同底数幂的乘法练习题

合集下载

同底数幂的乘法练习题及标准答案

同底数幂的乘法练习题及标准答案

同底数幕的乘法-练习、填空题1. 同底数幕相乘,底数,指数2. A)• a4=a20.(在括号内填数)3. 若102• 1O m=1O 2003,则m=.4. 23• 83=2n,则n=.5. -a3• (-a) 5= ;x• x2• x3y=.6. a5• a n+a3• a n 2- a • a n 4+a2• a n 3二.7. (a-b) 3• (a-b) 5 = ;(x+y) • (x+y) 4 =.8. 10m110n1 = 4 5, 6(6)= .9. x2x3xx4=_2(x y) (x y)5 =_ _.10. 103100 10100 100 10010000 10 10= .11.若a m 3 4a a ,贝y m=_ 若x4x a x16,则a=。

12.若a m n2,a5,则a m n =13. _________________ -32X 33= _________; - (- a)2 = _____________ ; (-x)2• (-x)3= ; (a+ b) • (a+ b)4- ._________ ?0.510x 211 = _______ ; a a m•= a5m+12 3 4 5(6)4(m+n) • (m+n) -7(m+n)(m+n) +5(m+n)=14. a4 - = a3 - = a9二、选择题1. 下面计算正确的是()A . b3b2b6; B . x3x3x6; C . a4a2a6; D . mm5m615. (1)a • a3• a5= (2)(3a) • (3a)=⑶X m x m1X m13 2 24 5(4)(x+5) • (x+5) = (5)3a • a +5a • a =2. 81 X 27 可记为()A. 93 B. 37 C. 36 D. 3123. 若x y,则下面多项式不成立的是()A. (y x)2(x y)2B. ( x)3x3C. ( y)2y2D. (x y)2x2y24. 下列各式正确的是( )A. 3a2• 5a3=15a6B.-3x4•(-2x2)=-6x6C. 3x3• 2x4=6x12D.(-b)3•(-b)5=b85. 设a m=8,a n=16,则a mn=( )A .24 B.32 C.64 D.1286. 若x2• x4• ( ) =x16,则括号内应填x的代数式为( )A. x10B. x8C. x4 D. x27. 若a m= 2,a n= 3,贝S a m+= ( ).A.5 B.6 C.8 D.98. 下列计算题正确的是()A.a m a2= a2m B.x3 x2 x = x5 C.x4 x 4=2x4 D.y a+1 y a-1= y2a9. 在等式a3 a"( )= a11中,括号里面的代数式应当是()A.a7B.a8 C.s6D.a510. x3m+3可写成()A3x m+1B.x3m+x3 C.x3 x m+1D.x3m x311:①(-a)3 (-a)2 (-a)二a6。

同底数幂乘法基本练习题

同底数幂乘法基本练习题

同底数幂乘法基本练习题一、选择题:1. 同底数幂的乘法法则是什么?A. a^m * a^n = a^(m+n)B. a^m * a^n = a^(m-n)C. a^m * a^n = a^(m*n)D. a^m * a^n = a^(m/n)2. 计算下列表达式的值:2^3 * 2^4A. 64B. 32C. 16D. 83. 下列哪个表达式是正确的?A. (3x^2)^3 = 27x^6B. (3x^2)^3 = 9x^6C. (3x^2)^3 = 3x^6D. (3x^2)^3 = 9x^34. 根据同底数幂的乘法法则,下列哪个等式是正确的?A. a^2 * a^3 = a^5B. a^2 * a^3 = a^6C. a^2 * a^3 = a^1D. a^2 * a^3 = a^45. 如果x^m = 8,那么x^3m的值是多少?A. 64B. 256C. 8D. 无法确定二、填空题:6. 根据同底数幂的乘法法则,计算下列表达式的值:5^2 * 5^3 = __________。

