2017-2018学年河南省驻马店市泌阳县七年级下期中数学试卷

合集下载

河南省XX市2017-2018学年七年级下册期中数学试卷含答案解析

河南省XX市2017-2018学年七年级下册期中数学试卷含答案解析

2017-2018学年七年级(下)期中数学试卷一、选择题(每小题3分,共24分)1.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有()A.0个B.1个C.2个D.3个2.已知(a﹣2)2+=0,则P(﹣a,﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若x2=16,那么5﹣x的算术平方根是()A.±1 B.±4 C.1或9 D.1或34.下列说法:①若a与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.其中错误的有()A.3个B.2个C.1个D.0个5.在实数:3.14159,,1.010010001…(每相隔1个就多1个0),,π,中,无理数的个数有()A.1个B.2个C.3个D.4个6.若线段AB的端点坐标分别为A(﹣2,3),B(0,5),将它向下平移5个单位,则其端点坐标变为()A.A′(3,3),B′(0,0)B.A′(﹣2,﹣2),B′(0,0)C.A′(3,3),B′(5,5)D.A′(3,3),B′(﹣5,5)7.如图,已知AB∥DE,则下列式子表示∠BCD的是()A.∠2﹣∠1 B.∠1+∠2 C.180°+∠1﹣∠2 D.180°﹣∠2﹣2∠18.实数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|c﹣a|+|b﹣c|﹣|a|的结果是()A.a﹣2c B.﹣a C.a D.2b﹣a二、填空题(每小题3分,共30分)9.81的平方根为.10.已知点P(x,y)在第四象限,且|x|=3,|y|=5,则点P的坐标是.11.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.12.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来或者翻译成中文为.13.已知点M(a,2)在第二象限,则点N(﹣a2﹣1,a﹣2)在第象限.14.把命题“相等的角是对顶角”改写成“如果…,那么…”的形式是.15.如图所示,直线CD、EF被直线AB所截,若∠AMC=∠BNF,则∠CMN+∠MNE=°.16.下列说法:①同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直;②从直线外一点到这条直线的垂线段叫做点到直线的距离;③一条直线的垂线可以画无数条.其中不正确的是.(填序号)17.△ABC的各顶点坐标为A(﹣5,2),B(1,2),C(3,﹣1),则△ABC的面积为.18.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D (1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.三、解答题(本大题共7小题,满分66分)19.求下列各式中的x的值:(1)(x+10)3=﹣343;(2)36(x﹣3)2=49.20.计算:(1)|﹣5|+﹣32(2)﹣|2﹣|﹣.22.如图,直线AC∥DE,点B在直线DE上,且AB⊥BC,∠1=55°,求∠2的度数.23.如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=(),又因为∠1=∠2,所以∠1=∠3(),所以AB∥(),所以∠BAC+ =180°(),因为∠BAC=80°,所以∠AGD=.24.如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.25.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标.(3)求出三角形ABC的面积.26.如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD.;(1)求点C,D的坐标及S四边形ABDC(2)点Q在y轴上,且S△QAB=S,求出点Q的坐标;四边形ABDC(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有()A.0个B.1个C.2个D.3个【分析】利用算术平方根,以及立方根定义判断即可.【解答】解:如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有0,1,共2个,故选C【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.2.已知(a﹣2)2+=0,则P(﹣a,﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质列出算式,求出a、b的值,确定点P所在的象限.【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则P(﹣a,﹣b)即(﹣2,3)在第二象限,故选:B.【点评】本题考查的是非负数的性质和点的坐标,掌握非负数之和等于0时,各项都等于0是解题的关键.3.若x2=16,那么5﹣x的算术平方根是()A.±1 B.±4 C.1或9 D.1或3【分析】首先根据平方根的定义可以求得x,然后利用算术平方根的定义即可求出结果.【解答】解:若x2=16,则x=±4,那么5﹣x=1或9,所以5﹣x的算术平方根是1或3.故选D.【点评】此题主要考查了算术平方根的性质,解题关键是了解算术平方根必须是正数,注意平方根和算术平方根的区别.4.下列说法:①若a与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.其中错误的有()A.3个B.2个C.1个D.0个【分析】利用同一个平面内,两条直线的位置关系解答.【解答】解:①若a与c相交,则a与b不一定相交;故错误;②若a∥b,b∥c,那么a∥c;故正确;③在同一平面内,过一点有且只有一条直线与已知直线平行;故错误;④在同一平面内,两条直线的位置关系有平行、相交、两种;故错误.故选A.【点评】本题考查了平行公理及推论,相交线、平行线的定义,熟记熟记公理、定理对学好几何比较关键.5.在实数:3.14159,,1.010010001…(每相隔1个就多1个0),,π,中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:1.010010001…(每相隔1个就多1个0),π是无理数,故选:B.【点评】本题考查了无理数,无理数是无限不循环小数.6.若线段AB的端点坐标分别为A(﹣2,3),B(0,5),将它向下平移5个单位,则其端点坐标变为()A.A′(3,3),B′(0,0)B.A′(﹣2,﹣2),B′(0,0)C.A′(3,3),B′(5,5)D.A′(3,3),B′(﹣5,5)【分析】根据平移变换与坐标变化:向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b)可得答案.【解答】解:∵A(﹣2,3),B(0,5),∴将其向下平移5个单位,则端点坐标分别为(﹣2,3﹣5)(0,5﹣5),即(﹣2,﹣2),(0,0),故选B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.如图,已知AB∥DE,则下列式子表示∠BCD的是()A.∠2﹣∠1 B.∠1+∠2 C.180°+∠1﹣∠2 D.180°﹣∠2﹣2∠1【分析】过点C作CF∥AB,则∠1=∠BCF,再由AB∥DE得出DE∥CF,故可得出∠FCD=180°﹣∠2,两式相加即可得出结论.【解答】解:过点C作CF∥AB,则∠1=∠BCF①,∵AB∥DE,∴DE∥CF,∴∠FCD=180°﹣∠2②,①+②得,∠BCD=∠BCF+∠FCD=180°+∠1﹣∠2.故选C.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.8.实数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|c﹣a|+|b﹣c|﹣|a|的结果是()A.a﹣2c B.﹣a C.a D.2b﹣a【分析】首先从数轴上a、b、c的位置关系可知:a<b,a<0,c>a,c>b,接着可得a﹣b <0,c﹣a>0,b﹣c<0,然后即可化简|a﹣b|﹣|c﹣a|+|b﹣c|﹣|a|的结果.【解答】解:数轴上a、b、c的位置关系可知:a<b,a<0,c>a,c>b,∴a﹣b<0,c﹣a>0,b﹣c<0,∴|a﹣b|﹣|c﹣a|+|b﹣c|﹣|a|,=b﹣a﹣(c﹣a)+(c﹣b)﹣(﹣a),=b﹣a﹣c+a+c﹣b+a,=a.故选C.【点评】此题主要考查了利用数轴比较两个的大小和化简绝对值.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.二、填空题(每小题3分,共30分)9.81的平方根为±9.【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±9.故答案为:±9.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.10.已知点P(x,y)在第四象限,且|x|=3,|y|=5,则点P的坐标是(3,﹣5).【分析】根据点在第四象限的坐标特点解答即可.【解答】解:∵点P(x,y)在第四象限,∴x>0,y<0,又∵|x|=3,|y|=5,∴x=3,y=﹣5,∴点P的坐标是(3,﹣5).故答案填(3,﹣5).【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点及点的坐标的几何意义.注意横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.11.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.