分式方程的解法及应用(提高)导学案+习题【含标准答案】

合集下载

分式方程的应用 精品导学案及练习附解析

分式方程的应用  精品导学案及练习附解析

第2课时 分式方程的应用学教目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.3.在活动中培养学生乐于探究、合作学习的习惯,引导学生努力寻找解决问题的方法,体会数学的应用价值。

学教重点:利用分式方程组解决实际问题.学教难点:列分式方程表示实际问题中的等量关系.学教过程:一、温故知新:1、分式方程的解法步骤是什么?完成 P36 第4题。

2、解决应用问题的一般步骤是什么?3、解分式方程二、学教互动:(自主探究)课本例3分析:这是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程。

基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1认真审题,然后回答下列问题:1、怎样设未知数,根据哪个关系?2、题中有哪些相等关系?怎样列方程?三、随堂练习:1.为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。

这样,这两个小组的每个同学就要比原计划多做4面。

如果这3个小组的人数相等,那么每个小组有多少名学生? 132x x=-2. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.四、反馈检测:1、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。

已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。

中考数学总复习《分式方程》专项提升练习题及答案(人教版)

中考数学总复习《分式方程》专项提升练习题及答案(人教版)

中考数学总复习《分式方程》专项提升练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________【考点一】分式方程的概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法:(1)解分式方程的基本思路是去分母把分式方程转化为整式方程.(2)解分式方程的一般步骤:分式方程去分母→ 整式方程解整式方程→ x =a 检验→ {分式方程的分母不为零则x =a 是分式方程的解分式方程的分母为零则x =a 是分式方程的增根(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为“0”的根,称为方程的增根. 因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为“0”的根是增根应舍去.(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为“0”的因式.(5)分式方程的无解与增根:分式方程有增根与无解并非用一个概念,无解既包含产生增根这一情况,也包含原方程去分母后的整式方程无解.【考点二】分式方程的应用列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行 “双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.一、单选题 1.已知实数x 满足22110x x x x +++=,那么x 的值为( )3.学校用500元钱到商场去购买“84”消毒液,经过还价,每瓶便宜1.5元,结果比用原价多买了10瓶,求A .()111x --=B .()111x +-=C .()112x x --=-D .()112x x +-=- 5.为了美化环境,某地政府计划对辖区内260km 的土地进行绿化,为了尽快完成任务,实际平均每月的绿602=;乙:A .x 表示原计划平均每月的绿化面积B .y 表示实际完成这项工程需要的月数C .□表示1.5xD .◇表示2y -6.甲、乙两地相距160千米,一辆汽车从甲地到乙地的速度比原来提高了25%,结果比原来提前0.4小时到达,那么这辆汽车原来的速度为( )是非负数,则所有满足条件的整数a 的值之和是( )A .10B .13C .15D .18二、填空题9.分式方程4122mx x x =+--无解,则m 的值为 . 10.若关于x 的方程2233x m x x x++=--的解是正数,则m 的取值范围为 . 11.为锻炼身体,小陈由开车上班改为骑自行车上班,已知小陈家距离上班地点14千米,开车每小时行驶的路程比骑自行车每小时行驶的路程的3倍还多5千米,且骑自行车上班所需时间是开车上班所需时间的3.5倍,则小陈骑自行车上班需要 小时.12.已知关于x 的分式方程()()212323nx x x x x =+----的解为正整数,且关于y 的不等式组()6131n y y y -<-⎧⎨-≥-⎩无解,则满足条件的所有整数n 的和为 .13.黄金分割总能给人以美的享受,从人体审美学的角度看,若一个人上半身长与下半身长之比满足黄金比的话,则此人符合和谐完美的身体比例.如图,一芭蕾舞演员的身高为160cm ,但其上半身长与下半身长之比大于黄金比,当其表演时掂起脚尖,身高就可以增加10cm ,这时上半身长与下半身长之比就恰好满足黄金比,那么该演员的上半身长为 cm .(黄金分割比0.6≈)三、解答题14.解分式方程:(1)522112x x x +=-- (2)214111x x x +-=--a a>的正方形去掉一个边长为1m的正方形蓄水池后余下17.如图,“丰收1号”小麦的试验田是边长为m(1)a-的正方形,两块试验田的小麦都收获了1500kg.的部分,“丰收2号”小麦的试验田是边长为()1m(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的1.05倍,求“丰收2号”小麦的试验田的边长.18.今年初冬,受强冷空气影响,12月13日早晨开始,北京市出现强降雪天气,截至14日18时,北京市共出动专业作业人员11.5万人次,出动扫雪铲冰作业车辆1.7万车次,分成若干个小组,及时开展扫雪除冰工作,保障道路畅通及市民出行安全.其中甲、乙两组共同负责一条大街的扫雪工作,若由甲、乙两组合作则2小时可完成扫雪工作;若甲组先单独扫雪4小时,再由乙组单独扫雪1小时可完成扫雪工作.(1)求甲、乙两组单独完成此项工作各需要多少小时?(2)如果甲、乙两组合作时对道路交通有影响,单独工作时对交通无影响,且要求完成扫雪工作不超过2.5小时,问如何安排扫雪工作,对道路交通的影响会最小?参考答案 1.C2.D3.B4.D5.D6.A7.A8.B9.1或210.6m >-且3m ≠-11.1.412.2-13.63.7514.(1)=1x -(2)1x =15.(1)1x =(2)1a =或2a =16.小颖有道理17.(1)“丰收2号”小麦试验田的单位面积产量高;(2)“丰收2号”小麦试验田的边长为40m .18.(1)甲组单独完成此项工作需要6小时,乙组单独完成此项工作需要3小时(2)应安排甲乙合作1小时,然后再由乙组单独施工1.5小时,对道路交通的影响会最小。

