《一元一次方程》——《从算式到方程》教学设计

合集下载

人教版七年级数学上册一元一次方程《从算式到方程(第3课时)》示范教学设计

人教版七年级数学上册一元一次方程《从算式到方程(第3课时)》示范教学设计

从算式到方程(第3课时)教学目标1.理解等式的两条性质.2.会利用等式的性质解简单的一元一次方程.教学重点等式的两条性质.教学难点利用等式的性质解简单的一元一次方程.教学过程知识回顾【师生活动】教师提问:什么是方程?学生回答:含有未知数的等式叫做方程.教师提问:什么是解方程?什么是方程的解?学生回答:解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.教师出示题目,学生独立作答.下列方程中,以x=-2为解的是().A.3x-2=2x B.4x-1=3C.2x+1=x-1D.x-4=0学生回答:C.教师提问:我们可以直接看出像4x=24,x+1=3这样的简单方程的解,那方程0.52x-(1-0.52)x=80的解,你能直接得出吗?学生回答:显然不能.教师提问:像m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,是等式吗?学生回答:是.用等号表示相等关系的式子,叫做等式.教师总结:我们可以用a=b表示一般的等式.【设计意图】带领学生复习已学过的方程和等式知识,为本节课讲解“等式的性质”作铺垫.新知探究一、探究学习【问题1】请看下图,由它你能发现什么规律?【师生活动】教师提问:天平左右两边分别发生了怎样的变化?学生回答:(1)从左边到右边,天平两边分别加上了一个三角形积木.(2)从右边到左边,天平两边分别拿走了一个三角形积木.教师追问:天平左右两边发生以上变化后,还能平衡吗?学生回答:平衡.教师提示:等式就像平衡的天平,它具有与上面的事实同样的性质,同学们尝试总结一下.【新知】等式的性质1.等式两边加(或减)同一个数(或式子),结果仍相等.如果a=b,那么a±c=b±c.【问题2】请看下图,由它你能发现什么规律?【师生活动】教师提问:此时天平左右两边分别发生了怎样的变化?学生回答:(1)从左边到右边,天平两边的积木数量分别都扩大为原来的3倍.(2)从右边到左边,天平两边的积木数量分别都缩小为原来的3倍.教师追问:天平左右两边发生以上变化后,还能平衡吗?学生回答:平衡.教师提问:以上现象,如何从数学的角度用语言描述?同学们尝试总结出来.【新知】等式的性质2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么a b c c=. 【归纳】等式的性质抓“两同”.(1)同一种运算:等式的两边必须都进行同一种运算.(2)同一个数(或式子):等式两边加或减的必须是同一个数(或式子),乘的必须是同一个数,除以的必须是同一个不为0的数.【设计意图】从学生日常生活中熟悉的天平平衡知识入手,提出问题,激发学生的学习兴趣,让学生经历从生活实例到数学发现的过程,大胆尝试用数学眼光看生活现象,培养学生发现问题、解决问题的能力.二、典例精讲【例】利用等式的性质解下列方程:(1)x +7=26; (2)-5x =20; (3)5134x --=. 【分析】要使方程x +7=26转化为x =a (常数)的形式,需去掉方程左边的7,利用等式的性质1,方程两边减7就得出x 的值.你可以类似地考虑另两个方程如何转化为x =a 的形式.【答案】解:(1)两边减7,得x +7-7=26-7.于是x =19.(2)两边除以-5,得52055x -=--.于是x =-4. (3)两边加5,得513554x --+=+.化简,得913x -=.两边乘-3,得x =-27. 【归纳】解以x 为未知数的方程,就是把方程逐步转化为x =a (常数)的形式,等式的性质是转化的重要依据.一般地,从方程解出未知数的值后,可以代入原方程检验,看这个值能否使方程的两边相等.例如,将x =-27代入方程5134x --=的左边,得(27)541395-⨯--=-=. 方程的左右两边相等,所以x =-27是方程5134x --=的解. 【设计意图】通过例题的练习与讲解,巩固学生对已学知识的理解及应用. 课堂小结板书设计一、等式的性质二、利用等式的性质解方程课后任务完成教材第83页上面练习(1)~(4)小题.。

从算式到方程教学设计及反思

从算式到方程教学设计及反思

第二章、一元一次方程: 2.1 从算式到方程教学目标:1.了解什么是方程,什么是一元一次方程;2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;3.初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;4.经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。

教学重点:1.了解什么是方程、一元一次方程;2.分析实际问题中的数量关系,利用其中的相等关系列出方程。

教学难点:分析实际问题中的数量关系,利用其中的相等关系列出方程。

教学过程:一、游戏激趣同学们,大家小时候一定都说过儿歌吧?那么这一首儿歌你一定说过(屏幕出示):1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;……。

现在,我们就来“比一比,说儿歌”(屏幕出示)。

要求是:以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。

规则是:每一大组各派一名代表,看谁说得又快又好;第一大组,谁来?其他同学可听仔细了。

(进行比赛)我们知道,这是一首永远也说不完的儿歌,你能不能想个方法用一句话把这首儿歌说完呢(屏幕出示)?(根据学生回答,说出“x只青蛙x张嘴,2x只眼睛4x条腿,x声扑通跳下水”)(屏幕出示)这样,我们用字母x代替了具体的数,就用一句话代表了所有情况,使问题变得方便、简捷。

二、创设情境,引入课题1、同学们都挺喜欢吃巧克力吧!假如你妈妈从县城买了42颗你最喜欢吃的巧克力,你准备怎么处理呢?好东西要与好朋友分享,对吧?如果你和你的好朋友一人一半,你分得多少呢?我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗?如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。