7. 如果a^3 = b,那么a^6 = __________。

8. 计算下列表达式的值:(2a)^3 * (2a)^2 = __________。

9. 如果x^4 = 16,那么x的值是 __________。

10. 根据同底数幂的乘法法则,下列表达式可以化简为:(3^2)^3 = __________。

三、计算题:11. 计算下列表达式的值:(3x)^2 * (3x)^3。

12. 已知a^5 = 32,求a^10的值。

13. 计算下列表达式的值:(4y^2)^3 * (4y^2)^4。

14. 已知2^3 = 8,求2^12的值。

15. 计算下列表达式的值:(5^2)^3 * 5^2。

四、解答题:16. 证明同底数幂的乘法法则:a^m * a^n = a^(m+n)。

17. 解释为什么(2x^2)^3 不等于 2^3 * x^6。

同底数幂的乘法计算题20道

同底数幂的乘法计算题20道

同底数幂的乘法计算题20道嘿,同学们,今天咱们就来好好练练同底数幂的乘法计算题。

下面就是20 道题目啦。

第一题:2 的 3 次方乘以 2 的 4 次方。

这道题呀,底数都是 2,指数相加就可以啦,3 加 4 等于 7,所以结果就是 2 的 7 次方。

再看第二题:5 的 2 次方乘以 5 的 3 次方,同样的道理,底数 5 不变,指数 2 和 3 相加得 5,结果就是 5 的 5 次方。

第三题:3 的 4 次方乘以 3 的 2 次方,还是底数 3 不变,指数相加,4 加 2 等于 6,就是 3 的 6 次方。

第四题:10 的 3 次方乘以 10 的 5 次方,那就是 10 的 8 次方。

第五题:(-2)的 3 次方乘以 (-2)的 4 次方,这里注意负数的奇次幂是负数,偶次幂是正数,所以结果是 (-2)的 7 次方。

第六题:4 的 5 次方乘以 4 的 2 次方,答案是 4 的 7 次方。

第七题:7 的 3 次方乘以 7 的 4 次方,等于 7 的 7 次方。

第八题:(-3)的 2 次方乘以 (-3)的 3 次方,就是 (-3)的 5 次方。

第九题:6 的 4 次方乘以 6 的 3 次方,得到 6 的 7 次方。

第十题:2 的 5 次方乘以 2 的 6 次方,是 2 的 11 次方。

第十一题:5 的 4 次方乘以 5 的,这里 5 可以看成 5 的 1 次方,所以结果是 5 的 5 次方。

第十二题:3 的 3 次方乘以 3 的 3 次方,那就是 3 的 6 次方。

第十三题:10 的 2 次方乘以 10 的 4 次方,答案是 10 的 6 次方。

第十四题:(-4)的 3 次方乘以 (-4)的 2 次方,就是 (-4)的 5 次方。

第十五题:8 的 3 次方乘以 8 的 2 次方,等于 8 的 5 次方。

第十六题:(-7)的 3 次方乘以 (-7)的 4 次方,是 (-7)的 7 次方。

第十七题:9 的 5 次方乘以 9 的 2 次方,得出 9 的 7 次方。

同底数幂的乘法专项练习50题(有答案)

同底数幂的乘法专项练习50题(有答案)

同底数幂的乘法专项练习50题(有答案)一、 知识点:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+(5)若m 、n 均为正整数,则a m ·a n =_______,即同底数幂相乘,底数______,指数_____.二、专项练习: (1)=⋅64a a(2)=⋅5b b(3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a (6)=-⋅12m t t (7)=⋅+q qn 1(8)=-+⋅⋅112p p n n n(9)=-⋅23b b (10)=-⋅3)(a a(11)=--⋅32)()(y y (12)=--⋅43)()(a a(13)=-⋅2433 (14)=--⋅67)5()5((15)=--⋅32)()(q q n(16)=--⋅24)()(m m(17)=-32 (18)=--⋅54)2()2((19)=--⋅69)(b b (20)=--⋅)()(33a a(21) 111010m n +-⨯= (22) 456(6)-⨯-=(23)234x x xx += (24)25()()x y x y ++=(25)31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=(26) 若34ma a a =,则m=________; 若416ax x x =,则a=__________;若2345yxx x x x x =,则y=______; 若25()x a a a -=,则x=_______.(27) 若2,5m na a ==,则m na +=________.(28)19992000(2)(2)-+-=(29)2323()()()()x y x y y x y x -⋅-⋅-⋅- (30)23()()()a b c b c a c a b --⋅+-⋅-+(31)2344()()2()()x x x x x x -⋅-+⋅---⋅; (32)122333m m m x xx x x x ---⋅+⋅-⋅⋅。

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

同底數冪の乘法-練習一、填空題1.同底數冪相乘,底數 , 指數 。

2.A ( )·a 4=a 20.(在括號內填數) 3.若102·10m =102003,則m= . 4.23·83=2n ,則n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,則m=________;若416a x x x =,則a=__________; 12. 若2,5m n a a ==,則m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、選擇題1. 下面計算正確の是( )A.326+=; D.56mm ma a a=b b b+=; C.426=; B.336x x x2. 81×27可記為( )A.39 B.73 C.63 D.1233. 若x y≠,則下面多項式不成立の是( )A.22-= D.222()y y+=+x y x y()()()y x x y-=- B.33()x x-=- C.224.下列各式正確の是()A.3a2·5a3=15a6 B.-3x4·(-2x2)=-6x6 C.3x3·2x4=6x12 D.(-b)3·(-b)5=b8 5.設a m=8,a n=16,則a n m+=()A.24 B.32 C.64 D.128 6.若x2·x4·()=x16,則括號內應填xの代數式為()A.x10B. x8C. x4D. x2 7.若a m=2,a n=3,則a m+n=( ).A.5 B.6 C.8 D.98.下列計算題正確の是( )A.a m·a2=a2m B.x3·x2·x=x5 C.x4·x4=2x4 D.y a+1·y a-1=y2a9.在等式a3·a2( )=a11中,括號裏面の代數式應當是( )A.a7B.a8 C.a6D.a510.x3m+3可寫成( ).A.3x m+1 B.x3m+x3 C.x3·x m+1 D.x3m·x311:①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a) 3=-a8.其中正確の算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一塊長方形草坪の長是x a+1米,寬是x b-1米(a、b為大於1の正整數),則此長方形草坪の面積是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+213.計算a-2·a4の結果是( )A.a-2 B.a2 C.a-8 D.a814.若x≠y,則下面各式不能成立の是( )A.(x-y)2=(y-x)2 B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x) D.(x+y)2=(-x-y)215.a16可以寫成( )A.a8+a8 B.a8·a2 C.a8·a8 D.a4·a416.下列計算中正確の是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 7 17.下列題中不能用同底數冪の乘法法則化簡の是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 計算2009200822-等於( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科學記數法表示(4×102)×(15×105)の計算結果應是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判斷下面の計算是否正確(正確打“√”,錯誤打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答題1.計算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、計算題(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。