(完整版)分式方程及其应用(习题及答案)

(完整版)分式方程及其应用(习题及答案)

八年级数学上册 分式方程及其应用(习题)班级 姓名➢ 例题示范例1:解分式方程:11322x x x-=---. 【过程书写】1(1)3(2)1136242x x x x x x =----=-+-+==解:检验:把x =2代入原方程,不成立 ∴x =2是原分式方程的增根 ∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度. 【思路分析】 列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h ,由题意得,1201200.51.2x x =-解得,x =40 经检验:x =40是原方程的解,且符合题意 答:慢车的速度是40km/h .➢ 巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a b a x a ++=B .x a b x b a +=-11C .b x a a x 1-=+D .1=-+++-nx mx m x n x 2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( ) A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程: 2(1)3(1)6x x -++=C .解这个整式方程,得1x =D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 4. 若方程61(1)(1)1mx x x -=+--有增根,则m =_________. 5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是________.6. 解分式方程: (1)43(1)1x x x x +=--; (2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--; (4)11222x x x-=---.7.某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2倍.A,B 两车间共同完成一半的生产任务后,A车间因出现故障而停产,剩下的全部由B车间单独完成,结果前后共用了20天完成全部生产任务.则A,B两车间每天分别能加工多少件该款夏装?【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】附加题:1. 解分式方程:(1)2115225x x x ++=--;(2)100602020x x=+-;(3)3201(1)x x x x +-=--;(4)2216124x x x ++=---;(5)2236111x x x +=+--; (6)2221114268x x x x x +-=----+.【参考答案】 ➢ 巩固练习1. C2. D3. B4. 35.x =36. (1)x =2(2) (3)无解 (4)无解7. A 车间每天能加工384件该款夏装B 车间每天能加工320件该款夏装 8. 商厦共盈利90 260元附加题;1. (1)(2)(3)无解 (4)无解 (5)无解 (6)x =143x =43x =5x =。