此时你又分得多少颗?(让学生自己回答出两种解法——代数方法和算术方法)2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。

人教版七年级数学上册一元一次方程《从算式到方程(第1课时)》示范教学设计

人教版七年级数学上册一元一次方程《从算式到方程(第1课时)》示范教学设计

从算式到方程(第1课时)教学目标1.感受运用代数法解决问题的必要性,体会“方程”是解决实际问题的有效工具.2.理解方程的定义,会设未知数,列方程.3.感受用方程解决实际问题的优越性,体会从算式到方程是数学的进步.教学重点会设未知数,列方程.教学难点分析实际问题中的相等关系,并利用相等关系正确列出方程.教学过程新课导入【思考】小明向小蓝询问年龄,小蓝说:“我的年龄乘2减5得21”.小明立刻说出了小蓝的年龄,你会吗?【师生活动】学生回答:年龄=(21+5)÷2=13.教师提问:问题中蕴含的数量关系是什么?学生回答:年龄×2-5=21.【设计意图】从学生熟知的问题入手,引出用算式解决问题的本质是找出问题中的数量关系,为进一步根据具体问题列方程做好铺垫.新知探究一、探究学习【问题】一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?你会用算术方法解决这个问题吗?列算式试试.【师生活动】教师提问1:如何表示客车和卡车“同时同向行驶”?教师提问2:如何表示“客车比卡车早1 h经过B地”?教师提问3:如何用算术方法求“A,B两地间的路程”?学生思考并回答:行驶1 km 的路程,客车所用时间是170h ;行驶1 km 的路程,卡车所用时间是160h ; 行驶1 km 的路程,客车比卡车少用170160⎛⎫- ⎪⎝⎭h ;行驶1170160⎛⎫÷- ⎪⎝⎭km 的路程,客车比卡车少用1 h .教师总结:可见,列算式比较困难,不容易想.教师追问4:如果设A ,B 两地相距x km ,你能分别列式表示客车和卡车从A 地到B 地的行驶时间吗?教师分析,学生回答. (1)列表:(2)在上面的表格中,有一些未知的量,根据设A ,B 两地相距x km ,分别列式表示客车和卡车从A 地到B 地的行驶时间,完成表格.教师提问5:如何用式子表示两车的行驶时间之间的关系? 学生分作讨论并回答,教师总结:寻找相等关系,列方程. 卡车行驶时间-客车行驶时间=1,列方程:16070x x -=. 教师总结:我们已经知道,方程是含有未知数的等式,上面的等式中的x 是未知数,这个等式是一个方程.【新知】方程必须满足两个条件: (1)是等式;(2)化简后含有未知数.注意:方程是等式,但等式不一定是方程,如3+1=4是等式,但不含未知数,所以不是方程.教师提问6:用算术方法和用列方程法解决这个问题,各有什么特点?学生回答:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只包含已知数.用列方程法解题时,方程中既含有已知数,又含有用字母表示的未知数.教师提问7:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?学生回答:设卡车从A地到B地的行驶时间为t h,则客车从A地到B地的行驶时间为(t-1) h,依据路程相等可得:70(t-1)=60t.求出t之后,60t就是路程.【归纳】列方程的一般步骤如下:(1)设未知数,一般求什么就设什么为x.(2)分析题意,找相等关系.(3)根据相等关系列方程.【设计意图】教师引导学生采用不同设未知数的方法列方程,让学生体会解题策略的多样性.二、典例精讲【例1】根据下列问题,设未知数并列出方程:(1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1 700 h,预计每个月再使用150 h,经过多少个月这台计算机的使用时间达到规定的检修时间2 450 h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?【答案】解:(1)设正方形的边长为x cm.列方程为4x=24.(2)设x个月后这台计算机的使用时间达到2 450 h,那么在x个月里这台计算机使用了150x h.列方程为1 700+150x=2 450.(3)设这个学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x.列方程为0.52x-(1-0.52)x=80.【设计意图】将简单的列方程题目大胆地放给学生自主、合作学习,学生通过展示自己的学习成果,进一步激发学习兴趣.通过例题1的练习与讲解,让学生学会如何列方程解决实际问题.课堂小结板书设计一、方程的定义二、列方程的一般步骤课后任务完成教材第80页练习1~4题.。