【点评】本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.12.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来或者翻译成中文为study(学习).【分析】分别找出每个有序数对对应的字母,再组合成单词.【解答】解:从图中可以看出有序数对分别对应的字母为(5,3):S;(6,3):T;(7,3):U;(4,1):D;(4,4):Y.所以为study,“学习”.【点评】本题考查了在平面直角坐标系中由坐标确定点的位置,并且与学习英语结合,很新颖.13.已知点M(a,2)在第二象限,则点N(﹣a2﹣1,a﹣2)在第三象限.【分析】直接利用第二象限点的坐标特点得出a的取值范围,进而得出点N的位置.【解答】解:∵点M(a,2)在第二象限,∴a<0,∴﹣a2﹣1<0,a﹣2<0,则点N(﹣a2﹣1,a﹣2)在第三象限.故答案为:三.【点评】此题主要考查了点的坐标,正确得出a的取值范围是解题关键.14.把命题“相等的角是对顶角”改写成“如果…,那么…”的形式是如果两个角相等,那么它们是对顶角.【分析】对顶角相等的条件是两个角是对顶角,结论是两角相等,据此即可改写成“如果…,那么…”的形式.【解答】解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么两个角相等”,故答案为:如果两个角是对顶角,那么两个角相等.【点评】本题考查了确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式,难度适中.15.如图所示,直线CD、EF被直线AB所截,若∠AMC=∠BNF,则∠CMN+∠MNE= 180°.【分析】根据已知和对顶角相等求出∠AMC=∠ENA,根据平行线的判定得出DC∥EF,根据平行线的性质得出即可.【解答】解:∵∠AMC=∠BNF,∠BNF=∠ENA,∴∠AMC=∠ENA,∴DC∥EF,∴∠CMN+∠MNE=180°.故答案为:180.【点评】本题考查了平行线的性质和判定的应用,能正确运用定理进行推理是解此题的关键,注意:①同位角相等,两直线平行,②两直线平行,同旁内角互补.16.下列说法:①同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直;②从直线外一点到这条直线的垂线段叫做点到直线的距离;③一条直线的垂线可以画无数条.其中不正确的是②.(填序号)【分析】根据点到直线的距离,垂线的性质,可得答案.【解答】解:①同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直,故①正确;②从直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故②错误;③一条直线的垂线可以画无数条,故③正确;故答案为:②.【点评】本题考查了点到直线的距离,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离,注意同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.17.△ABC的各顶点坐标为A(﹣5,2),B(1,2),C(3,﹣1),则△ABC的面积为9.【分析】作CD⊥AB交AB的延长线于D,根据坐标与图形性质求出线段AB、CD的长,根据三角形的面积公式计算即可.【解答】解:作CD⊥AB交AB的延长线于D,∵A(﹣5,2),B(1,2),C(3,﹣1),∴AB=6,CD=3,∴△ABC的面积=×AB×CD=9,故答案为:9.【点评】本题考查的是坐标与图形性质,正确描出各点的坐标、根据坐标得到线段的长度是解题的关键.18.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D (1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣2).【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2015÷10=201…5,∴细线另一端在绕四边形第202圈的第5个单位长度的位置,即点C的位置,点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2015个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.三、解答题(本大题共7小题,满分66分)19.求下列各式中的x的值:(1)(x+10)3=﹣343;(2)36(x﹣3)2=49.【分析】(1)根据立方根的性质进行计算即可求解;(2)将x的系数化为1,然后用直接开平方法求解.【解答】解:(1)∵(x+10)3=﹣343,∴x+10=﹣7,∴x=﹣17;(2)∵36(x﹣3)2=49∴(x﹣3)2=∵x﹣3=±∴x=或.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,而立方根的结果只有一个.20.计算:(1)|﹣5|+﹣32(2)﹣|2﹣|﹣.【分析】(1)原式利用绝对值的代数意义,算术平方根定义,以及乘方的意义计算即可得到结果;(2)原式利用二次根式性质,绝对值的代数意义,以及立方根定义计算即可得到结果.【解答】解:(1)原式=5+4﹣9=0;(2)原式=5﹣2+﹣3=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.如图,直线AC∥DE,点B在直线DE上,且AB⊥BC,∠1=55°,求∠2的度数.【分析】先根据平行线的性质求出∠CBE的度数,再由AB⊥BC得出∠ABC=90°,根据补角的定义即可得出结论.【解答】解:∵直线AC∥DE,∠1=55°,∴∠CBE=∠1=55°.∵AB⊥BC,∴∠ABC=90°,∴∠2=180°﹣90°﹣55°=35°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.23.如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=∠3(两直线平行,同位角相等),又因为∠1=∠2,所以∠1=∠3(等量代换),所以AB∥DG(内错角相等,两直线平行),所以∠BAC+ ∠AGD=180°(两直线平行,同旁内角互补),因为∠BAC=80°,所以∠AGD=100°.【分析】根据平行线的判定与性质填空.【解答】解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等);又∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=80°,∴∠AGD=100°.【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.24.如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.【分析】因为∠AGB=∠DGF,∠AGB=∠EHF,所以∠DGF=∠EHF,则BD∥CE,∠C=∠ABD,又因为∠C=∠D,所以DF∥AC,故∠A=∠F.【解答】解:∠A=∠F.理由:∵∠AGB=∠DGF,∠AGB=∠EHF,∴∠DGF=∠EHF,∴BD∥CE;∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴DF∥AC;∴∠A=∠F.【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.25.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标.(3)求出三角形ABC的面积.【分析】(1)根据点的坐标的定义即可写出答案;(2)根据上加下减,左减右加的原则写出答案即可;(3)先将三角形补成一个矩形,再减去三个直角三角形的面积即可.【解答】解:(1)点A、B、C分别在第三象限、第一象限和y轴的正半轴上,则A(﹣2,﹣2),B(3,1),C(0,2);(2)∵把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,∴横坐标减1,纵坐标加2,即A′(﹣3,0),B′(2,3),C(﹣1,4);(3)S△ABC=4×5﹣×5×3﹣×4×2﹣×1×3=20﹣7.5﹣4﹣1.5=7.【点评】本题考查了点的坐标的确定,三角形面积的求法以及坐标图形的变换﹣平移,是基础知识要熟练掌握.26.如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD.;(1)求点C,D的坐标及S四边形ABDC,求出点Q的坐标;(2)点Q在y轴上,且S△QAB=S四边形ABDC(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.【分析】(1)根据平移直接得到点C,D坐标,用面积公式计算;建立方程,解方程即可;(2)设出Q的坐标,OQ=|m|,用S△QAB=S四边形ABDC(3)作出辅助线,平行线,用两直线平行,内错角相等,即可.【解答】解:(1)∵线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,且(﹣1,0),B(3,0),∴C(0,2),D(4,2);∵AB=4,OC=2,=AB×OC=8;∴S四边形ABDC(2)∵点Q在y轴上,设Q(0,m),∴OQ=|m|,∴S△QAB=×AB×OQ=×4×|m|=2|m|,=8,∵S四边形ABDC∴2|m|=8,∴m=4或m=﹣4,∴Q(0,4)或Q(0,﹣4).(3)如图,∵线段CD是线段AB平移得到,∴CD∥AB,作PE∥AB,∴CD∥PE,∴∠CPE=∠DCP,∵PE∥AB,∴∠OPE=∠BOP,∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,∴∠CPO=∠DCP+∠BOP.【点评】此题是几何变换综合题,主要考查了平移得性质,计算三角形面积的方法,平行线的判定和性质,解本题的关键用面积建立方程或计算,作出辅助线是解本题的难点.。