人教初中数学八上《分式方程分式方程及其解法》导学案

人教初中数学八上《分式方程分式方程及其解法》导学案

第1课时 分式方程及其解法 1.理解分式方程的意义. 2.了解分式方程的基本思路和解法. 3.理解分式方程可能无解的原因,并掌握解分式方程的验根的方法. 自学指导:阅读教材P149-151,完成下列问题. 1.填空:(1)分母中不含有未知数的方程叫做整式方程(2)分母中含有未知数的方程叫做分式方程.2.判断下列说法是否正确:①232x +=5是分式方程;②4x -43=3x 4+是分式方程; ③xx 2=1是分式方程;④1x 1+=1-y 1是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.自学反馈1.下列方程中,哪些是分式方程?哪些是整式方程?①22-x =3x ;②x 4+y 3=7; ③2-x 1=x 3;④x1)-x(x =-1; ⑤πx -3=2x ;⑥2x+51-x =10; ⑦x-x 1=2;⑧x 12x ++3x=1. 解:①⑤⑥是整式方程,因为分母中没有未知数.②③④⑦⑧是分式方程,因为分母中含有未知数.判断整式方程和分式方程的方法就是看分母中是否含有未知数.2.解分式方程的一般步骤是:(1)去分母;(2)解整式方程;(3)验根;(4)小结.活动1 小组讨论例1 解方程:3-x 2=x3. 解:方程两边乘x(x-3),得2x=3(x-3).解得x=9.检验:当x=9时,x(x-3)≠0.所以,原分式方程的解为x=9.例2 解方程:1-x x -1=2)1)(x -(x 3+. 解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3.解得x=1.检验:当x=1时,(x-1)(x+2)=0.所以x=1不是原方程的解.所以,原方程无解.活动2 跟踪训练 1.解方程: (1)2x 1=3x 2+; (2)1x x +=33x 2x ++1; (3)1-x 2=1-x 42; (4)x x 52+-x -x 12=0. 解:(1)方程两边乘2x(x+3),得x+3=4x.去分母:x+3=4x.化简得:3x=3.解得x=1.检验:将x=1代入2x(x+3)≠0.所以x=1是方程的解.(2)方程两边乘3(x+1),得3x=2x+3x+3.解得x=23-. 检验:将x=23-代入(3x+3)≠0. 所以x=23-是方程的解. (3)方程两边乘x 2-1,得2(x+1)=4.解得x=1.检验:将x=1代入x 2-1=0,所以x=1不是方程的解.所以,原方程无解.(4)方程两边乘x(x+1)(x-1),得5(x-1)-(x+1)=0.解得x=23. 检验:将x=23代入x(x+1)(x-1)≠0. 所以x=23是原方程的解. 方程中分母是多项式,要先分解因式再找公分母.2.解分式方程:(1)1-x x =2-2x 3-2; (2)2-x 3-x +1=x-23; (3)1-2x 2x =1-2x 2+. 解:(1)方程两边乘2x-2,得2x=3-2(2x-2).解得x=67. 检验:当x=67时,2x-2≠0.所以x=67是原方程的解. (2)方程两边乘x-2,得x-3+x-2=-3.解得x=1.检验:当x=1时,x-2≠0.所以,x=1是原方程的解.(3)方程两边乘(2x-1)(x+2),得2x(x+2)=(2x-1)(x+2)-2(2x-1).解得x=0.检验:当x=0时,(2x-1)(x+2)≠0.所以,x=0是原方程的解.课堂小结解分式方程的思路是:教学至此,敬请使用学案当堂训练部分.角的平分线的性质一、学习目标P N M C B A D C B A 1、会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.2、能应用这两个性质解决一些简单的实际问题.3、极度热情、高度责任、自动自发、享受成功。