一元一次方程——从算术到方程

一元一次方程——从算术到方程

一元一次方程——从算式到方程教学目标1、认识目标:知道什么是一元一次方程,方程的意义。

2、能力目标:经历具体问题抽象出方程,让学生尝试归纳一元一次方程的概念,懂得一元一次方程的含义。

3、情感、态度与价值观:体验数学知识来源于生活,同时又效劳于生活。

培养学生独立思考的习惯,建立方程思想。

教学重难点教学重点:一元一次方程的概念和含义。

教学难点:具体问题转化成方程问题。

学情分析在小学算术中,学生学习了用算式的方法解决实际问题,随之知识的深入,设元直接参与计算,形成方程越来越方便。

本节课是根底,是思想的一个转折点,所以对于学生和认知的继续都有着很重要的意义。

教法教学方法:引导学生对身边事物的观察,倡导学生参与探究归纳,师生互动概述发生过程。

“教无定法教必有法〞,教学方法的得当才能完本钱节课教学目标的有效完成。

根据初一学生的学情和班级学生的不同学情制定人人可用,人人可尽其用的教学方法和环节设计师本节课教法的关键。

综合考虑我设计了上述教学方法。

教学手段:运用多媒体,实现现代化教学手段辅助教学过程学法学生的学法本是教学的最高追求。

首先,教师营造的环境,引导学生进入佳境,从熟悉的到陌生的,让学生下意识的运用自己的学情去探寻未知的领域并形成自己的储藏。

在这个过程中,下意识的学习能力的运用将会使自己开掘更高或更多的能力和知识,也会收获丰富的情感、价值观。

教学过程一、创设情境,思想转变开篇讲述数学开展史,进而引入用字母表示未知数的代数领域,字母可以像数字一样参与计算,引出未知数的伟大意义,从而引入方程思想。

1、讲述算术和方程的不同意义。

2、引出未知数x,丢番图的故事。

二、师生合作,列式总结通过故事,将未知量全部用字母表示。

再通过寻找等量关系,列出等式,总结概念一:方程的概念。

比照发现方程的优点。

三、稳固提升,习题演练出例如题,并通过算术方法和方程方法进行解答感受他们的不同和意义。

小洁:你了解方程吗?讲述方程的知识:1、方程的概念;2、方程的特点;3、方程的元;4、方程的解归纳一元一次方程通过方程的特点归纳出特殊些一类方程:一元一次方程;并分析出它的特点。

从算式到方程教学设计教案

从算式到方程教学设计教案

从算式到方程教学设计教案
一、教学目标
1、基本掌握从算式到方程的概念,能够把算式转化为方程,能解决
一元一次方程组;
2、能够灵活运用适当的算法解决算式转化为方程的问题,熟练掌握
解一元一次方程的方法。

二、教学重点
1、掌握从算式到方程的概念;
2、掌握从算式转化为方程的算法;
3、掌握解一元一次方程的方法。

三、教学过程
1.交流提问:本节课将学习从算式到方程的概念,在开始本节课前,
大家交流一下以前对方程的了解情况。

让学生说出他们之前对方程的认知,让孩子们了解方程的概念,让他们更加熟悉方程的概念。

2.精讲从算式到方程的概念:老师结合部分例题,举一反三,讲解从
算式到方程的概念。

让学生熟悉从算式到方程的概念,通过演示好例子,
让学生更好地理解从算式到方程的概念,以促使他们更好地记住和使用概念。

3.练习练习:结合老师讲课的知识点,让学生认真完成练习题,让学
生运用所学知识,便于他们更好地理解从算式到方程的概念,以及从算式
转化为方程的方法,有效帮助学生学习从算式到方程。

4.要点梳理:把学生练习完后,老师需要复习答案,结合学生的实际情况,把重要的考点和重点再次仔细梳理。

第三章一元一次方程--从算式到方程教学设计

第三章一元一次方程--从算式到方程教学设计

教学难点:分析实际问题中的数量关系,利用其中的相等关系列出方程。

教学过程:一、游戏激趣同学们,大家小时候一定都说过儿歌吧?那么这一首儿歌你一定说过(屏幕出示):1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;……。

现在,我们就来“比一比,说儿歌”(屏幕出示)。

要求是:以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。

规则是:每一大组各派一名代表,看谁说得又快又好;第一大组,谁来?其他同学可听仔细了。

(进行比赛)我们知道,这是一首永远也说不完的儿歌,你能不能想个方法用一句话把这首儿歌说完呢(屏幕出示)?(根据学生回答,说出“x只青蛙x张嘴,2x只眼睛4x条腿,x声扑通跳下水”)(屏幕出示)这样,我们用字母x代替了具体的数,就用一句话代表了所有情况,使问题变得方便、简捷。

二、创设情境,引入课题1、同学们都挺喜欢吃巧克力吧!假如你妈妈从县城买了42颗你最喜欢吃的巧克力,你准备怎么处理呢?好东西要与好朋友分享,对吧?如果你和你的好朋友一人一半,你分得多少呢?我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗?如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。

此时你又分得多少颗?(让学生自己回答出两种解法——代数方法和算术方法)2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。

今天这一节课我们就共同来研究“2.1节从算式到方程”。

3、什么是方程?同学们还记得吗?请大家回忆一下。

、4、刚才的问题是用列方程的方法解答的请举手。

确实,方程也是解决问题的一种好方法。

(设计意图:通过巧克力问题,1、让学生认识到列方程也是解决数学问题的一个好方法,甚至有时比算术方法要简单,2、引出方程的概念)三、呈现问题,自主探索1、请你用算术方法或列方程解决下列问题:每一道题你都可以选择用算术方法还是列方程解决,只要想到方法的就到黑板上来写,不需要举手,如果列算术请写在左边,如果列方程请写在右边。