2017-2018学年度七年级(下)期中数学试卷(有答案及解析)

2017-2018学年度七年级(下)期中数学试卷(有答案及解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共16小题,共42.0分)1.下列运算正确的是()A. B. C. D.2.用加减法解方程组时,下列四种变形中正确的是()A. B. C. D.3.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A. B. C. D.4.根据图中提供的信息,可知一个杯子的价格是()A. 51元B. 35元C. 8元D. 元5.已知a,b满足方程组,则a-b的值为()A. B. 0 C. 1 D. 26.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角7.已知x+y=6,xy=4,则x2y+xy2的值为()A. 12B.C.D. 248.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.B.C.D.9.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19B. 18C. 16D. 1510.如图,点在延长线上,下列条件中不能判定BD∥AC的是()A.B.C.D.11.已知x a=3,x b=5,则x3a-2b=()A. 52B.C.D.12.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成为一个矩形,通过计算两个图形(阴影部分)的面积,可以验证的等式是()A. B.C. D.13.如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A. 10,4B. 4,10C. 3,10D. 10,314.已知方程组和有相同的解,则a,b的值为()A. B. C. D.15.四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有()A. 4种B. 11种C. 6种D. 9种16.如图,AB∥EF,∠C=90°,则α、β、γ的关系是()A.B.C.D.二、填空题(本大题共4小题,共12.0分)17.若方程 2x m-1+y2n+m=是二元一次方程,则mn=______.18.如图,将三角板与直尺贴在一起,使三角板的直角顶点C(∠ACB=90°)在直尺的一边上,若∠1=25°,则∠2的度数等于______.19.已知2x+5y=1,则4x•32y的值为______.20.已知21=2,22=4,23=8,24=16,25=32,……,观察规律,试猜想22016的末位数字是______.三、计算题(本大题共3小题,共24.0分)21.用代入法解方程组:22.化简求值:(3a+b)2-(3a-b)(3a+b)-5b(a-b),其中a=1,b=-2.23.列方程解应用题在“元旦”期间,小明,小亮等同学随家长一同到我市某景区游玩,下面是买门票时,小明与他爸爸看了票价后的对话:票价:成人:每张35元;学生:按成人票价的5折优惠;团体票(16人以上含16人):按成人票价的a折优惠.爸爸:大人门票是每张35元,学生门票是5折优惠,我们一共12人,共需350元.小明:爸爸,等一下,让我算一算,如果按团体票方式买票,还可节省14元.试根据以上信息,解答以下问题:(1)小明他们一共去了几个成人?几个学生?(2)求票价中a的值.四、解答题(本大题共4小题,共42.0分)24.(1)已知:如图1,AE∥CF,易知∠A P C=∠A+∠C,请补充完整证明过程:证明:过点P作MN∥AE∵MN∥AE(已作)∴∠APM=______(______),又∵AE∥CF,MN∥AE∴∠MPC=∠______(______)∴∠APM+∠CPM=∠A+∠C即∠APC=∠A+∠C(2)变式:如图2-4,AE∥CF,P1,P2是直线EF上的两点,猜想∠A,∠A P1P2,∠P1P2C,∠C这四个角之间的关系,并直接写出以下三种情况下这四个角之间的关系.25.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.26.27.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的______.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底______.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.28.探索发现:如图1,已知直线l1∥l2,且l3和l1、l2分别相交于A、B两点,l4和l1、l2分别交于C、D两点,∠ACP记作∠1,∠BDP记作∠2,∠CPD记作∠3.点P在线段AB上.(1)若∠1=20°,∠2=30°,请你求出∠3的度数.归纳总结:(2)请你根据上述问题,请你找出图1中∠1、∠2、∠3之间的数量关系,并直接写出你的结论.实践应用:(3)应用(2)中的结论解答下列问题:如图2,点A在B的北偏东 40°的方向上,在C的北偏西45°的方向上,请你根据上述结论直接写出∠BAC的度数.拓展延伸:(4)如果点P在直线l3上且在A、B两点外侧运动时,其他条件不变,试探究∠1、∠2、∠3之间的关系(点P和A、B两点不重合),写出你的结论并说明理由.答案和解析1.【答案】D【解析】解:A、(a4)3=a12,故此选项错误;B、a6÷a3=a3,故此选项错误;C、(2ab)3=8a3b3,故此选项错误;D、-a5•a5=-a10,故此选项正确.故选:D.分别利用同底数幂的除法、同底数幂的乘法、积的乘方法则分别判断得出即可.本题考查了同底数幂的除法、同底数幂的乘法、积的乘方,解题的关键是掌握相关运算的法则.2.【答案】C【解析】解:用加减法解方程组时,下列四种变形中正确的是,故选:C.方程组中第一个方程左右两边乘以2,第二个方程左右两边乘以3,将两方程y系数化为互为相反数,利用加减法求解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.【答案】A【解析】解:将150 000 000用科学记数法表示为:1.5×108.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选:C.要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.此题的关键是如何把左图中一杯一壶的已知量用到右图中,这就要找规律,仔细看不难发现,右图是左图的2倍+一个杯子.5.【答案】A【解析】解:②-①得:a-b=-1.故选:A.要求a-b的值,经过观察后可让两个方程相减得到.其中a的符号为正,所以应让第二个方程减去第一个方程即可解答.要想求得二元一次方程组里两个未知数的差,有两种方法:求得两个未知数,让其相减;观察后让两个方程式(或整理后的)直接相加或相减.6.【答案】B【解析】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.本题考查了余角和垂线的定义以及对顶角相等的性质.7.【答案】D【解析】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故选:D.直接利用提取公因式法分解因式进而求出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8.【答案】A【解析】解:∵AD平分∠BAC,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD,∴∠ACD=180°-∠BAC=40°,故选:A.根据角平分线定义求出∠BAC,根据平行线性质得出∠ACD+∠BAC=180°,代入求出即可.本题考查了角平分线定义和平行线的性质的应用,关键是求出∠BAC的度数,再结合∠ACD+∠BAC=180°.9.【答案】C【解析】解:设一个笑脸气球为x元,一个爱心气球为y元,由题意得,,解得:,则2x+2y=16.故选:C.设一个笑脸气球为x元,一个爱心气球为y元,根据图形找出等量关系:3个笑脸+一个爱心=14元,3个爱心+1个笑脸=18元,据此列方程组求出x和y的值,继而可求得第三束气球的价格.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.10.【答案】B【解析】解:选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A选项不合题意.选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),不能判定BD∥AC,所以B选项符合题意;选项C中,∵∠5=∠C,∴BD∥AC (内错角相等,两直线平行),所以C选项不合题意;选项D中,∵∠C+∠BDC=180°,∴BD∥AC(同旁内角互补,两直线平行),所以D 选项不合题意;故选:B.根据平行线的判定方法直接判定即可.本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.【答案】B【解析】解:∵x a=3,x b=5,∴x3a-2b=(x a)3÷(x b)2=33÷52=.故选:B.直接利用同底数幂的乘除运算法则将原式变形得出答案.此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.12.【答案】D【解析】解:由题意得:a2-b2=(a+b)(a-b).故选:D.利用正方形的面积公式可知剩下的面积=a2-b2,而新形成的矩形是长为a+b,宽为a-b,根据两者相等,即可验证平方差公式.此题主要考查平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.13.【答案】A【解析】解:把代入2x+y=16得12+■=16,解得■=4,再把代入x+y=★得★=6+4=10,故选:A.把代入2x+y=16先求出■,再代入x+y求★.本题主要考查了二元一次方程组的解,解题的关键是理解题意,代入法求解.14.【答案】D【解析】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D.因为方程组和有相同的解,所以把5x+y=3和x-2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.本题主要考查了二元一次方程的解及二元一次方程组的解法,正确理解题意,然后根据题意得到关于待定系数的方程组,解方程组是解答此题的关键.15.【答案】C【解析】解:设6人帐篷用了x个,4人帐篷用了y个,根据题意得:6x+4y=60,即y==,当x=0时,y=15;当x=2时,y=12;当x=4时,y=9;当x=6,y=6;当x=8时,y=3;当x=10时,y=0;则不同的搭建方案有6种.故选:C.设6人帐篷用了x个,4人帐篷用了y个,根据题意列出方程,求出方程的解即可得到结果.此题考查了二元一次方程的应用.(1)找出问题中的已知条件和未知量及它们之间的关系.(2)找出题中的两个关键的未知量,并用字母表示出来.(3)挖掘题目中的关系,找出等量关系,列出二元一次方程.(4)根据未知数的实际意义求其整数解.16.【答案】C【解析】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°-α;△EHD中,∠2=β-γ,∵AB∥EF,∴∠1=∠2,∴90°-α=β-γ,即α+β-γ=90°.故选:C.此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.17.【答案】-1【解析】解:由题意得:m-1=1,2n+m=1,解得:m=2.n=-,mn=-1,故答案为:-1.根据二元一次方程的定义可得m-1=1,2n+m=1,解方程可得m、n的值,进而得到答案.主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.18.【答案】65°【解析】解:∵∠ACB=90°,∠1=25°,∴∠3=90°-25°=65°,∵直尺的两边互相平行,∴∠2=∠3=65°.故答案为:65°.先求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.本题考查了平行线的性质,余角的定义,熟记性质是解题的关键.19.【答案】2【解析】【分析】根据同底数幂的运算法则即可求出答案.本题考查了幂的运算法则,解题的关键是熟练运用同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【解答】解:当2x+5y=1时,4x•32y=22x•25y=22x+5y=21=2,故答案为2.20.【答案】6【解析】解:这组数个位数位:2、4、8、6…,每4个一个循环,2016÷4=506,余0,∴22016的个位数是6,故答案为6.这组数个位数位:2、4、8、6…,每4个一个循环,2016÷4=506,余0,故22016的个位数是6,本题考查的是位数特征,找到尾数循环的规律即可求解.21.【答案】解:由②得:x=1-5y③把③代入①得:2(1-5y)+3y=-19解这个方程,得y=3,把y=3代入③,得x=-14所以原方程组的解是.【解析】由方程组第二个方程表示出x,代入第一个方程消元x求出y的值,进而求出x的值,即可确定出方程组的解.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】解:原式=9a2+6ab+b2-9a2+b2-5ab+5b2=ab+7b2,当a=1,b=-2,原式=-2+28=26.【解析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)设他们一共去了x个成人,则有(12-x)个学生,由题意得,35x+35×0.5×(12-x)=350,解得:x=8,12-x=12-8=4,答:他们一共去了8个成人,4个学生;(2)由题意,得35×16×=350-14,解得:a=6.答:a的值为6.【解析】(1)设他们一共去了x个成人,则有(12-x)个学生,根据总票价话费350元,列出方程,求出x的值即可;(2)根据团体价可节省14元,求出团体价所花费的钱数,然后列方程求出a的值即可.本题考查了一元一次方程的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.【答案】∠A两直线平行,内错角相等∠C两直线平行,内错角相等【解析】(1)证明:过点P作MN∥AE,∵MN∥AE(已作),∴∠APM=∠A(两直线平行,内错角相等),又∵AE∥CF,MN∥AE,∴∠MPC=∠C(两直线平行,内错角相等),∴∠APM+∠CPM=∠A+∠C,即∠APC=∠A+∠C,故答案为:∠A,两直线平行两直线平行;C,两直线平行两直线平行;(2)∠AP1P2+∠P1P2C-∠A-∠C=180°,∠AP1P2+∠P1P2C+∠A-∠C=180°,∠AP1P2+∠P1P2C-∠A+∠C=180°.(1)根据平行线的性质得到∠APM=∠A,∠MPC=∠C,于是得到∠APM+∠CPM=∠A+∠C,即可得到结论;(2)根据(1)的结论即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.25.【答案】证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC-∠PBC,∠2=∠BCD-∠BCQ,∴∠1=∠2.【解析】先判定AB∥CD,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.26.【答案】C不彻底(x-2)4【解析】解:(1)运用了C,两数和的完全平方公式;(2)x2-4x+4还可以分解,分解不彻底;(3)设x2-2x=y.(x2-2x)(x2-2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2-2x+1)2,=(x-1)4.(1)完全平方式是两数的平方和与这两个数积的两倍的和或差;(2)x2-4x+4还可以分解,所以是不彻底.(3)按照例题的分解方法进行分解即可.本题考查了运用公式法分解因式和学生的模仿理解能力,按照提供的方法和样式解答即可,难度中等.27.【答案】解:(1)∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2=50°;(2)∠1+∠2=∠3,理由:∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3;(3)如图2,过A点作AF∥BD,则AF∥BD∥CE,∴∠BAC=∠DBA+∠ACE=40°+45°=85°;(4)当P点在A的外侧时,如图3,过P作PF∥l1,交l4于F,∴∠1=∠FPC,∵l1∥l4,∴PF∥l2,∴∠2=∠FPD,∵∠CPD=∠FPD-∠FPC,∴∠CPD=∠2-∠1,当P点在B的外侧时,如图4,过P作PG∥l2,交l4于G,∴∠2=∠GPD,∵l1∥l2,∴PG∥l1,∴∠1=∠CPG,∵∠CPD=∠CPG-∠GPD,∴∠CPD=∠1-∠2.【解析】(1)根据两直线平行,同旁内角互补,即可得出∠1+∠PCD+∠PDC+∠2=180°,再根据在△PCD中,∠3+∠PCD+∠PDC=180°,即可得到∠3=∠1+∠2=50°;(2)根据l1∥l2,可得∠1+∠PCD+∠PDC+∠2=180°,再根据在△PCD中,∠3+∠PCD+∠PDC=180°,即可得到∠1+∠2=∠3;(3)过A点作AF∥BD,根据AF∥BD∥CE,即可得到∠BAC=∠DBA+∠ACE=40°+45°=85°;(4)分两种情况进行讨论:P点在A的外侧,P点在B的外侧,分别根据平行线的性质进行求解即可.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.解决问题的关键是作平行线,构造内错角.。

2017-2018学年河南省驻马店市七年级(下)期中考试数学试卷(解析版)

2017-2018学年河南省驻马店市七年级(下)期中考试数学试卷(解析版)