北师大2024八年级数学下册 5.4 第2课时 分式方程的解法 导学案

北师大2024八年级数学下册 5.4 第2课时 分式方程的解法 导学案

第五章分式
5.4 分式方程
第2课时分式方程的解法
学习目标:
1. 掌握解分式方程的基本思路和解法;
2. 理解分式方程可能无解的原因.
自主学习
一、复习导入
解一元一次方程
合作探究一、要点探究
知识点一:分式方程的解法
思考:你能求出上一节课列出的分式方程
的解吗?
(1)如何把它转化为熟知的整式方程呢?
(2)方程各分母最简公分母是:
追问:x = 100 是原分式方程的解吗?
【归纳总结】
【典例精析】例1 解方程:
议一议
在解方程时,小亮的解法如下:
x = 2 是原分式方程的解吗?
想一想:为什么去分母后所得整式方程的解不是原分式方程的解呢?【要点归纳】
【典例精析】例2 解方程:
练一练
1.(西安校考) 解方程:.
想一想:解分式方程一般需要经过哪几个步骤
二、课堂小结
当堂检测
1. 解分式方程时,去分母后得到的整式方程是( )
A. 2(x- 8) + 5x = 16(x- 7)
B. 2(x- 8) + 5x = 8
C. 2(x- 8) - 5x = 16(x- 7)
D. 2(x- 8) - 5x = 8
2. 若关于x的分式方程无解,则m的值为( ) A.-1,5 B.1
C.-1.5 或2 D.-0.5 或-1.5
3. 解方程:
4. 若关于x的方程有增根,求m的值.
参考答案合作探究
知识点一:分式方程的解法
例1解方程:
例2 解方程:
练一练
2.(西安校考)解方程:.
当堂检测
1. A.
2. D.
3.
4.。

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。

分式方程及其应用(含答案)

分式方程及其应用(含答案)

分式方程及其应用【分类解析】 例1. 解方程:x x x --+=1211分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以()()x x +-11,得x x x x x x xx x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。

例2. 解方程x x x x x x x x +++++=+++++12672356分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为:x x x x x x x x ++-++=++-++67562312方程两边通分,得167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即经检验:原方程的根是x =-92。

例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+--分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。

解:由原方程得:3143428932874145--++-=--++-x x x x即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。

1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--==例4. 解方程:61244444402222y y y y y y yy +++---++-=2分析:此题若用一般解法,则计算量较大。

分式方程提高练习(含答案)

分式方程提高练习(含答案)

分式方程复习提高)(11b a x b b x a a ≠+=+ b x a 211+=)2(a b ≠ 417425254=-+-x x x x (换元法)87329821+++++=+++++x x x x x x x x (分离常数法) 41315121+++=+++x x x x (分组通分法)569108967+++++=+++++x x x x x x x x 41215111+++=+++x x x x6811792--+-+=--+-x x x x x x x x 65322176+++++=+++++x x x x x x x x分式方程求待定字母的方法例1.若关于x 的分式方程3132--=-x m x 有增根,求m 的值.例2.若分式方程122-=-+x a x 的解是正数,求a 的取值范围.提示:032>-=a x 且2≠x ,例3.若分式方程xm x x -=--221无解,求m 的值。

例4.若关于x 的方程11122+=-+-x x x k x x 不会产生增根,求k 的值。

例5.若关于x 分式方程432212-=++-x x k x 有增根,求k 的值。

例6、关于x 的方程的解为非负数,求m 的取值范围是.例7、关于x 的方程的解为非正数,求m 的取值范围.例8、若关于x 的方程233x k x x =+--无解,求k 的值例9、已知方程无解,求k 的值.例10、已知关于x 的方程3)1(2122-=+++x x x x ,求11++x x 的值。