2024年人教版七年级上册教学设计 第五章 一元一次方程方程

5.1.1从算式到方程课时目标1.通过引入实际问题情境,让学生在算式、代数两种方式下解决问题,体会由算术到代数是数学的一大进步,从而培养学生分析、归纳和抽象概括的思维能力,初步认识建立数学模型的思想.2.经历用含有未知数的等式表示实际问题中的相等关系,感悟方程的现实意义,理解方程的概念,培养学生获取信息、分析问题、处理问题的能力,提升方程模型的应用意识.3.通过数学背景材料,让学生理解并掌握方程、一元一次方程及其相关概念的内涵,培养学生的阅读理解、拓展探究的能力,增强学生的数学应用意识,调动学生学习数学的主动性.学习重点寻找相等关系列出方程,方程、一元一次方程及其相关概念.学习难点寻找相等关系列出方程的意识和过程.课时活动设计情境引入问题:甲、乙两支登山队沿同一条路线同时向一山峰进发.甲队从距大本营1 km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km.多长时间后,甲队在途中追上乙队?学生先独立思考、作答,然后小组交流合作,最后选派学生代表板演展示,教师巡视指导.解:甲队追上乙队所用的时间为3−11.2−0.8=20.4=5(小时).教师适时追问:(1)这是算术解法,同学们,你们知道这样做的根据吗?(2)你还有其它的解决方法吗?教师引导学生尝试通过列方程的方法来解决这个问题.解:设x小时后,甲队在途中追上乙队.当甲队追上乙队时,甲队距大本营的路程为(1.2x+1)km,乙队距大本营的路程为(0.8x+3)km.因为甲队在途中追上乙队,即甲队距大本营的路程=乙队距大本营的路程,于是1.2x+1=0.8x+3.设计意图:通过设置这个学生熟悉的行程问题,让学生尝试用自身拥有的数学知识(算术方法)解决,然后逐步引导学生用含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式——方程,目的在于突出方程的根本特征,为引出方程的概念作铺垫.探究新知探究1方程的概念和列方程教师请同学们按照教学活动1中的方法,先设出未知数,再根据问题中的相等关系列出含有未知数的等式.学习先独立思考解答下列两个问题,然后再进行小组谈论,最后选派代表板演展示.问题1:用买3个大水杯的钱,可以买4个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?分析:根据题意,可知3个大水杯的总价=4个小水杯的总价,大水杯的单价-小水杯的单价=5,总价=数量×单价.因此,只要设出大水杯的单价或小水杯的单价,就可以列出方程了.解:设大水杯的单价为x元,那么小水杯的单价为(x-5)元.因为用买3个大水杯的钱,可以买4个小水杯,所以3x=4(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.问题2:如图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为85(即宽是长的58).这枚纪念币的长和宽分别是多少毫米?分析:根据题意,可知这个长方形的宽=58×长方形的长,长方形的面积=长×宽,因此,只要设出长方形的长或宽,就可以列出方程了.解:设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,面积可以表58x2mm2.已知纪念币的面积为4000mm2,所以58x2=4000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.教师引导学生归纳:像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.教师适时追问:(1)你能解释这些方程的左边、右边各表示什么意思吗?(2)对于根据问题中的相等关系列方程,说说你的体会?学生思考,小组讨论交流.教师引导学生归纳:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.这个过程可以表示如下:教师进一步指出:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.探究2解方程和方程的解问题3:请同学们尝试解方程1.2x+1=0.8x+3.学生先独立解答,然后再小组交流,教师巡视指导.解:可以发现,当x=5时,左边=1.2×5+1=7,右边=0.8×5+3=7,这时方程左右两边的值相等.教师引导学生归纳:一般地,使方程左、右两边的值相等的未知数的值,叫作方程的解.例如,x=5就是方程1.2x+1=0.8x+3的解.求方程的解的过程,叫作解方程.判断未知数是否为方程的解的具体步骤:(1)把未知数的值分别代入方程的左、右两边进行计算;(2)若左边=右边,则这个未知数是方程的解;反之,则不是.探究3一元一次方程的概念问题4:观察下列方程,你有什么发现.1.2x+1=0.8x+3;3x=4(x-5).先让学生独立思考,自主探索,然后将分析结果在小组内进行交流,形成共识,最后由学生代表回答问题,教师巡视指导学生的学习情况.解:这些方程中只有1个未知数x,且未知数x的次数都是1.引导学生归纳出一元一次方程的概念:一般地,如果方程中只含有一个未知数(元),且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫作一元一次方程.设计意图:通过设置一系列问题,突出方程的根本特征,使学生认识到从算式到方程是更有力、更方便的数学工具,从算术方法到代数方法是数学的一大进步.初步培养了学生由实际问题抽象出方程模型的能力.典例精讲例1根据下列问题,设未知数并列出方程:(1)某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?(2)如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.分析:(1)根据题意,可知女生人数-男生人数=80,并且女生人数=全体学生数×52%,因此,只需设出全体学生数就可以列出方程了;(2)由题意,可知扩大后的绿地的长=正方形绿地的长+5,扩大后的绿地面积=500,所以只需设出原来绿地的长就可以列出方程了.解:(1)设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x-(1-0.52)x=80.(2)设正方形绿地的边长为x m,那么扩大后的绿地面积为(x2+5x)m2,根据“扩大后的绿地面积是500m2”,列得方程x2+5x=500.例2(1)x=2,x=32是方程2x=3的解吗?(2)x=10,x=20是方程3x=4(x-5)的解吗?解:(1)当x=2时,方程2x=3的左边=2×2=4,右边=3,方程左、右两边的值不相等,所以x=2不是方程2x=3的解;当x=32时,方程2x=3的左边=2×32=3,右边=3,方程左、右两边的值相等,所以x=32是方程2x=3的解.(2)当x=10时,方程3x=4(x-5)的左边=3×10=30,右边=4×(10-5)=20,方程左、右两边的值不相等,所以x=10不是方程3x=4(x-5)的解;当x=20时,方程3x=4(x-5)的左边=3×20=60,右边=4×(20-5)=60,方程左、右两边的值相等,所以x=20是方程3x=4(x-5)的解.例32x+1=0.8x+3,3x=4(x-5),0.52x-(1-0.52)x=80,它们有什么共同特征?解:(1)只含有一个未知数x;(2)未知数x的次数都是1;(3)整式方程.设计意图:将列方程解决实际问题这一本章的教学难点分散在本章教学的每一节课中是设置这一系列教学活动的目的,化整为零地培养学生由实际问题抽象出方程模型的能力,持续渗透建模思想.教学中,通过先让学生独立思考、然后再进行小组合作的学习活动,既能培养学生的阅读理解能力、分析问题、解决问题的能力,又能提高学生的抽象思维能力.巩固训练1.x=3是下列哪个方程的解(B)A.2x+7=11B.5x-8=2x+1C.3x=1D.-x=32.小芬买了15份礼物,共花了900元,已知每份礼物内都有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为x元,则依题意可列出下列哪一个一元一次方程(C)A.15(2x+20)=900B.15x+20×2=900C.15(x+20×2)=900D.15×x×2+20=9003.当m=3或1时,关于x的方程x|2-m|+1=0是一元一次方程.4.下列式子中,哪些是方程,哪些是一元一次方程?并说明理由.①2x+1;②2m+15=3;③3x-5=5x+4;④x2+2x-6=0;⑤-3x+1.8=3y;⑥3a+9>15.解:上述式子是方程的有②③④⑤,其中②③是一元一次方程.