第二章测量误差和数据处理.
测量误差分析与数据处理(1)

2.1.2 测量误差的表示方法(续)
• 二、相对误差
• 1 、实际相对误差——绝对误差与实际值之比。
A
x A
100%
x
A 100% A
– 只具有大小、正负,但无量纲
– 接上例可得:
A1
1 100
100%
1%;
A2
1 5
100%
20%
– 相对误差可以表征测量的准确程度。
x x A0
• 重点:
– 误差的表示和分类 – 三种误差的特征及其处理方法 – 数据的处理 – 误差的合成
• 难点:
– 三种误差的特征及其处理方法
2.1 测量误差的基本原理
• 2.1.1 误差的定义 • 2.1.2 测量误差的表示方法 • 2.1.3 电子测量仪器误差的表示方法 • 2.1.4 一次直接测量时最大误差的估计
例1:
• 一个被测电压,真值U0=100V,用一只电压 表测量,指示值U为101V,则绝对误差:
U U U0 101100 1V
• 表明: 测得值比真值大1V,为正误差。
2.1.2 测量误差的表示方法(续)
• 2 、修正值(校正值)
C x A x
– 给出:通过校准由上一级标准以表格或曲线的形 式给出受检仪器的修正值。
– 等级度越低,仪器越准确。0.1、0.2是精密仪器 。
2.1.3 电子测量仪器的表示方法(续)
• (2)附加误差
– 是指仪器在超过规定的正常条件下所增加的误差, 与影响误差相似。例如:环境温度、电源电压等
– 例:MF-20型晶体管万用表。
• 基本误差: – 直流电压、电流为±2.5%
• 附加误差:
– 根据误差的性质,测量误差可分为系统误差、 随机误差、疏失(粗大)误差三类。
第2章 测量误差分析与数据处理习题课

解 按题意,功率测量允许的系统误差为
ΔP= 300 mW×5%=15 mW
20
又ΔP=uΔI+IΔu=ΔP1+ΔP2
根据等作用分配,有
P1
P2
P
2
I P / 2 15 2.5mA
u 23
则
u P / 2 15 0.075mA 75mV
I 2 100
9 .在测量不确定度的评定前,要对测量数据进行异常数据
判别,一旦发现有异常数据应先剔除之。(对)
4
三、选择题:
1 .若马利科夫判据成立,则说明测量结构中含有d。 ( a )随机误差 (b) 粗大误差 (c) 恒值系差 (d) 累进性变值系差 2 .在使用连续刻度的仪表进行测量时,一般应使被测量的数值尽可能在仪表满刻度值
5 .被测量的真值是客观存在的,然而却是无法获得的。 (对)
6 .系统误差的绝对值和符号在任何测量条件下都保持恒定, 即不随测量条件的改变而改变。(错)
7 .不论随机误差服从何种分布规律,均可用莱特准则判定 粗大误差。(错)
8 . A 类标准不确定度对应随机误差, B 类标准不确定度 对应系统误差。(错)
则此表在 50 μ A 点是合格的。要判断该电流表是否合格,应该在整个量程内取足够多的点进行检定。
7
答案: 8
答案:
P15 讲过
9
4 .对某电感进行了 12 次精度测量,测得的数值( mH )为 20.46 , 20.52 , 20.50 , 20.52 , 20.48 , 20.47 , 20.50 , 20.49 , 20.47 , 20.49 , 20.51 , 20.51 ,若要求在 P=95% 的置信概率下,该电感 真值应在什么置信区间内?
测量误差分析和实验数据处理.