河南省驻马店市七年级(下)期中考试数学试卷一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0 B.2 C.﹣2 D.﹣62.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27 B.51 C.65 D.725.下列方程组中,不是二元一次方程组的是()A.B.C.D.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1 C.1 D.07.二元一次方程3x+y=7的正整数解有()组.A.0 B.1 C.2 D.无数8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1 B.9x+7x+1 C.x+x=1 D.x﹣x=110.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为mm2.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为个单位长度,线段AC的长度为个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为个单位长度,点P 在数轴上表示的数为;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N 从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N 相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案与试题解析一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0 B.2 C.﹣2 D.﹣6【分析】把x═2代入方程x+a=﹣1得出一个关于a的方程,求出方程的解即可.【解答】解:∵x=2是方程x+a=﹣1的根,∴代入得:×2+a=﹣1,∴a=﹣2,故选:C.【点评】本题考查了一元一次方程的解和解一元一次方程,解此题的关键是得出一个关于a的方程.2.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b【分析】根据等式的性质,可得答案.【解答】解:A、左边除以2,右边加2,故A错误;B、左边加2,右边加﹣2,故B错误;C、两边都除以﹣2,故C正确;D、左边除以2,右边乘以2,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个【分析】根据等式的性质,可得答案.【解答】解:由第①个天平,得一个球等于两个长方体,故③不符合题意;两个球等于四个长方体,故②不符合题意,两个球等于四个长方体,故④符合题意;故选:B.【点评】本题考查了等式的性质,利用等式的性质是解题关键.4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27 B.51 C.65 D.72【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=17时,3x+21=72;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是65.故选:C.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.下列方程组中,不是二元一次方程组的是()A.B.C.D.【分析】依据二元一次方程组的定义求解即可.【解答】解:A.方程组是二元一次方程组,与要求不符;B.方程组中,含有三个未知数,不是二元一次方程组,符号要求;C.方程组是二元一次方程组,与要求不符;D.方程组是二元一次方程组,与要求不符.故选:B.【点评】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1 C.1 D.0【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得m,n的值,再根据1的任何次幂都等于1,可得答案.【解答】解:把代入方程组得:,解得:,则(m+n)2018=12018=1,故选:C.【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程组得出关于m,n的方程组是解题关键.7.二元一次方程3x+y=7的正整数解有()组.A.0 B.1 C.2 D.无数【分析】把x看做已知数求出y,即可确定出正整数解.【解答】解:方程3x+y=7,解得:y=﹣3x+7,当x=1时,y=4;x=2时,y=1,则方程的正整数解有2组,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.【分析】根据关键语句“若每组7人,余3人”可得方程7y+3﹣x;“若每组8人,则缺5人.”可得方程8y﹣5=x,联立两个方程可得方程组.【解答】解:设运动员人数为x人,组数为y组,由题意得:列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1 B.9x+7x+1 C.x+x=1 D.x﹣x=1【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【分析】本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200×﹣800≥800×5%,解出x的值即可得出打的折数.【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.【点评】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=﹣2.【分析】根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求解.【解答】解:根据题意得|a|﹣1=1,且a﹣2≠0,解得:a=﹣2.故答案是:﹣2.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=2.【分析】先求得方程4x+3=7的解,然后将x的值代入方程5x﹣1=2x+a,然后可求得a的值.【解答】解:∵4x+3=7,∴x=1.∵关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,∴方程5x﹣1=2x+a的解为x=1.∴5﹣1=2+a,解得:a=2.故答案为:2.【点评】本题主要考查的是同解方程的定义,熟练掌握同解方程的定义是解题的关键.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是m>﹣2.【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【解答】解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点评】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于﹣.【分析】利用非负数的性质列出关于x,y及z的方程组,求出方程组的解即可得到x,y,z的值,确定出x+y+z的值.【解答】解:∵(2x﹣4)2+(x+y)2+|4z﹣y|=0,∴,解得:,则x+y+z=2﹣2﹣=﹣.故答案为:﹣.【点评】此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为375mm2.【分析】设小长方形的长为xmm,宽为ymm,观察图形发现“3x=5y,2y﹣x=5”,联立成方程组,解方程组即可得出结论.【解答】解:设小长方形的长为xmm,宽为ymm,由题意,得:,解得:,则每个小长方形的面积为:25×15=375(mm2)故答案是:375.【点评】本题考查了二元一次方程组的应用,解题的关键是根据图形长宽之间的关系得出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据给定图形中长宽间的关系列出方程组是关键.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:+=1.【分析】利用题中方程的特点和方程的解之间的关系写出形式与题中的方程一样且解是x=2018的方程.【解答】解:方程+=1的解为x=2018.故答案为+=1.【点评】本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:2x+6﹣3x﹣3=6,移项合并得:﹣x=3,解得:x=﹣3;(2)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10.【点评】此题考查了解一元一次方程,解方程移项时注意要变号.18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)【分析】(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组.【解答】解:(1),由②得:x=4+y③,把③代入①得3(4+y)+4y=19,解得:y=1,将y=1代入①得:x=5,则方程组的解为:;(2),①﹣②×2得:x=2,把x=2代入①得:y=﹣1,方程组的解为:.【点评】本题考查的是二元一次方程组的解法,掌握代入消元法和加减消元法的一般步骤是解题的关键.19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.【分析】首先看懂题目所给的运算法则,再根据法则得到2x﹣(3﹣x)>0,然后去括号、移项、合并同类项,再把x的系数化为1即可.【解答】解:由题意得2x﹣(3﹣x)>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1,解集在数轴上表示如下:【点评】本题考查了解一元一次不等式,有理数的混合运算和在数轴上表示不等式的解集,正确掌握解不等式的基本步骤是解题的关键.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.【分析】(1)因为其余圆的直径从左到右依次递减0.2cm,可依次求出圆的长.(2)可设两圆的距离是d,根据5个圆的直径长和最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,以及圆之间的距离加起来应该为21cm,可列方程求解.【解答】解:(1)其余四个圆的直径依次为:2.8cm,2.6cm,2.4cm,2.2cm.(2)设两圆的距离是d,4d+1.5+1.5+3+2.8+2.6+2.4+2.2=214d+16=21d=故相邻两圆的间距为cm.【点评】本题考查理解题意的能力,以及识图的能力,关键是21cm做为等量关系可列方程求解.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为3个单位长度,线段AC的长度为8个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为(3﹣t)或(t﹣3)个单位长度,点P在数轴上表示的数为﹣2+t;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N 从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N 相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.【分析】(1)根据两点间的距离公式可求线段AB的长度,线段AC的长度;(2)先根据路程=速度×时间求出点P运动的路程,再分点P在点B的左边和右边两种情况求解;(3)根据等量关系点M、N两点间的距离为13个单位长度列出方程求解即可.【解答】解:(1)线段AB的长度为1﹣(﹣2)=3个单位长度,线段AC的长度为6﹣(﹣2)=8个单位长度;(2)线段BP的长为:当t≤3时,BP=3﹣t;当t>3时,BP=t﹣3,点P在数轴上表示的数为﹣2+t;(3)依题意有:4x+3x﹣8=13,解得x=3.此时点M在数轴上表示的数是﹣2+4×3=10.故答案为:(1)3;8;(2)(3﹣t)或(t﹣3);﹣2+t.【点评】本题考查了一元一次方程的应用,数轴,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买篮球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买篮球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.。

2017-2018学年七年级数学下期中考试卷及答案

2017-2018学年七年级数学下期中考试卷及答案

2017-2018学年七年级数学下期中考试卷及答案2017 — 2018 学年度第二学期初一年级数学学科期中检测试卷(全卷满分150 分,答题时间120 分钟)一、选择题(共8 小题,每题 3 分,共 24 分)1.以下图形中,能将此中一个图形平移获得另一个图形的是(▲)A. B.c. D.2 .以下计算正确的选项是(▲)A. B.c. D.3 .以下长度的 3 条线段,能首尾挨次相接构成三角形的是(▲)A .1c,2c, 4cB. 8c,6c, 4cc .15c, 5c, 6cD. 1c, 3c,4c4 .以下各式能用平方差公式计算的是(▲)A. B.c. D.5 .若 , ,则的值为(▲)A . 6B. 8c. 11D. 186 .如图, 4 块完整同样的长方形围成一个正方形. 图中阴影部分的面积能够用不一样的代数式进行表示,由此能考证的等式是(▲)A. B.c. D.7 .当 x=﹣6, y=时,的值为(▲)A.﹣ 6B. 6c.D.8.如图,四边形 ABcD中, E、 F、 G、 H 挨次是各边中点,o 是形内一点,若四边形AEoH、四边形BFoE、四边形cGoF 的面积分别为 7、 9、 10,则四边形DHoG面积为(▲)A . 7B. 8c. 9D.10二、填空题(共10 小题,每题 3 分,共 30 分)9.随意五边形的内角和与外角和的差为度.10.已知一粒米的质量是 0.000021 千克,这个数字用科学记数法表示为.11 .假如一个完整平方式,则=.12.已知,,则的值是 ______.13.假如( x+1)( x+)的乘积中不含 x 的一次项,则的值为.14 .若,则= .15. 若 { █ (x=3@y=-2) 是方程组 { █ (ax+by=1@ax-by=5) 的解,则 a+b=________.16.已知,且,那么的值为.17.如图,将△ ABc 沿 DE、 EF 翻折,极点 A,B 均落在点o 处,且 EA与 EB重合于线段 Eo,若∠ cDo+∠ cFo= 78°,则∠ c 的度数为 =.18.如图,长方形 ABcD中, AB=4c,Bc=3c,点 E 是 cD 的中点,动点 P 从 A 点出发,以每秒 1c 的速度沿 A→B→ c→ E运动,最后抵达点 E.若点 P 运动的时间为 x 秒,那么当x=_________ 时,△ APE的面积等于.三、解答题(本大题共有 10 小题,共 96 分.请在答题卡指定地区内作答)19 .计算(每题 4 分,共 16 分)(1)(2)(3)(4)( a-b+ 1)( a+ b- 1)20.解方程组(每题 4 分,共 8 分)(1)(2)21.(此题满分 8 分)绘图并填空:如图,每个小正方形的边长为 1 个单位,每个小正方形的极点叫格点.(1)将△ ABc 向左平移 8 格,再向下平移 1 格.请在图中画出平移后的△ A′ B′ c′(2)利用网格线在图中画出△ ABc 的中线 cD,高线 AE;(3)△ A′ B′ c′的面积为 _____.22.(此题满分 6 分)已知:如图, AB∥ cD,EF 交 AB于 G,交 cD 于 F,FH均分∠ EFD,交 AB于 H,∠ AGE=40°,求∠ BHF 的度数.23.(此题满分 10 分)已知:如图 , 在△ ABc 中,BD⊥ Ac 于点 D,E 为 Bc 上一点 , 过 E 点作 EF⊥ Ac, 垂足为 F, 过点 D作 DH ∥Bc 交 AB于点 H.(1) 请你补全图形。