理由:①是含有未知数的式子,不是等式;⑥是不等式;而②③④⑤是含有未知数的等式,符合方程的定义,其中④未知数的次数是2,⑤含有两个未知数,只有②③符合一元一次方程的定义,因此它们是一元一次方程.5.根据下列问题,设未知数并列出方程:(1)某长方形足球场的周长为310米,长和宽之差为25米,求这个足球场的宽;(2)《数学学习方法报》每份0.6元,《数学周报》每份0.5元,小明用10元钱买了两种报纸共18份,他买的两种报纸各多少份?解:(1)设这个足球场的宽为x米,则长为(x+25)米,依题意,得2x+2(x+25)=310.(2)设《数学学习方法报》买了x份,则《数学周报》买了(18-x)份,则有0.6x+0.5(18-x)=10.设计意图:通过练习,巩固方程及一元一次方程的概念,促进学生对知识的理解,使学生更加深刻地把握概念的内涵和外延,持续体会数学建模思想.课堂小结1.这节课你学到了哪些知识?2.在探寻方程的有关概念的学习过程中,你学到了哪些数学方法?积累了哪些活动经验?3.在利用列方程解实际问题的过程中,对你有哪些启示?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯.课堂8分钟.1.教材第118页习题5.1第1,2,3,5,6题.2.七彩作业.5.1.1从算式到方程1.解决数学实际问题的方式:(1)算式方法.(2)用含有未知数的等式表示问题中的相等关系.2.方程:含有未知数的等式叫作方程.3.用方程的方法解决实际问题是更方便的数学工具.4.方程的解、解方程的概念.5.一元一次方程的概念.教学反思5.1.2等式的性质课时目标1.通过使学生亲身经历运用所学知识探索等式的性质的过程,激发学生的数学学习兴趣,增强学生学好数学的信心,进而培养学生自主探究和实践能力.2.通过让学生从事自主学习、合作交流等数学活动,理解并掌握等式的性质,在实际操作中学习知识,在解决问题中深化认知,发展和提高学生的应用意识.3.通过使学生经历利用等式的性质解方程的过程,逐步培养学生观察、分析、概括的逻辑思维能力,从而渗透“化归”的思想.学习重点等式的性质和运用.学习难点应用等式的性质把简单的一元一次方程化成“x=m”的形式.课时活动设计情境引入用观察的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.解:对于(1),通过观察,可以看出x=9是方程的解;但是(2)不容易直接看出来.追问:既然不容易直接看出来,那么我们还能借助哪些知识来解这个方程呢?设计意图:设置悬念,引出等式的性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法作铺垫.探究新知探究1等式的性质问题1:请同学们填空,使式子成立.(1)如果m=n,那么n=m;(2)如果x+2x=3x,那么3x=x+2x;(3)如果a=3,b=3,那么a= b.(填“>”“=”或“<”)学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师归纳:诸如m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式.我们可以用a=b表示一般的等式.首先,给出关于等式的两个基本事实:(1)等式两边可以交换.如果a=b,那么b=a;(2)相等关系可以传递.如果a=b,b=c,那么a=c.思考:在小学,我们已经知道:等式两边同时加(或减)同一个正数,同时乘同一个正数,或同时除以同一个不为0的正数,结果仍相等.引入负数后,这些性质还成立吗?完成下列题目,试试你的猜想是否成立.问题2:用适当的数或整式填空,使所得结果仍是等式.(1)如果3x=-2x-1,那么3x+2x=-1,两边同时加2x;(2)如果12x=5,那么x=10,两边同时乘2;(3)如果13x-2=x-12,那么13x-x=-12+2,两边同时加2-x.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师根据学生回答情况作出评价,适时进行追问:(1)在运用等式的性质时,等式的两边要做怎样的变化?(2)在等式两边同除以一个数时,应注意什么?师生共同归纳:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.用符号语言描述:如果a=b,那么a±c=b±c.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用符号语言描述:如果a=b,那么ac=bc;如果a=b,c≠0,那么=.探究2利用等式的性质解方程问题3:利用等式的性质解下列方程:(1)x+3=5;(2)3x+2=8.学生独立思考,小组交流讨论,并派学生代表上台板演.解:(1)方程两边减3,得x+3-3=5-3.于是x=2.(2)方程两边减2,得3x+2-2=8-2.化简,得3x=6.方程两边除以3,得x=2.教师引导学生归纳:一般地,从方程解出未知数的值从后,通常需要代入原方程检验,看这个值能否使方程左、右两边的值相等.例如,将x=2代入方程3x+2=8的左边,得3×2+2=8.方程左、右两边的值相等,所以x=2是方程3x+2=8的解.解以x为未知数的方程,就是把方程逐步转化为x=m(常数)的形式,等式的性质是转化的重要依据.设计意图:设置上述教学环节,让学生借助具体的式子来验证等式的两条性质,加深对等式的性质的认知,同时又用文字语言和符号语言两种形式来描述这些性质,目的在于让学生切实理解等式的性质,体会如何用数学的符号语言抽象概括地表示它们.典例精讲例1根据等式的性质填空,并说明依据:(1)如果2x=5-x,那么2x+=5;(2)如果m+2n=5+2n,那么m=;(3)如果x=-4,那么·x=28;(4)如果3m=4n,那么32m=·n.解:(1)2x+x=5;根据等式的性质1,等式两边加x,结果仍相等.(2)m=5;根据等式的性质1,等式两边减2n,结果仍相等.(3)-7·x=28;根据等式的性质2,等式两边乘-7,结果仍相等.(4)32m=2·n;根据等式的性质2,等式两边除以2,结果仍相等.例2利用等式的性质解下列方程:(1)x+7=26;(2)-5x=20;(3)-13x-5=4.分析:要使方程x+7=26转化为x=m(常数)的形式,需要去掉方程左边的7,利用等式的性质1,方程两边减7就得出x的值.类似地,利用等式的性质,可以将另外两个方程转化为x=m的形式.解:(1)方程两边减7,得x+7-7=26-7.于是x=19.(2)方程两边除以-5,得-5-5=20-5.于是x=-4.(3)方程两边加5,得-13x-5+5=4+5.化简,得-13x=9.方程两边乘-3,得x=-27.设计意图:通过例题,让学生在观察等式的两边的变化情况后运用等式的性质做题,进一步加深学生对等式性质的准确把握,同时有助于引导学生利用等式的性质研究方程的解法,对于需要运用两次等式的性质来解方程的题目,需要学生有一定的思维顺序,能够锻炼学生的思维能力.巩固训练1.如果mx=my,那么下列等式中不一定成立的是(D)A.mx+1=my+1B.mx-3=my-3C.-12mx=-12myD.x=y2.下列方程的变形,符合等式的性质的是(D)A.由2x-3=7得2x=7-3B.由-3x=5得x=5+3C.由2x-3=x-1得2x-x=-1-3D.由-14x=1得x=-43.用适当的数或整式填空,使所得的式子仍是等式,并注明根据.(1)如果x+2=3,那么x=3+-2,根据是等式的性质1;(2)如果4x=3x-7,那么4x-3x=-7,根据是等式的性质1;(3)如果-2x=6,那么x=-3,根据是等式的性质2;(4)如果12x=-4,那么x=-8,根据是等式的性质2.4.利用等式的性质解方程:(1)x-4=1;(2)3x+5=0.解:(1)方程两边加4,得x-4+4=1+4.于是x=5.(2)方程两边减5,得3x+5-5=0-5.整理,得3x=-5.方程两边除以3,33=-53.于是x=-53.设计意图:通过巩固训练,进一步巩固学生对等式的性质的认识,让学生充分认识到如何应用等式的性质去解题.课堂小结1.本节课你学到了什么知识?2.在运用等式的性质解题时,应该注意什么?3.在运用等式的性质解方程时,你获得了哪些宝贵的经验?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯,让学生在对课堂所学有系统认知的基础上,深化对知识的理解程度.课堂8分钟.1.教材第118页习题5.1第4,7,8,10,11题.2.七彩作业.5.1.2等式的性质1.关于等式的两个基本事实:等式两边可以交换.如果a=b,那么b=a.相等关系可以传递.如果a=b,b=c,那么a=c.2.等式的基本性质:等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.教学反思。