分式方程练习:一、选择题1.若73212++y y 的值为81,则96412-+y y 的值是( ) (A )21-(B )171- (C )71- (D )71 2.已知xz z y x +=+=531,则z y y x +-22的值为( ) (A )1 (B )23 (C )23- (D )41 3.若对于3±=x 以外的一切数98332-=--+x x x n x m 均成立,则mn 的值是( ) (A )8 (B )8- (C )16 (D )16-4.有三个连续正整数,其倒数之和是6047,那么这三个数中最小的是( ) (A )1 (B )2 (C )3 (D )45.若d c b a ,,,满足a d d c c b b a ===,则2222d c b a da cd bc ab ++++++的值为( ) (A )1或0 (B )1- 或0 (C )1或2-(D )1或1-6.设轮船在静水中的速度为v ,该船在流水(速度为v u <)中从上游A 驶往下游B,再返回A ,所用的时间为T,假设0=u ,即河流改为静水,该船从A 至B 再返回A,所用时间为t ,则( )(A )t T = (B )t T < (C )t T > (D )不能确定T 与t 的大小关系二、填空题7.已知:x 满足方程20061120061=--x x,则代数式2007200520062004+-x x 的值是_____. 8. 已知:b a b a +=+511,则ba ab +的值为_____. 9.方程71011=++zy x 的正整数解()z y x ,,是_____. 10. 若关于x 的方程122-=-+x a x 的解为正数,则a 的取值范围是_____. 11. 若11,11=+=+zy y x ,则=xyz _____. 12.设y x ,是两个不同的正整数,且5211=+y x ,则._____=+y x 三、解答题(每题10分,共40分)13. 已知2+x a 与2-x b 的和等于442-x x ,求b a ,之值.14.解方程: 708115209112716512311222222-+=+++++++++++++x x x x x x x x x x x x .15. a 为何值时,分式方程()01113=++++-x x a x x x 无解?16. 某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).(1)扶梯在外面的部分有多少级.(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶?练习答案:一、选择题1.解:根据题意, 8173212=++y y .可得1322=+y y . 所以().7932296422-=--=-+y y y y所以7196412-=-+y y . 故选(C )2.解:由xz z y x +=+=531得x x z x z y 5,3=+=+.从而.,4x y x z -== 所以.2342222=+-+=+-x x x x z y y x 故选(B )3.解: 98332-=--+x x x n x m . 左边通分并整理,得()()9893322-=-+--x x x n m x n m . 因为对3±=x 以外的一切数上式均成立,比较两边分子多项式的系数,得⎩⎨⎧=+=-.033,8n m n m 解得⎩⎨⎧-==.4,4n m所以()1644-=-⨯=mn .故选(D )4. 解:设这三个连续的正整数分别为2,1,++x x x .则有 604721111=++++x x x . 根据题意,得⎪⎪⎩⎪⎪⎨⎧⨯<+⨯>.3604721,360471x x 解得.4739347391<<x 因x 是正整数,所以2=x 或3=x .经检验2=x 适合原方程.故选(B )5. 解:设 k ad d c c b b a ====,则ak d dk c ck b bk a ====,,,. 上述四式相乘,得4abcdk abcd =.从而1±=k .当1=k 时,d c b a ===, 12222=++++++dc b a da cd bc ab ; 当1-=k 时, d c b a -==-=.144222222-=-=++++++aa d cb a da cd bc ab . 故选(D )6. 解:设B A ,相距为s ,则.2,222vs t u v vs u v s u v s T =-=-++= 所以1222>-=uv v t T ,即t T > 故选(C )二、填空题7. 解:由20061120061=--x x,得200612006=--x x . 所以01=--x x .所以0=x .经检验0=x 满足原方程.故200720052007200520062004-=+-x x . 8. 解: 由b a b a +=+511,得ba ab b a +=+5. 所以()ab b a 52=+.所以().33252222==-=-+=+=+ab ab ab ab ab ab ab b a ab b a b a a b9. 解:由71011=++z y x ,得73111+=++z y x . 因为是正整数,故必有1=x ,因而 312371+==+z y . 又因为z y ,也是正整数,故又必有3,2==z y .经检验()3,2,1是原方程的根.因此,原方程的正整数解()z y x ,,是()3,2,1.10. 解:由方程122-=-+x a x ,得x a x -=+22,从而.32a x -= 又由题意,得⎪⎪⎩⎪⎪⎨⎧≠->-.232,032a a 所以⎩⎨⎧-≠<.4,2a a 故a 的取值范围是2<a 且4-≠a .11. 解:由11,11=+=+z y y x ,得yz y y y x -=-=-=11,111. 