2017-2018学年驻马店市泌阳县七年级下期中数学试卷【带答案】

2017-2018学年驻马店市泌阳县七年级下期中数学试卷【带答案】

2017-2018学年河南省驻马店市泌阳县七年级(下)期中数学试卷一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0B.2C.﹣2D.﹣62.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.725.下列方程组中,不是二元一次方程组的是()A.B.C.D.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1C.1D.07.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1B.9x+7x+1C.x+x=1D.x﹣x=110.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为mm2.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为个单位长度,线段AC的长度为个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为个单位长度,点P在数轴上表示的数为;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?2017-2018学年河南省驻马店市泌阳县七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0B.2C.﹣2D.﹣6【分析】把x═2代入方程x+a=﹣1得出一个关于a的方程,求出方程的解即可.【解答】解:∵x=2是方程x+a=﹣1的根,∴代入得:×2+a=﹣1,∴a=﹣2,故选:C.【点评】本题考查了一元一次方程的解和解一元一次方程,解此题的关键是得出一个关于a的方程.2.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b【分析】根据等式的性质,可得答案.【解答】解:A、左边除以2,右边加2,故A错误;B、左边加2,右边加﹣2,故B错误;C、两边都除以﹣2,故C正确;D、左边除以2,右边乘以2,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个【分析】根据等式的性质,可得答案.【解答】解:由第①个天平,得一个球等于两个长方体,故③不符合题意;两个球等于四个长方体,故②不符合题意,两个球等于四个长方体,故④符合题意;故选:B.【点评】本题考查了等式的性质,利用等式的性质是解题关键.4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.72【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=17时,3x+21=72;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是65.故选:C.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.下列方程组中,不是二元一次方程组的是()A.B.C.D.【分析】依据二元一次方程组的定义求解即可.【解答】解:A.方程组是二元一次方程组,与要求不符;B.方程组中,含有三个未知数,不是二元一次方程组,符号要求;C.方程组是二元一次方程组,与要求不符;D.方程组是二元一次方程组,与要求不符.故选:B.【点评】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1C.1D.0【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得m,n的值,再根据1的任何次幂都等于1,可得答案.【解答】解:把代入方程组得:,解得:,则(m+n)2018=12018=1,故选:C.【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程组得出关于m,n的方程组是解题关键.7.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数【分析】把x看做已知数求出y,即可确定出正整数解.【解答】解:方程3x+y=7,解得:y=﹣3x+7,当x=1时,y=4;x=2时,y=1,则方程的正整数解有2组,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.【分析】根据关键语句“若每组7人,余3人”可得方程7y+3﹣x;“若每组8人,则缺5人.”可得方程8y﹣5=x,联立两个方程可得方程组.【解答】解:设运动员人数为x人,组数为y组,由题意得:列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1B.9x+7x+1C.x+x=1D.x﹣x=1【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【分析】本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200×﹣800≥800×5%,解出x的值即可得出打的折数.【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.【点评】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=﹣2.【分析】根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求解.【解答】解:根据题意得|a|﹣1=1,且a﹣2≠0,解得:a=﹣2.故答案是:﹣2.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=2.【分析】先求得方程4x+3=7的解,然后将x的值代入方程5x﹣1=2x+a,然后可求得a的值.【解答】解:∵4x+3=7,∴x=1.∵关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,∴方程5x﹣1=2x+a的解为x=1.∴5﹣1=2+a,解得:a=2.故答案为:2.【点评】本题主要考查的是同解方程的定义,熟练掌握同解方程的定义是解题的关键.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是m>﹣2.【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【解答】解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点评】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于﹣.【分析】利用非负数的性质列出关于x,y及z的方程组,求出方程组的解即可得到x,y,z的值,确定出x+y+z 的值.【解答】解:∵(2x﹣4)2+(x+y)2+|4z﹣y|=0,∴,解得:,则x+y+z=2﹣2﹣=﹣.故答案为:﹣.【点评】此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为375mm2.【分析】设小长方形的长为xmm,宽为ymm,观察图形发现“3x=5y,2y﹣x=5”,联立成方程组,解方程组即可得出结论.【解答】解:设小长方形的长为xmm,宽为ymm,由题意,得:,解得:,则每个小长方形的面积为:25×15=375(mm2)故答案是:375.【点评】本题考查了二元一次方程组的应用,解题的关键是根据图形长宽之间的关系得出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据给定图形中长宽间的关系列出方程组是关键.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:+=1.【分析】利用题中方程的特点和方程的解之间的关系写出形式与题中的方程一样且解是x=2018的方程.【解答】解:方程+=1的解为x=2018.故答案为+=1.【点评】本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:2x+6﹣3x﹣3=6,移项合并得:﹣x=3,解得:x=﹣3;(2)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10.【点评】此题考查了解一元一次方程,解方程移项时注意要变号.18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)【分析】(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组.【解答】解:(1),由②得:x=4+y③,把③代入①得3(4+y)+4y=19,解得:y=1,将y=1代入①得:x=5,则方程组的解为:;(2),①﹣②×2得:x=2,把x=2代入①得:y=﹣1,方程组的解为:.【点评】本题考查的是二元一次方程组的解法,掌握代入消元法和加减消元法的一般步骤是解题的关键.19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.【分析】首先看懂题目所给的运算法则,再根据法则得到2x﹣(3﹣x)>0,然后去括号、移项、合并同类项,再把x的系数化为1即可.【解答】解:由题意得2x﹣(3﹣x)>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1,解集在数轴上表示如下:【点评】本题考查了解一元一次不等式,有理数的混合运算和在数轴上表示不等式的解集,正确掌握解不等式的基本步骤是解题的关键.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.【分析】(1)因为其余圆的直径从左到右依次递减0.2cm,可依次求出圆的长.(2)可设两圆的距离是d,根据5个圆的直径长和最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,以及圆之间的距离加起来应该为21cm,可列方程求解.【解答】解:(1)其余四个圆的直径依次为:2.8cm,2.6cm,2.4cm,2.2cm.(2)设两圆的距离是d,4d+1.5+1.5+3+2.8+2.6+2.4+2.2=214d+16=21d=故相邻两圆的间距为cm.【点评】本题考查理解题意的能力,以及识图的能力,关键是21cm做为等量关系可列方程求解.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为3个单位长度,线段AC的长度为8个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为(3﹣t)或(t﹣3)个单位长度,点P在数轴上表示的数为﹣2+t;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.【分析】(1)根据两点间的距离公式可求线段AB的长度,线段AC的长度;(2)先根据路程=速度×时间求出点P运动的路程,再分点P在点B的左边和右边两种情况求解;(3)根据等量关系点M、N两点间的距离为13个单位长度列出方程求解即可.【解答】解:(1)线段AB的长度为1﹣(﹣2)=3个单位长度,线段AC的长度为6﹣(﹣2)=8个单位长度;(2)线段BP的长为:当t≤3时,BP=3﹣t;当t>3时,BP=t﹣3,点P在数轴上表示的数为﹣2+t;(3)依题意有:4x+3x﹣8=13,解得x=3.此时点M在数轴上表示的数是﹣2+4×3=10.故答案为:(1)3;8;(2)(3﹣t)或(t﹣3);﹣2+t.【点评】本题考查了一元一次方程的应用,数轴,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买篮球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买篮球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.。