《力学实验原理与技术》复习提纲(参考)第二章测量误差分析和实验数据处理本章內容:1. 测量误差基本概念2. 随机误差3. 系统误差4. 间接误差5. 测量结果的表示和不确定度6. 实验数据处理2.1 测量误差基本概念1. 测量——比较∙测量的方式:(1)直接测量:米尺量桌子可直接知道桌子长度。
(2)间接测量:由直接测量的数据,通过一定的函数关系,计算求得结果的测量方法∙ 静态测量与动态测量:按照被测量在测量过程中的状态是否随时间变化判断静态/动态,常规、稳态/过程、瞬态2. 误差——测量的质量∙真值:在一定时空条件下,某物理量的理想值,表达为A 。
真值仅为理想概念。
真值可以用修正过的测量值的算术平均值代替。
∙ 误差的表达方法:绝对误差: 测量值与被测量物理量的真值的差示值相对误差: 绝对误差与真值的百分比测量值相对误差:绝对误差与测量值x 的百分比[例1] 仪表的精度用额定相对误差(满度误差)表示。
额定相对误差:绝对误差与仪器满度值 A0的百分比。
A0——表盘上的最大值(满度值)。
仪器工作在满度值2/3以上区域。
思考题2:用万用表测电池电压1.5V ,选2V 档?200V 档?允许误差更小?3. 误差分类∙系统误差——多次测量同一被测量量过程中,误差的数值在一定条件下保持恒定或以可预知方式变化的测量误差的分量。
来源于测量仪器本身精度、操作流程、操作方式、环境条件。
∙随机误差——多次测量同一被测量量过程中,绝对值和符号以不可预知方式变化着的测量误差的分量。
具有随机变量特点,一定条件下服从统计规率的误差。
来源于测量中的随机因素:实验装置操作上的变动性、观测者本人的判断和估计读数上的变动性等。
2.2 随机误差1.随机误差的特点随机变量——依赖随机因素,以一定概率取值的变量,如:交通事故随机误差——随机变量的一种具体形式, 2. 随机误差的正态分布(1)随机误差分布特点:等精度条件下,对一物理现象测量N 次,得x1……xN个值(i=1, N )。
第二章测量数据处理及测量误差分析

第二章测量数据处理及测量误差分析测量数据处理及测量误差分析是科学实验中非常重要的一个环节,它涉及到对实验数据进行整理、处理以及对测量误差进行分析、评估的过程。
本章主要包括数据的整理、数据处理的常用方法、误差分析和误差处理方法等内容。
一、数据的整理在进行数据整理之前,首先要明确实验的目的和要求,明确需要获得的数据类型和数据量,有针对性地进行数据测量和记录。
数据整理主要包括:1.数据记录:将实验过程中获得的原始数据按照一定的格式记录下来,包括数据名称、数据值、测量单位等。
2.数据清洗:对记录下来的数据进行初步的筛选和清理,去除明显的异常值和错误数据,保留有效和可靠的数据。
同时,要注意将数据转换为适当的统计量,如平均值、中位数、标准差等。
二、数据处理常用方法数据处理是对记录下来的数据进行统计、分析和加工的过程,常用的数据处理方法有:1.统计分析:包括计算数据的平均值、中位数、众数等统计量,分析数据的分布特征,进行图表的绘制和描述。
2.走势分析:通过时间序列数据的走势分析,观察数据的变化规律,判断数据是否存在趋势性、周期性等特征。
3.相关分析:用于研究两组或多组数据之间的相关性,包括相关系数的计算和相关关系的绘图等。
4.假设检验:通过已知的数据样本对一些假设的合理性进行检验,判断假设是否成立并进行统计推断。
三、误差分析误差是指测量结果与真实值之间的差异,它是不可避免的,但可以通过分析和处理来减小误差的影响。
误差分为系统误差和随机误差两种。
1.系统误差:主要源于测量仪器、测量方法和实验设计的不确定性,它会导致测量结果的整体偏移,常常是可检测和可纠正的。
调整测量仪器的零点、校正仪器的偏差、改进实验设计等方法可以减小系统误差的影响。
2.随机误差:主要源于测量过程中的各种随机因素,如环境的变化、测量操作的不精确等。
随机误差是不可避免的,通过多次重复测量可以获得多组数据,然后进行数据的平均处理和统计分析,可以减小随机误差的影响。
检测技术 第二章:误差分析与数据处理