所以1111-=-••-=y y y y xyz . 12. 解:由条件5211=+y x 得512121=+y x . 显然52,52>>y x ,故可设.52,5221t y t x +=+=则51515121=+++t t .去分母并整理,得2521=t t . 因为y x ,是两个不同的正整数,所以21t t ≠.所以25,121==t t 或1,2521==t t .所以.182261021025252121=+=++=+++=+t t t t y x 三、解答题13. 解:根据题意,有 2+x a +2-x b =442-x x . 去分母,得()()x x b x a 422=++-.去括号,整理得()()x a b x b a 42=-++.比较两边多项式系数,得0,4=-=+a b b a .解得2==b a .14. 解:因为方程的左边()()()()()()()()()().5551151414131312121111115414313212111120911271651231122222+=+-=⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-=+++++++++++++=+++++++++++++x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 故原方程可变为()708115552-+=+x x x x . 所以()7081152-+=+x x x x .解得118=x .经检验118=x 是原方程的根.15. 解:方程()01113=++++-x x a x x x 的两边同乘以()1+x x ,去分母,得 ()().013=++-+a x x x整理,得033=++a x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程的解法及应用(提高)
【学习目标】
1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.
2. 会列出分式方程解简单的应用问题.
【要点梳理】
要点一、分式方程的概念
分母中含有未知数的方程叫分式方程.
要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母
系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的
方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.
要点二、分式方程的解法
解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.
解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.
要点三、解分式方程产生增根的原因
方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.
产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.
要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程
的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程
不是同解方程,这时求得的根就是原方程的增根.
(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解
方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程
中没有错误的前提下进行的.
要点四、分式方程的应用
分式方程的应用主要就是列方程解应用题.
列分式方程解应用题按下列步骤进行:
(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;
(2)设未知数;
(3)找出能够表示题中全部含义的相等关系,列出分式方程;
(4)解这个分式方程;
(5)验根,检验是否是增根;
(6)写出答案.
【典型例题】
类型一、判别分式方程
【高清课堂 分式方程的解法及应用 例1】
1、下列各式中,哪些是分式方程?哪些不是分式方程?为什么?
(1)21753997x x --= (2)352y y =- (3)
31422y y ++- (4)221531x x x +=-- 【答案与解析】
解:(1)虽然方程里含有分母,但是分母里没有未知数,所以不是分式方程;
(2)具备分式方程的三个特征,是分式方程; (3)31422
y y ++-没有等号,所以不是方程,它是一个代数式; (4)方程具备分式方程的三个特征,是分式方程.
特别提醒:(3)题是一个代数式,不是方程,容易判断错误;
【总结升华】整式方程与分式方程的区别在于分母里有没有未知数,有未知数的就是分式方程,没有未知数的就是整式方程.
类型二、解复杂分式方程的技巧
2、解方程:1310414351
x x x x -=-----. 【答案与解析】
解:方程的左右两边分别通分,
得3131(4)(3)(5)(1)
x x x x x x ++=----, ∴ 31310(4)(3)(5)(1)x x x x x x ++-=----, ∴ 11(31)0(4)(3)(5)(1)x x x x x ⎡⎤+-=⎢⎥----⎣⎦
, ∴ 310x +=,或
110(4)(3)(5)(1)x x x x -=----, 由310x +=,解得13x =-,
由110(4)(3)(5)(1)x x x x -=----,解得7x =.。

相关文档
最新文档