河南省驻马店地区七年级下学期数学期中考试试卷

河南省驻马店地区七年级下学期数学期中考试试卷

河南省驻马店地区七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·肥城模拟) 下列图形中,可以由其中一个图形通过平移得到的是()A .B .C .D .2. (2分) (2020八上·莱山期末) 若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A . 4B . 5C . 6D . 83. (2分) (2016八上·上城期末) 已知三角形的两边长分别为8和4,则第三边长可能是()A . 3B . 4C . 8D . 124. (2分)下列运算中,一定正确的是()A . m5﹣m2=m3B . m10÷m2=m5C . m•m2=m3D . (2m)5=2m55. (2分) (2020八上·曲沃期末) 若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A . ﹣1B . 1C . 3D . 56. (2分)如图,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是A . 7B . 8C . 9D . 107. (2分) (2020七下·昌吉期中) 如图所示,下列条件中,能判断直线L1∥L2的是()A . ∠2=∠3B . ∠l=∠3C . ∠4+∠5=180D . ∠2=∠48. (2分)不等式组的最小整数解为()A . 0B . 1C . 2D . ﹣19. (2分) (2018八下·越秀期中) 如图,正方形ABCD中,E为DC边上一点,且DE=1,AE=EF,∠AEF=90°,则FC= ()A .B .C .D . 110. (2分) (2019七上·全州期中) 在数轴上,一只蚂蚁从原点出发,它第一次向右爬行了1个单位长度,第二次接着向左爬行了2个单位长度,第三次接着向右爬行了3个单位长度,第四次接着向左爬行了4个单位长度,如此进行了2019次,此时蚂蚁在数轴上的位置表示的数是()A . ﹣1009B . 1009C . ﹣1010D . 1010二、填空题 (共8题;共8分)11. (1分)(2018·张家界) 目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为________米.12. (1分) (2020九下·中卫月考) 若关于x的方程x2+2x+m=0没有实数根,则m的取值范围是________.13. (1分) (2019七上·杨浦月考) 计算: =________14. (1分)(2020·黄浦模拟) 不等式组的整数解是________.15. (1分) (2017七下·嘉兴期末) 如图,立方体棱长为2cm,将线段AC平移到A1C1的位置上,平移的距离是________cm.16. (1分) (2020七下·青岛期中) 若是一个完全平方式,则k的值为________;17. (1分) (2016八下·大石桥期中) 如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是________度.18. (1分) (2017七下·邗江期中) 如图,已知DE∥BC,DC平分∠EDB,∠ADE=80°,则∠BCD=________°.三、解答题 (共9题;共86分)19. (5分) (2020八下·永春期末) 计算:.20. (10分) (2019八下·九江期中) 分解因式:(1);(2)21. (5分)已知a+b=2,c-d=1,求(a+d)-(c-b)的值.22. (10分) (2017七下·南京期中) 如图(1)如图,试用x的代数式表示图形中阴影部分的面积;(2)当x=4时,计算图中阴影部分的面积.23. (11分) (2020八下·天桥期末) ABC在平面直角坐标系xOy中的位置如图所示. A (-2,3),B (-1,1),C(0,2)(1)将 ABC向右平移2个单位,作出平移后的 A1B1C1;(2)作出 A1B1C1关于点C1成中心对称的图形 A2B2C2;(3)连接A2B1 ,则 A2B2B1的面积为________.24. (5分) (2017七下·宜春期末) 如图是一个汉字“互”字,其中,∥ ,∠1=∠2,∠ =∠.求证:∠MEF=∠GHN25. (10分) (2020八下·莲湖期末) 如图,在三角形纸片中,的平分线交于点D,将沿折叠,使点C落在点A处.(1)求证: .(2)若,求的度数.26. (20分) (2018七上·盐城期中) (阅读理解)第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.则奥运会的年份可排成如下一列数:1896,1900,1904,1908,…观察上面一列数,我们发现这一列数从第二项起,每一项与它前一项的差都等于同一个常数4,这一列数在数学上叫做等差数列,这个常数4叫做等差数列的公差.(1)等差数列2,5,8,…的第五项多少;(2)若一个等差数列的第二项是28,第三项是46,则它的公差为多少,第一项为多少,第五项为多少;(3)聪明的小雪同学作了一些思考,如果一列数a1 , a2 , a3 ,…是等差数列,且公差为d,根据上述规定,应该有:a 2-a1=d,a3-a2= d,a4-a3= d,…所以a 2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=( a1+2d)+d=a1+3d,…则等差数列的第n项an多少 (用含有a1、n与d的代数式表示);(4)按照上面的推理,2008年中国北京奥运会是第几届奥运会,2050年会不会(填“会”或“不会”)举行奥运会.27. (10分) (2016七上·太康期末) 如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共9题;共86分)答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、答案:26-4、考点:解析:答案:27-1、答案:27-2、考点:解析:。

驻马店地区七年级下学期数学期中考试试卷(五四学制)

驻马店地区七年级下学期数学期中考试试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题。

(共12题;共48分)1. (4分)从一副扑克牌中随机抽出四张牌,恰好红桃、梅花、黑桃、方块四种牌都抽到,这个事件是()A . 必然事件B . 随机事件C . 不可能事件D . 以上都不对2. (4分)已知关于x、y的方程组和方程组有相同的解,那么(a+b)2007的值为()A . ﹣2007B . ﹣1C . 1D . 20073. (4分) (2018八上·仁寿期中) 命题“垂直于同一条直线的两条直线互相平行”的条件是()A . 垂直B . 两条直线C . 同一条直线D . 两条直线垂直于同一条直线4. (4分)下列命题中,正确的是()A . 两条直线被第三条直线所截,同位角相等;B . 相等的角是对顶角;C . 在同一平面内,平行于同一条直线的两条直线平行;D . 和为180°的两个角叫做邻补角.5. (4分)(2018·台湾) 若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A . 24B . 0C . ﹣4D . ﹣86. (4分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=70°,则∠3等于()A . 20°B . 30°C . 40°D . 50°7. (4分) (2018七下·中山期末) 已知x,y满足方程程组,则x﹣y的值为()A . 0B . 1C . 2D . 88. (4分) (2016八上·萧山期中) 下列语句是命题的是()A . 作直线AB的垂线B . 在线段AB上取点CC . 同旁内角互补D . 垂线段最短吗?9. (4分) (2018九上·嘉兴月考) 在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是()A .B .C .D .10. (4分) (2019八上·黄冈月考) 如图,点E在AB的延长线上,下列条件中能判断AB∥CD的是()A . ∠DAB=∠CBEB . ∠ADC=∠ABCC . ∠ACD=∠CAED . ∠DAC=∠ACB11. (4分)如图,一次函数图象经过点A ,且与正比例函数y=-x的图象交于点B ,则该一次函数的表达式为()A . y=-x+2B . y=x+2C . y=x-2D . y=-x-212. (4分)现用190张铁皮制作一批盒子,每张铁皮可做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个完整的盒子.问用多少张白铁皮制盒身、多少张白铁皮制盒底,可以使盒身和盒底正好配套.设用x张铁皮做盒身,y张铁皮做盒底,可以使盒身与盒底正好配套,则可列方程是()A .B .C .D .二、填空题 (共6题;共22分)13. (2分)(2019·顺义模拟) 用一组a,b的值说明命题“若a2>b2 ,则a>b”是不正确,这组值可以是a=________,b=________.14. (4分) (2018七上·龙江期末) 如果实数a,b满足(a-3)2+|b+1|=0,那么=________.15. (4分) (2019九上·新蔡期末) 将根式,,,化成最简二次根式后,随机抽取其中一个根式,能与的被开方数相同的概率是________.16. (4分) (2020八上·广元期末) 如图,已知中,,于D ,于E , BD、CE交于点F ,、的平分线交于点O ,则的度数为________.17. (4分)如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P(1,﹣1),根据图象可得方程组的解是________.18. (4分)距离为20cm的两点A和B关于直线MN成轴对称,则点A到直线MN的距离为________cm.三、解答题 (共7题;共78分)19. (12分)解下列方程组:.20. (10分) (2016八上·庆云期中) 已知:如图所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD 是高,试判断EF与BC的位置关系,并说明理由.21. (10.0分) (2018九上·辽宁期末) 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球标号的和等于4.22. (10分) (2018七上·天台月考) 【定义】:在同一直线上的三点A、B、C,若满足点C到另两个点A、B 的距离具有2倍关系,则我们就称点C是其余两点的强点或弱点具体地:①当点C在线段AB上时,若,则称点C是【A,B】的强点;若,则称点C是【B,A】的强点;②当点C在线段AB的延长线上时,若,则称点C是【A,B】的弱点;【例如】如图,数轴上点A、B、C、D分别表示数、2、1、0,则点C是【A,B】的强点,又是【A,D】的弱点;点D是【B,A】的强点,又是【B,C】的弱点;【应用】Ⅰ.如图,M、N为数轴上两点,点M所表示的数为,点N所表示的数为4.【M,N】的强点表示的数为________.【N,M】的弱点表示的数为________.Ⅱ.如图,数轴上,点A所表示的数为,点B所表示的数为一只电子蚂蚁P从点B出发,以4个单位每秒的速度沿数轴向左运动,设运动时间为t秒求当t为何值时?P是【B,A】的弱点.________求当t为何值时?P、A、B三个点中恰有一个点为其余两点的强点.________23. (12分) (2017八下·海安期中) 如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A.(1)求点A的坐标;(2)设x轴上一点P(a,b),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC= OA,求△OBC的面积.24. (12分)一个零件的形状如图,按规定∠A应等于90°,∠B、∠C应分别是21°和32°,现测量得∠BDC=148°,你认为这个零件合格吗?为什么?25. (12分) (2019七下·覃塘期末) 某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.参考答案一、选择题。

2017-2018学年驻马店市泌阳县七年级下期中数学试卷(有答案)