学习应用方程解决实际问题——从算式到方程教案设计

学习应用方程解决实际问题——从算式到方程教案设计从算式到方程教案设计一、教学目标通过本节课的学习,学生能够:1.掌握将实际问题转化为方程的方法;2.认识利用方程解决实际问题的重要性;3.掌握解方程的方法和技巧,熟练运用这些技巧和方法解决实际问题。

二、教学重点1.理解方程与实际问题的关系;2.掌握解方程的方法和技巧。

三、教学难点1.将实际问题转化为方程;2.解决复杂的实际问题。

四、教学方法讲授、练习与反思相结合。

五、教学内容1.方程与实际问题的关系在生活中,我们经常会遇到各种各样的实际问题,而实际问题不一定用算式就能解决。

因此,我们需要将实际问题转化为方程才能解决。

什么是方程呢?方程是用来表示未知数与已知数之间关系的数学语句。

通过将实际问题转化为方程,我们可以用数学方法解决问题。

例如:小明去买水果,买了苹果和香蕉两种水果,苹果6元一斤,香蕉8元一斤,共花费了24元。

苹果买了3斤,香蕉买了2斤。

问苹果和香蕉分别多少斤。

设苹果的重量为x,香蕉的重量为y,则有以下方程:6x + 8y = 24x + y = 5通过解方程可以得出:苹果3斤,香蕉2斤。

2.解方程的方法和技巧在解决实际问题过程中,我们需要掌握解方程的方法和技巧。

下面介绍一些常用的方法和技巧。

1)一元一次方程的解法一元一次方程指的是只有一个未知数,并且这个未知数的最高次数是一次的方程。

如:ax+b=0(a≠0)。

解一元一次方程的方法(1)两边加或减一个数(2)两边同时乘以或除以一个数(不允许除以0)(3)移项变号(4)利用等式的性质,如:2)二元一次方程的解法二元一次方程指的是有两个未知数,并且这两个未知数的最高次数都为一次。

如:ax+by=c,dx+ey=f。

解二元一次方程的方法(1)联立方程组(2)代入法(3)消元法(4)Cramer法则……六、教学实践1.通过教师讲授,学生笔记,展示练习等方式,让学生掌握将实际问题转化为方程的方法,认识利用方程解决实际问题的重要性,掌握解方程的方法和技巧。

