数是A .16B .72C .86D .10010.若对任意,0a ∈∞(-),存在0x R ∈,使0cos a x ≤a 成立,则0cos()x π-=A .B . 12-C . 12D .二、填空题:本大题共5小题;每小题5分,共25分,把答案填在题中的横线上.11.已知θ为第二象限角,且(p x 为其终边上一点,若cos 4x θ=则x 的值为 .12.已知sin cos θθ+=,则7cos(2)2πθ-的值为 .13cos103sin10+= .14.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,tan B =b 15.在ΔABC ,sin()2cos sin B C B C -=,则. 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或推演步骤.16.已知sin θ,cos θ是关于x 的方程x 2-ax +a =0(a ∈R )的两个根.(1)求cos 3⎝⎛⎭⎫π2-θ+sin 3⎝⎛⎭⎫π2-θ的值; (2)求tan(π-θ)-1tan θ的值..17.在ABC ∆中,内角,,A B C 所对的分别是,,a b c .已知2,a c == ,cos A =. (1)求sin C 和b 的值; (2)求cos 2+3A π⎛⎫ ⎪⎝⎭的值.18.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知bac B C A -2cos cos 2-cos =.(1)求A C sin sin 的值; (2)若41cos =B ,△ABC 的周长为5,求b.19.已知向量()()=cos sin ,sin ,=cos sin a x x x b x x x ωωωωωω---,设函数()()=+f x a b x R λ∈的图像关于直线x =π对称,其中,ωλ为常数,且1,12ω⎛⎫∈ ⎪⎝⎭(1)求函数()f x 的最小正周期;(2)若()=y f x 的图像经过点,04π⎛⎫⎪⎝⎭,求函数()f x 在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围。
20.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A ;(2)若2a =,ABC ∆的面积为3;求,b c 。
21.已知函数()()21cos 22sin sin cos 3+-=x x x x x f .(1)求⎪⎭⎫⎝⎛3πf 的值; (2)求函数()x f 的最小正周期及单调递减区间.2014-2015学年度南昌市新课标高三第一轮复习训练题数学(五)参考答案二.填空题:本大题共5小题;每小题5分,共25分11.12.4913.1415.三.解答题:本大题共6小题,共75分16.解:由已知原方程的判别式Δ≥0,即(-a)2-4a≥0,∴a≥4或a≤0.又⎩⎪⎨⎪⎧sin θ+cos θ=a,sin θcos θ=a,(sin θ+cos θ)2=1+2sin θcos θ,则a2-2a-1=0,从而a=1-2或a=1+2(舍去),因此sin θ+cos θ=sin θcos θ=1- 2.(1)cos3⎝⎛⎭⎫π2-θ+sin3⎝⎛⎭⎫π2-θ=sin3θ+cos3θ=(sin θ+cos θ)(sin2θ-sin θcos θ+cos2θ)=(1-2)[1-(1-2)]=2-2.(2)tan(π-θ)-1tan θ=-tan θ-1tan θ=-⎝⎛⎭⎪⎫sin θcos θ+cos θsin θ=-1sin θcos θ=-11-2=1+ 2.17.解:(1)在ABC∆中,∵cos A=,∴sin A=∵=sin sina cA C,2,a c=,∴sin C=∵222+2cosa b c bc A=-,∴2+20b b-=,解得1b=。
(2)∵sin A=,cos A=∴23cos22cos1=4A A=--,sin22sin cos=A A A=。
∴cos2+=cos2cos sin2sin333A A Aπππ⎛⎫-⎪⎝⎭.18.解:(1)由bac B C A -=-2cos cos 2cos 得BAC B C A sin sin sin 2cos cos 2cos -=-得A B C B B C B A sin cos sin cos 2sin cos 2sin cos -=-C B C B A B B A sin cos 2cos sin 2sin cos sin cos +=+即)sin(2)sin(C B B A +=+由π=++C B A 得 )sin(2)sin(A C -=-ππ 即A C sin 2sin = 故2sin sin =AC(2)由(1)知2sin sin =A C 及正弦定理得 2sin sin ==acA C 即a c 2= 由余弦定理ac b c aB 241cos 222-+==故22222244441a b ab a a =-+=得即a b 2=, 由5=++c b a 得522=++a a a 即1=a , ∴2=b .19.解:()()()=+=sin cos sin +cos +2cos +f x a b x x x x x x λωωωωωωλ-22=sin cos cos +2cos2x+=2sin 2+6x x x x x x πωωωωλωωλωλ⎛⎫ ⎪⎝⎭---(1)∵函数()()=+f x a b x R λ∈的图像关于直线x =π对称,∴2=+,62k k Z ππωππ⨯∈-。
∴1=+,23k k z ω∈。
又∵1,12ω⎛⎫∈ ⎪⎝⎭,∴5=6ω。
∴()5=2sin +36f x x πλ-⎛⎫⎪⎝⎭的最小正周期为26=553ππ; (2)若()=y f x 的图像经过点,04π⎛⎫⎪⎝⎭,则有52sin +=0346ππλ⎛⎫⨯ ⎪⎝⎭-,∴=λ∴()5=2sin 36f x x π-⎫⎪⎝⎭⎛∵30,5x π⎡⎤∈⎢⎥⎣⎦,∴55,3666x πππ⎡⎤∈⎢⎥⎣-⎦-。
∴[]52sin 1,236x π⎛⎫∈⎪⎭- ⎝-。
∴函数()f x 在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围为12-⎡⎣ . 20.解:(1)由cos sin 0a C C b c --=,根据正弦定理得:sin cos sin sin sin A C A C B C =+,∵()()sin =sin sin sin cos cos sin B A C A C A C A C π--=+=+,∴sin cos sin sin cos cos sin sin A C A C A C A C C =++。
cos 1A A -=。
∴01sin(30)2A -=。
∴03030A -=或030150A -=(不合题意,舍去)。
∴060A =。
(2)由1sin 2S bc A ==4bc =, 由2222cos a b c bc A =+-得4b c +=, 解得:2b c ==.21.解:(1)=⎪⎭⎫ ⎝⎛3πf 213cos 232sin3sin 3cos 3+⎪⎭⎫ ⎝⎛-ππππ212122323213+⨯⨯⎪⎪⎭⎫ ⎝⎛-⨯=210+=21=; (2)0cos ≠x ,得()Z ∈+≠k k x 2ππ故()x f 的定义域为⎭⎬⎫⎩⎨⎧∈+≠∈Z R k k x x ,2ππ. 因为()()21cos 22sin sin cos 3+-=x x x x x f ()21sin cos 3sin +-=x x x21sin 2sin 232+-=x x 2122cos 12sin 23+--=x x x x 2cos 212sin 23+=⎪⎭⎫ ⎝⎛+=62sin πx , 所以()x f 的最小正周期为ππ==22T . 因为函数x y sin =的单调递减区间为()Z ∈⎥⎦⎤⎢⎣⎡++k k k 232,22ππππ,由()Z ∈+≠+≤+≤+k k x k x k 2,2326222πππππππ, 得()Z ∈+≠+≤≤+k k x k x k 2,326ππππππ, 所以()x f 的单调递减区间为()Z ∈⎥⎦⎤⎝⎛++⎪⎭⎫⎢⎣⎡++k k k k k 32,2,2,6ππππππππ.。