2017-2018学年河南省驻马店市泌阳县七年级(下)期中数学试卷一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0B.2C.﹣2D.﹣62.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.725.下列方程组中,不是二元一次方程组的是()A.B.C.D.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1C.1D.07.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y 组,则列方程组为()A.B.C.D.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1B.9x+7x+1C.x+x=1D.x﹣x=110.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为mm2.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为个单位长度,线段AC的长度为个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为个单位长度,点P在数轴上表示的数为;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?2017-2018学年河南省驻马店市泌阳县七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0B.2C.﹣2D.﹣6【分析】把x═2代入方程x+a=﹣1得出一个关于a的方程,求出方程的解即可.【解答】解:∵x=2是方程x+a=﹣1的根,∴代入得:×2+a=﹣1,∴a=﹣2,故选:C.【点评】本题考查了一元一次方程的解和解一元一次方程,解此题的关键是得出一个关于a的方程.2.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b【分析】根据等式的性质,可得答案.【解答】解:A、左边除以2,右边加2,故A错误;B、左边加2,右边加﹣2,故B错误;C、两边都除以﹣2,故C正确;D、左边除以2,右边乘以2,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个【分析】根据等式的性质,可得答案.【解答】解:由第①个天平,得一个球等于两个长方体,故③不符合题意;两个球等于四个长方体,故②不符合题意,两个球等于四个长方体,故④符合题意;【点评】本题考查了等式的性质,利用等式的性质是解题关键.4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.72【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=17时,3x+21=72;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是65.故选:C.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.下列方程组中,不是二元一次方程组的是()A.B.C.D.【分析】依据二元一次方程组的定义求解即可.【解答】解:A.方程组是二元一次方程组,与要求不符;B.方程组中,含有三个未知数,不是二元一次方程组,符号要求;C.方程组是二元一次方程组,与要求不符;D.方程组是二元一次方程组,与要求不符.【点评】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1C.1D.0【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得m,n的值,再根据1的任何次幂都等于1,可得答案.【解答】解:把代入方程组得:,解得:,则(m+n)2018=12018=1,故选:C.【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程组得出关于m,n的方程组是解题关键.7.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数【分析】把x看做已知数求出y,即可确定出正整数解.【解答】解:方程3x+y=7,解得:y=﹣3x+7,当x=1时,y=4;x=2时,y=1,则方程的正整数解有2组,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y 组,则列方程组为()A.B.C.D.【分析】根据关键语句“若每组7人,余3人”可得方程7y+3﹣x;“若每组8人,则缺5人.”可得方程8y﹣5=x,联立两个方程可得方程组.【解答】解:设运动员人数为x人,组数为y组,由题意得:列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1B.9x+7x+1C.x+x=1D.x﹣x=1【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【分析】本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200×﹣800≥800×5%,解出x的值即可得出打的折数.【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.【点评】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=﹣2.【分析】根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求解.【解答】解:根据题意得|a|﹣1=1,且a﹣2≠0,解得:a=﹣2.故答案是:﹣2.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=2.【分析】先求得方程4x+3=7的解,然后将x的值代入方程5x﹣1=2x+a,然后可求得a的值.【解答】解:∵4x+3=7,∴x=1.∵关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,∴方程5x﹣1=2x+a的解为x=1.∴5﹣1=2+a,解得:a=2.故答案为:2.【点评】本题主要考查的是同解方程的定义,熟练掌握同解方程的定义是解题的关键.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是m>﹣2.【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【解答】解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点评】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于﹣.【分析】利用非负数的性质列出关于x,y及z的方程组,求出方程组的解即可得到x,y,z的值,确定出x+y+z的值.【解答】解:∵(2x﹣4)2+(x+y)2+|4z﹣y|=0,∴,解得:,则x+y+z=2﹣2﹣=﹣.故答案为:﹣.【点评】此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为375mm2.【分析】设小长方形的长为xmm,宽为ymm,观察图形发现“3x=5y,2y﹣x=5”,联立成方程组,解方程组即可得出结论.【解答】解:设小长方形的长为xmm,宽为ymm,由题意,得:,解得:,则每个小长方形的面积为:25×15=375(mm2)故答案是:375.【点评】本题考查了二元一次方程组的应用,解题的关键是根据图形长宽之间的关系得出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据给定图形中长宽间的关系列出方程组是关键.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:+=1.【分析】利用题中方程的特点和方程的解之间的关系写出形式与题中的方程一样且解是x=2018的方程.【解答】解:方程+=1的解为x=2018.故答案为+=1.【点评】本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:2x+6﹣3x﹣3=6,移项合并得:﹣x=3,解得:x=﹣3;(2)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10.【点评】此题考查了解一元一次方程,解方程移项时注意要变号.18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)【分析】(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组.【解答】解:(1),由②得:x=4+y③,把③代入①得3(4+y)+4y=19,解得:y=1,将y=1代入①得:x=5,则方程组的解为:;(2),①﹣②×2得:x=2,把x=2代入①得:y=﹣1,方程组的解为:.【点评】本题考查的是二元一次方程组的解法,掌握代入消元法和加减消元法的一般步骤是解题的关键.19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.【分析】首先看懂题目所给的运算法则,再根据法则得到2x﹣(3﹣x)>0,然后去括号、移项、合并同类项,再把x的系数化为1即可.【解答】解:由题意得2x﹣(3﹣x)>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1,解集在数轴上表示如下:【点评】本题考查了解一元一次不等式,有理数的混合运算和在数轴上表示不等式的解集,正确掌握解不等式的基本步骤是解题的关键.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.【分析】(1)因为其余圆的直径从左到右依次递减0.2cm,可依次求出圆的长.(2)可设两圆的距离是d,根据5个圆的直径长和最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,以及圆之间的距离加起来应该为21cm,可列方程求解.【解答】解:(1)其余四个圆的直径依次为:2.8cm,2.6cm,2.4cm,2.2cm.(2)设两圆的距离是d,4d+1.5+1.5+3+2.8+2.6+2.4+2.2=214d+16=21d=故相邻两圆的间距为cm.【点评】本题考查理解题意的能力,以及识图的能力,关键是21cm做为等量关系可列方程求解.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为3个单位长度,线段AC的长度为8个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为(3﹣t)或(t﹣3)个单位长度,点P在数轴上表示的数为﹣2+t;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.【分析】(1)根据两点间的距离公式可求线段AB的长度,线段AC的长度;(2)先根据路程=速度×时间求出点P运动的路程,再分点P在点B的左边和右边两种情况求解;(3)根据等量关系点M、N两点间的距离为13个单位长度列出方程求解即可.【解答】解:(1)线段AB的长度为1﹣(﹣2)=3个单位长度,线段AC的长度为6﹣(﹣2)=8个单位长度;(2)线段BP的长为:当t≤3时,BP=3﹣t;当t>3时,BP=t﹣3,点P在数轴上表示的数为﹣2+t;(3)依题意有:4x+3x﹣8=13,解得x=3.此时点M在数轴上表示的数是﹣2+4×3=10.故答案为:(1)3;8;(2)(3﹣t)或(t﹣3);﹣2+t.【点评】本题考查了一元一次方程的应用,数轴,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买篮球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买篮球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.。

【最新】2017-2018学年新人教版初一(下册)期中数学试卷及答案

第 4 页(共 15 页)
(2)若 a=30, b=10, c=22, d=9,求阴影部分的面积; (3)若∠ 1=∠ 2,那么∠ 3 与∠ 4 有怎样的关系,并说明理由.
第 4 页(共 15 页)
(2)若 a=30, b=10, c=22, d=9,求阴影部分的面积; (3)若∠ 1=∠ 2,那么∠ 3 与∠ 4 有怎样的关系,并说明理由.
第 4 页(共 15 页)
11.如图,直线 a、 b 被直线 c 所截,若 a∥b,∠ 1=50°,∠ 2=65°,则∠ 3 的度数为(

A . 110°B. 115°C. 120°D. 130° 12.小明在学习之余去买文具,打算购买 5 支单价相同的签字笔和 3 本单价相同的笔记本, 期间他与售货员对话如下: 请你判断在单价没有弄反的情况下, 购买 1 支签字笔和 1 本笔记
本应付(

A . 10 元 B. 11 元 C. 12 元 D. 13 元
二、填空题:本题工 5 小题,每小题 4 分,满分 20 分
13.若∠ 1=35°21′,则∠ 1 的余角是 ______. 14.如图,把一根直尺与一块三角尺如图放置,若么∠
1=55°,则∠ 2 的度数为 ______°.
15.如果方程组
第 4 页(共 15 页)
(2)若 a=30, b=10, c=22, d=9,求阴影部分的面积; (3)若∠ 1=∠ 2,那么∠ 3 与∠ 4 有怎样的关系,并说明理由.
第 4 页(共 15 页)
(2)若 a=30, b=10, c=22, d=9,求阴影部分的面积; (3)若∠ 1=∠ 2,那么∠ 3 与∠ 4 有怎样的关系,并说明理由.
19.解下列方程组:
(1)