从算式到方程教案

从算式到方程教案一、教学目标1.了解算式和方程的概念及区别2.学习将问题转化为算式和方程的过程3.掌握解一元一次方程的方法二、教学重点1.算式和方程的概念及区别2.将问题转化为算式和方程的过程3.解一元一次方程的方法三、教学内容及方法1. 算式和方程的概念及区别教学内容1.什么是算式2.什么是方程3.算式和方程的区别和联系教学方法1.通过例题介绍算式和方程的概念2.分组讨论,让学生自己总结算式和方程的区别和联系2. 将问题转化为算式和方程的过程教学内容1.问题的解法方法2.如何将问题转化为算式3.如何将算式转化为方程教学方法1.通过举例的方式,让学生了解问题的解法方法2.指导学生借助关键词、逻辑关系等方法将问题转化为算式3.指导学生将算式转化为方程,学生可以通过试误法、平衡法等方法进行转化3. 解一元一次方程的方法教学内容1.一元一次方程的定义2.解一元一次方程的步骤3.解一元一次方程的常见方法教学方法1.通过例题,让学生了解一元一次方程的定义2.指导学生掌握解一元一次方程的步骤,如整理方程、移项、消元、求解等3.介绍解一元一次方程的常见方法,如代入法、等式法、消元法等,并通过例题进行讲解和练习。

四、教学过程1.引入:通过生活中的例子和问题,让学生了解算式和方程的概念。

2.讲解:介绍算式和方程的概念及区别,指导学生如何将问题转化为算式和方程。

3.练习:分组讨论,解决一些常见问题和案例,学生通过实践了解如何将问题转化为算式和方程。

4.讲解:介绍一元一次方程的定义和解法步骤。

5.练习:通过例题辅导学生解一元一次方程,指导学生掌握解一元一次方程的方法。

6.总结:通过学生的回答和讨论梳理本课内容,强化学生认识和掌握。

五、教学评价1.以评价分组讨论的结果,是否能准确转化问题为算式和方程为主2.提供每组邀约的同学回答,根据回答多少得到得分3.搜集家庭作业中,学生对一元一次方程解法的掌握情况,整理汇报考核结果六、教学反思1.整合教材内容,重点突出和疏通,实现了既考查学生思维能力,又强化了技能巩固。

一元一次方程——从算式到方程

《一元一次方程》——《从算式到方程》教学设计【设计与执教者】:【教学目标】:知识与技能:1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、了解什么是方程,什么是一元一次方程及什么是方程的解。

过程与方法:1、会将实际问题抽象为数学问题,通过列方程解决问题;2、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法。

3、能结合具体例子认识一元一次方程的含义,体会设未知数列方程的过程,会用方程表示简单实际问题的相等关系。

情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。

【教材分析】:1、地位与作用:本节的内容是七年级数学上册第三章《一元一次方程》的第一节《从算式到方程》第一、二课时,首先通过一个具体的问题情境引入,使学生感受到用算术方法解决问题存在一定困难,从而积极探求新方法,体会数学的价值。

然后,通过列代数式,找相等关系引出方程、一元一次方程等概念。

本节内容是小学与初中知识的衔接点,通过方程的学习对于提高学生观察问题、研究问题、解决问题的能力,都是十分有利的。

2、教学重点:建立一元一次方程的概念。

3、教学难点:根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义。

【教学过程】:问题与情境教师活动学生活动一、创设情境,展示问题:问题1:章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远?地名时间王家庄10:00青山13:00秀水15:00 教师展示问题,要求用算术解法,让学生充分发表意见。

说明问题1中算术解法不容易,得出进一步学习的必要性。

学生独立思考,小组交流,代表发言,解释说明。

问题1的算术解法:(50+70)÷2=60(千米/时)60*5-70=230(千米)二、寻找关系,列出方程1、对于问题1,如果设王家庄到翠湖的路程是x 千米,则:路程时间速度王家庄-青山王家庄-秀水根据汽车匀速前进,可知各路段汽车速度相等,列方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元一次方程》——《从算式到方程》教学设计【设计与执教者】:广州市华颖中学刘春荣【教学目标】:知识与技能:1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、了解什么是方程,什么是一元一次方程及什么是方程的解。

过程与方法:1、会将实际问题抽象为数学问题,通过列方程解决问题;2、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法。

3、能结合具体例子认识一元一次方程的含义,体会设未知数列方程的过程,会用方程表示简单实际问题的相等关系。

情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。

【教材分析】:1、地位与作用:本节的内容是七年级数学上册第三章《一元一次方程》的第一节《从算式到方程》第一、二课时,首先通过一个具体的问题情境引入,使学生感受到用算术方法解决问题存在一定困难,从而积极探求新方法,体会数学的价值。

然后,通过列代数式,找相等关系引出方程、一元一次方程等概念。

本节内容是小学与初中知识的衔接点,通过方程的学习对于提高学生观察问题、研究问题、解决问题的能力,都是十分有利的。

2、教学重点:建立一元一次方程的概念。

3、教学难点:根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义。

问题与情境教师活动学生活动一、创设情境,展示问题:问题1:章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远?地名时间王家庄10:00青山13:00秀水15:00 教师展示问题,要求用算术解法,让学生充分发表意见。

说明问题1中算术解法不容易,得出进一步学习的必要性。

学生独立思考,小组交流,代表发言,解释说明。

问题1的算术解法:(50+70)÷2=60(千米/时)60*5-70=230(千米)二、寻找关系,列出方程1、对于问题1,如果设王家庄到翠湖的路程是x 千米,则:路程时间速度王家庄-青山王家庄-秀水根据汽车匀速前进,可知各路段汽车速度相等,列方程。