可以得到精确的测量结果,否则还可能损坏仪器、设备、元器件等。
2.理论误差 理论误差是由于测量理论本身不够完善而采用近似公式或近似值计算测量 结果时所引起的误差。例如,传感器输入输出特性为非线性但简化为线性 特性,传感器内阻大而转换电路输入阻抗不够高,或是处理时采用略去高 次项的近似经验公式,以及简化的电路模 型等都会产生理论误差。
误差,周期性系统误差和按复杂规律变化的系统误差。如图2.1所示,其中1为定值系差,2 为
线性系统误差,3为周期系统误差,4为按复杂规律变化的系统误差。 系统误差的来源包括仪表制造、安装或使用方法不正确,
测量设备的基本误差、读数方法不正确以及环境误差等。
系统误差是一种有规律的误差,故可以通过理论分析采 用修正值或补偿校正等方法来减小或消除。
•理论真值又称为绝对真值,是指在严格的条件下,根据一定的理论,按定义确定的数值。 例如三角形的内角和恒为180°一般情况下,理论真值是未知的。 •约定真值是指用约定的办法确定的最高基准值,就给定的目的而言它被认为充分接近于 真值,因而可以代替真值来使用。如:基准米定义为“光在真空中1/299792458s的时间 间隔内行程的长度”。测量中,修正过的算术平均值也可作为约定真值。
表等级为0.2级。
r=
0.12 100% 100% 0.12 A 100
在选仪表时,为什么应根据被测值的大小,在满足被测量数值范围的前提下,尽可能 选择量程小的仪表,并使测量值大于所选仪表满刻度的三分之二。在满足使用 要求时,满量程要有余量,一般余量三分之一,为了装拆被测工件方便。 (同一精度,量程越大,误差越大,故量程要小,但留余量)
第二章 误差分析与数据处理
三.测量误差的来源
1.方法误差 方法误差是指由于测量方法不合理所引起的误差。如用电压表测量电压时,
第二章 误差和分析数据的处理

第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
第二章 误差及分析数据处理

4.产生原因: 偶然因素 随机变化因素(环
境温度、湿度和气压 的微小波动)
三、误差的减免
1. 系统误差的减免 与标准试样的标准结果对照
(1) 对照实验: 与标准方法比较 回收实验 “内检”与“外检”
(2) 空白实验 (3) 校准仪器 (4)定期培训
•分析化学常用试验的方法检查系统误差的存在, 并对测定值加以校正,使之更接近真实值。常有 以下试验方法:
二、数字的修约规则 四舍六入五成双
注意: 1、要修约的数值小于等于4则舍;
2、要修约的数值大于等于6则进到前一位
3、要修约的数值为5时:如5后无数或为 零时,5前为奇数则进到前一位; 5前为偶数则 舍弃;但当5后有非零数字时,无论5前为奇数 还是偶数,都要进到前一位;
4、在对数字进行修约时,只能一次修约到 所需的位数,不能分步修约。
2.平均偏差 ( d )
为各次测定值的偏差的绝对值的平均值
特点:简单;
n
Xi X
d i1 n
缺点:大偏差得不到应有反映。
3.相对平均偏差:为平均偏差与平均值之 比,常用百分率表示:
Rd d 100 % X
4.标准偏差(standard deviation; S)
使用标准偏差是为了突出较大偏差的影
解:X =(15.67+15.69+16.03+15.89)/4=15.82
d = Xi-X =15.67-15.82=-0.15
RE% =-0.15/15.82×100%=-0.95%
n
Xi X
d i1
=(0.15+0.13+0.21+0.07)/4=0.14
测量误差及数据处理

x0
x
相对误差ε是一个无量纲的数据,通常以百分数的形式表
示。相对误差比绝对误差能更好地说明测量的精确程度。例如,
在上面的例子中,ε1=0.002/20×100%=0.01%,ε2= 0.02/250×100%=0.008%,可以看出,后者的测量精度更高。
1.2 测量误差的来源
计量器具 误差
计量器具误差是指计量器具本身在设计、制造和使用
(2)随机误差的评定指标
① 算术平均值 。对同一被测量进行n次等精度测量,测
量结果为x1、x2、…、xn,则算术平均值x 为:
x
x1 x2 xn n
1 n
n i1
xi
测量次数n越大,算术平均值 越趋近于真值x0。因此,用
算术平均值 x 作为最后测量结果是可靠的、合理的。
② 标准偏差σ。
用算术平均值 x 表示测量结果虽然可靠,但不能全面反
映测量精度。例如,有两组测得值: 第一组:12.005,11.996,12.003,11.994,12.002; 第二组:11.90,12.10,11.95,12.05,12.00。
两组测得值的算术平均值 x1= x2=12,但第一组测得
值比较集中,第二组测得值比较分散,也就是说,第一组的 每一个测得值比第二组的更接近于算术平均值,第一组测得 值的测量精度比第二组高。此时,算术平均值就不能准确地 反映测量精度了,而常用标准偏差σ来反映测量精度的高低。
源
误差
所引起的误差。环境条件主要包括温度、湿度、气压、振
动和灰尘等,其中,温度对测量结果的影响最大。
测量人员 误差
测量人员误差是指由测量人员的主观因素所引起的误
差。例如,测量人员技术不熟练、测量瞄准不准确、估读 判断错误和测量习惯等引起的误差。