驻马店地区七年级下学期期中数学试卷

驻马店地区七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2020·莲湖模拟) 的值为()A .B . 8C . -16D . 162. (2分) (2018九上·港南期中) cos30°的相反数是()A .B .C .D .3. (2分) (2016七下·南陵期中) 如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠BOC等于()A . 130°B . 140°C . 150°D . 160°4. (2分)如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“兵”位于点()A . (﹣1,1)B . (﹣2,﹣1)C . (﹣3,1)D . (1,﹣2)5. (2分) (2016七下·绵阳期中) 方程组的解是()A .B .C .D .6. (2分)在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,1),点B的对应点为B′(4,0),则点B的坐标为()A . (9,0)B . (﹣1,0)C . (3,﹣1)D . (﹣3,﹣1)7. (2分) (2016七下·绵阳期中) 如图,如果AB∥CD,CD∥EF,那么∠BCE等于()A . ∠1+∠2B . ∠2﹣∠1C . 180°﹣∠2+∠1D . 180°﹣∠1+∠28. (2分) (2016七下·绵阳期中) 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A .B .C .D .9. (2分) (2016七下·绵阳期中) 如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,则∠AOF的度数为()A . 120°B . 125°C . 130°D . 135°10. (2分) (2016七下·绵阳期中) 点P(x+2,x﹣2)不可能在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限11. (2分) (2017七下·重庆期中) 如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2017的坐标为()A . (504,﹣504)B . (﹣504,504)C . (﹣504,503)D . (﹣505,504)12. (2分) (2016七下·绵阳期中) 某校初一有甲、乙、丙三个班,甲班比乙班多4个女同学,乙班比丙班多1个女同学.如果把甲班的第一组调到乙班,乙班的第一组调到丙班,丙班的第一组调到甲班,那么三个班的女同学人数恰好相等.已知丙班第一组中共有2个女同学.甲、乙两班第一组各有几个女同学?()A . 甲班5人,乙班4人B . 甲班4人,乙班5人C . 甲班4人,乙班3人D . 甲班3人,乙班4人二、填空题 (共6题;共6分)13. (1分)若2+ 是一元一次不等式,则m=________.14. (1分)已知点M(a,3﹣a)是第四象限的点,则a的取值范围是________.15. (1分)新定义:[a , b]为一次函数y=ax+b(a≠0,a , b为实数)的“关联数”.若“关联数”[1,m-3]的一次函数是正比例函数,则关于x的方程的解为________ .16. (1分) (2016七下·绵阳期中) 如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是________ (填序号).17. (1分) (2017七下·重庆期中) 如图,在矩形内有两个相邻的正方形,面积分别为2和4,则图中阴影部分的面积是________.18. (1分) (2016七下·绵阳期中) 如图,已知A(﹣2,3)、B(6,﹣1),AB交x轴于点C,交y轴于点D.点D的坐标为________.三、解答题 (共6题;共56分)19. (5分) (2019七下·兰州月考) 已知互为相反数,且求的值.20. (5分) (2016七下·绵阳期中) 解方程组.21. (16分) (2016七下·绵阳期中) 在平面直角坐标系中,△ABC三个顶点的位置如图(每个小正方形的边长均为1).(1)请画出△ABC沿x轴向右平移3个单位长度,再沿y轴向上平移2个单位长度后的△A′B′C′(其中A′、B′、C′分别是A、B、C的对应点,不写画法).(2)直接写出A′、B′、C′三点的坐标:A′(________,________);B′(________,________);C′(________,________).(3)求△ABC的面积.22. (5分) (2016七下·绵阳期中) 解三元一次方程组:.23. (10分) (2016七下·绵阳期中) 在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC 的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.24. (15分) (2016七下·绵阳期中) 某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?四、附加题 (共1题;共10分)25. (10分) (2019·南岸模拟) 夏日来临,为了保证顾客每天都能吃到新鲜水果,“每日鲜果”水果店要求当日批发购进的某水果当夭必须全部售出.该水果购进的价格为5元/千克.经调查发现,当销售单价为10元/千克时,销售量为200千克;销售单价每上涨1元/千克,销售量就会减少40千克.(1)若每天至少卖出120千克,销售单价最高定为多少?(2)某天“每日鲜果”水果店按(1)中最高售价的方案进货,以(1)中的最高售价销售了3a千克的水果后,店内保鲜及冷凝系统发生故障,导致剩下水果中的a%变质而无法销售.店长马上决定将剩余可销售的水果立刻榨汁,并分装保鲜瓶中(每瓶能装果汁0.5千克)售卖,随后果汁被一抢而空.已知此水果的出汁率为40%(即1千克水果可榨出0.4千克果汁),每瓶果汁售价为10元.若当天销售完毕后水果店因销售此水果获得的总利润为648元.求a的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共56分)19-1、20-1、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、24-3、四、附加题 (共1题;共10分) 25-1、25-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年河南省驻马店市泌阳县七年级(下)期中数学试卷一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0B.2C.﹣2D.﹣62.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.725.下列方程组中,不是二元一次方程组的是()A.B.C.D.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1C.1D.07.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1B.9x+7x+1C.x+x=1D.x﹣x=110.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为mm2.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为个单位长度,线段AC的长度为个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为个单位长度,点P在数轴上表示的数为;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N 从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N 相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?2017-2018学年河南省驻马店市泌阳县七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0B.2C.﹣2D.﹣6【分析】把x═2代入方程x+a=﹣1得出一个关于a的方程,求出方程的解即可.【解答】解:∵x=2是方程x+a=﹣1的根,∴代入得:×2+a=﹣1,∴a=﹣2,故选:C.【点评】本题考查了一元一次方程的解和解一元一次方程,解此题的关键是得出一个关于a的方程.2.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b【分析】根据等式的性质,可得答案.【解答】解:A、左边除以2,右边加2,故A错误;B、左边加2,右边加﹣2,故B错误;C、两边都除以﹣2,故C正确;D、左边除以2,右边乘以2,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个【分析】根据等式的性质,可得答案.【解答】解:由第①个天平,得一个球等于两个长方体,故③不符合题意;两个球等于四个长方体,故②不符合题意,两个球等于四个长方体,故④符合题意;故选:B.【点评】本题考查了等式的性质,利用等式的性质是解题关键.4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.72【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=17时,3x+21=72;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是65.故选:C.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.下列方程组中,不是二元一次方程组的是()A.B.C.D.【分析】依据二元一次方程组的定义求解即可.【解答】解:A.方程组是二元一次方程组,与要求不符;B.方程组中,含有三个未知数,不是二元一次方程组,符号要求;C.方程组是二元一次方程组,与要求不符;D.方程组是二元一次方程组,与要求不符.故选:B.【点评】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1C.1D.0【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得m,n的值,再根据1的任何次幂都等于1,可得答案.【解答】解:把代入方程组得:,解得:,则(m+n)2018=12018=1,故选:C.【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程组得出关于m,n的方程组是解题关键.7.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数【分析】把x看做已知数求出y,即可确定出正整数解.【解答】解:方程3x+y=7,解得:y=﹣3x+7,当x=1时,y=4;x=2时,y=1,则方程的正整数解有2组,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.【分析】根据关键语句“若每组7人,余3人”可得方程7y+3﹣x;“若每组8人,则缺5人.”可得方程8y﹣5=x,联立两个方程可得方程组.【解答】解:设运动员人数为x人,组数为y组,由题意得:列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1B.9x+7x+1C.x+x=1D.x﹣x=1【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【分析】本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200×﹣800≥800×5%,解出x的值即可得出打的折数.【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.【点评】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=﹣2.【分析】根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求解.【解答】解:根据题意得|a|﹣1=1,且a﹣2≠0,解得:a=﹣2.故答案是:﹣2.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=2.【分析】先求得方程4x+3=7的解,然后将x的值代入方程5x﹣1=2x+a,然后可求得a的值.【解答】解:∵4x+3=7,∴x=1.∵关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,∴方程5x﹣1=2x+a的解为x=1.∴5﹣1=2+a,解得:a=2.故答案为:2.【点评】本题主要考查的是同解方程的定义,熟练掌握同解方程的定义是解题的关键.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是m>﹣2.【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【解答】解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点评】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于﹣.【分析】利用非负数的性质列出关于x,y及z的方程组,求出方程组的解即可得到x,y,z的值,确定出x+y+z的值.【解答】解:∵(2x﹣4)2+(x+y)2+|4z﹣y|=0,∴,解得:,则x+y+z=2﹣2﹣=﹣.故答案为:﹣.【点评】此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为375mm2.【分析】设小长方形的长为xmm,宽为ymm,观察图形发现“3x=5y,2y﹣x=5”,联立成方程组,解方程组即可得出结论.【解答】解:设小长方形的长为xmm,宽为ymm,由题意,得:,解得:,则每个小长方形的面积为:25×15=375(mm2)故答案是:375.【点评】本题考查了二元一次方程组的应用,解题的关键是根据图形长宽之间的关系得出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据给定图形中长宽间的关系列出方程组是关键.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:+=1.【分析】利用题中方程的特点和方程的解之间的关系写出形式与题中的方程一样且解是x=2018的方程.【解答】解:方程+=1的解为x=2018.故答案为+=1.【点评】本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:2x+6﹣3x﹣3=6,移项合并得:﹣x=3,解得:x=﹣3;(2)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10.【点评】此题考查了解一元一次方程,解方程移项时注意要变号.18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)【分析】(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组.【解答】解:(1),由②得:x=4+y③,把③代入①得3(4+y)+4y=19,解得:y=1,将y=1代入①得:x=5,则方程组的解为:;(2),①﹣②×2得:x=2,把x=2代入①得:y=﹣1,方程组的解为:.【点评】本题考查的是二元一次方程组的解法,掌握代入消元法和加减消元法的一般步骤是解题的关键.19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.【分析】首先看懂题目所给的运算法则,再根据法则得到2x﹣(3﹣x)>0,然后去括号、移项、合并同类项,再把x的系数化为1即可.【解答】解:由题意得2x﹣(3﹣x)>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1,解集在数轴上表示如下:【点评】本题考查了解一元一次不等式,有理数的混合运算和在数轴上表示不等式的解集,正确掌握解不等式的基本步骤是解题的关键.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.【分析】(1)因为其余圆的直径从左到右依次递减0.2cm,可依次求出圆的长.(2)可设两圆的距离是d,根据5个圆的直径长和最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,以及圆之间的距离加起来应该为21cm,可列方程求解.【解答】解:(1)其余四个圆的直径依次为:2.8cm,2.6cm,2.4cm,2.2cm.(2)设两圆的距离是d,4d+1.5+1.5+3+2.8+2.6+2.4+2.2=214d+16=21d=故相邻两圆的间距为cm.【点评】本题考查理解题意的能力,以及识图的能力,关键是21cm做为等量关系可列方程求解.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为3个单位长度,线段AC的长度为8个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为(3﹣t)或(t﹣3)个单位长度,点P在数轴上表示的数为﹣2+t;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N 从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N 相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.【分析】(1)根据两点间的距离公式可求线段AB的长度,线段AC的长度;(2)先根据路程=速度×时间求出点P运动的路程,再分点P在点B的左边和右边两种情况求解;(3)根据等量关系点M、N两点间的距离为13个单位长度列出方程求解即可.【解答】解:(1)线段AB的长度为1﹣(﹣2)=3个单位长度,线段AC的长度为6﹣(﹣2)=8个单位长度;(2)线段BP的长为:当t≤3时,BP=3﹣t;当t>3时,BP=t﹣3,点P在数轴上表示的数为﹣2+t;(3)依题意有:4x+3x﹣8=13,解得x=3.此时点M在数轴上表示的数是﹣2+4×3=10.故答案为:(1)3;8;(2)(3﹣t)或(t﹣3);﹣2+t.【点评】本题考查了一元一次方程的应用,数轴,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买篮球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买篮球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.。

相关文档
最新文档