2、比一比:列算式与列方程有什么不同?哪一个更简便?3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么?结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。

找出相等关系,列出方程。

学生思考回答:1、王家庄-青山(X—50)千米,王家庄-秀水(X+70)千米。

2、汽车以每小时(X-50)÷3千米的速度从王家庄到青山;以每小时(X+70)÷5千米的速度从王家庄到秀水。

三、定义方程,建立模型1、定义:(板书)含有未知数的等式叫做方程。

练习一:判断下列式子是不是方程,是的打“√”,不是的打“x ”.(1)1+2=3 ( ) (4) ( )(2) 1+2x=4 ( ) (5) x+y=2 ( )(3) x+1-3 ( ) (6) x2-1=0 ( )练习二:根据下列问题,设未知数并列出方程。

(1) 小颖种了一株树苗,开始时树苗高为40厘米,栽种后树苗每周长高约15厘米,大约几周后树苗长高到1米。

(学生举例并完成练习一)师生合作,学生举出方程的例子。

(学生独立思考、互相讨570350+=-xx12≥+x解:如果设x 周后树苗长高到1米,那么依题意得到方程:_________. (2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的修检时间2450小时?解:经过x 月这台计算机的使用时间达到规定的修检时间2450小时,那么依题意得到方程:_________. (3)用一根长24cm 的铁丝围成一个长方形,使它长是宽的1.5倍,长方形的长、宽各应是多少? 解:如果设这个长方形的宽为X 米,那么长为_______米.由此依题意得到方程:________________。

(4)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?解:设这个学校的学生为x ,那么女生数为 ,男生数为 .由此依题意得到方程:________________。

[议一议]:上面的四个方程有什么共同点? 2、定义:只含有一个未知数(元X ),未知数的指数是1次,这样的方程叫做一元一次方程。

练习三:判断下列方程哪些是一元一次方程? (1)102=x (2)2062=+x x (3)52=+y x (4)825=+x (5)2732=x3、方程的解:做一做 填下表:提问:当x 等于多少时,1700+150x 的值是2450?4、归纳分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

一元一次方程列方程设未知数实际问题:−→−x 的值 1 2 3 4 5 6 7 … 1700+150x根据数量关系列出方程。

教师结合练习给出方程、一元一次方程的定义。

(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根)方程的解:使方程中左右两边相等的未知数的值就是这个方程的解.教师引导学生对上面的分析过程进行思考,将实际问题转化为数学问题的一般论,先分析出等量关系,再根据所设未知数列出方程)判断哪些是一元一次方程。

学生单独计算,并填表。

学生得出解决实际问题的模型。

过程。

四、训练巩固,课堂小结1、根据下列问题,设未数列方程,并指出是不是一元一次方程。

(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?(2)甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?(3)一个梯形的下底比上底多2㎝,高是5㎝,面积是40㎝2,求上底。

2、小结本节课你学到了哪些知识?哪些方法?五、布置作业A、必做85页,第1、5、6、7、8、9题;B、拓展阿凡提经过了三个城市,第一个城市向他征收的税是他所有钱财的一半又三分之一,第二个城市向他征收的税是他剩余钱财的一半又三分之一,到第三个城市里,又向他征收他经过两次交税后所剩余钱财的一半又三分之一,当他回到家的时候,他剩下了11个金币,问阿凡提原来有多少个金币?C、课堂评价1、本节课的主要知识点是:2、你对列方程这节课的感受是:3、这节课我的困惑是:解:(1)设跑x周.列方程400x=30004、(2)设甲种铅笔买了x枝,乙种铅笔买了(20-x)枝.列方程0.3x+0.6(20-x)=9(3)设上底为x cm,下底为(x+2)cm.列方程学生自己探索,独立完成,集体订正。

学生课后完成,并写学习心得。

分层练习:A组:1、在①2x+3y-1;②1+7=15-8+1;③1-12x=x+1④x+2y=3中方程有( )个.A.1B.2C.3D.42、若方程3ax-4=5(a已知,x未知)是一元一次方程,则a等于( )A.任意有理数B.0C.1D.0或13、x=2是下列方程( )的解.A.2x=6B.(x-3)(x+2)=0C.x2=3D.3x-6=04、x、y是两个有理数,“x与y的和的13等于4”用式子表示为( )()402521=++⨯xxA.43x y ++=B. 43x y +=C. ()43x y += D.以上都不对5、列式表示: (1)比x 小8的数:__________;(2)a 减去b 的13的差;(3)a 与b 的平方和:_______________;(4)个位上的数字是a 、十位上的数字是b 的两位数:_____________. B 组: 6、甲乙两运输队,甲队32人,乙队28人,若从乙队调走x 人到甲队,•那么甲队人数恰好是乙队人数的2倍,列出方程(32+x)=2(28-x)所依据的相等关系是_______________________________________________.(•填写题目中的原话) 7、甲乙两人从相距40千米的两地同时出发,向相而行,三小时后相遇.•已知甲每小时比乙多走3千米,求乙的速度,若设乙的速度为x 千米/时,列出方程为3x+3(x+3)=40,其中3(x+3)表示___________________________________________________. C 组: 8、某中学一、二年级共1000名学生,二年级学生比一年级少40人,•求该中学一年级人数是多少?(设未知数、列方程并估计问题的解). 9、甲乙两个数,甲数比乙数的2倍多1,乙数比甲数小4,求这两个数(用不同的方法设元、列方程并估计解) 10、方程17+15x=245,507035x x -+=, 2(x+1.5x)=24都只含有一个未知数,•未知数的指数都是1,它们是一元一次方程,方程x 2+3=4,x 2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?。

相关文档
最新文档