(完整版)同底数幂的乘法练习题与答案

(完整版)同底数幂的乘法练习题与答案

同底數冪の乘法-練習一、填空題1.同底數冪相乘,底數 , 指數 。

2.A ( )·a 4=a 20.(在括號內填數) 3.若102·10m =102003,則m= . 4.23·83=2n ,則n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,則m=________;若416a x x x =,則a=__________; 12. 若2,5m n a a ==,則m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、選擇題1. 下面計算正確の是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可記為( )A.39 B.73 C.63 D.1233. 若x y ≠,則下面多項式不成立の是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+ 4.下列各式正確の是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 8 5.設a m =8,a n =16,則a n m +=( )A .24 B.32 C.64 D.128 6.若x 2·x 4·( )=x 16,則括號內應填x の代數式為( )A .x 10B. x 8C. x 4D. x 2 7.若a m =2,a n =3,則a m+n =( ).A.5 B.6 C.8 D.9 8.下列計算題正確の是( )A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括號裏面の代數式應當是( )A.a 7B.a 8 C.a 6D.a 5 10.x 3m+3可寫成( ).A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 311:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正確の算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一塊長方形草坪の長是x a+1米,寬是x b-1米(a 、b 為大於1の正整數),則此長方形草坪の面積是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+2 13.計算a -2·a 4の結果是( )A .a -2B .a 2C .a -8D .a 814.若x ≠y ,則下面各式不能成立の是( ) A .(x -y )2=(y -x )2B .(x -y )3=-(y -x )3C .(x +y )(x -y )=(x +y )(y -x )D .(x +y )2=(-x -y )215.a 16可以寫成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8D .a 4·a 416.下列計算中正確の是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 717.下列題中不能用同底數冪の乘法法則化簡の是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 計算2009200822-等於( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科學記數法表示(4×102)×(15×105)の計算結果應是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判斷下面の計算是否正確(正確打“√”,錯誤打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答題1.計算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、計算題(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。

(完整版)同底数幂乘法练习题含详细答案解析

(完整版)同底数幂乘法练习题含详细答案解析

《同底数幂的乘法》习题1.下列各式中,计算过程正确的是( ) A .x 3+x 3=x 3+3=x 6 B .x 3·x 3=2x 3C .x ·x 3·x 5=x 0+3+5=x 8D .x 2·(-x )3=-x 2+3=-x 5 2.计算(-2)2009+(-2)2010的结果是( )A .22019B .22009C .-2D .-22010 3.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( ) A .正数 B .负数 C .非正数 D .非负数4.一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为( ) 立方厘米.(结果用科学记数法表示)A .2×109B .20×108C .20×1018D .8.5×108 5.下面计算正确的是( )A .326b b b =;B .336x x x +=;C .426a a a +=;D .56mm m = 6.81×27可记为( ) A.39; B.73; C.63; D.1237.若x y ≠,则下面多项式不成立的是( )A.22()()y x x y -=-; B.33()()y x x y -=--; C.22()()y x x y --=+; D.222()x y x y +=+ 8.计算:(-2)3·(-2)2=______. 9.计算:a 7·(-a )6=_____.10.计算:(x +y )2·(-x -y )3=______.11.计算:(3×108)×(4×104)=_______.(结果用科学记数法表示) 12.(一题多解题)计算:(a -b )2m-1·(b -a )2m·(a -b )2m+1,其中m 为正整数.13. 计算并把结果写成一个底数幂的形式:①43981⨯⨯;②66251255⨯⨯14.一个长方形农场,它的长为3×107m ,宽为5×104m ,试求该农场的面积.(结果用科学记数法表示)15.木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体,已知木星的半径大约是7×104km ,木星的体积大约是多少km 3(π取3.14)?参考答案1.答案:D解析:【解答】x3+x3=2x3,所以A错误;x3·x3=x3+3=x6,所以B错误;x·x3·x5=x1+3+5=x9,所以C错误;x2·(-x)3=x2·(-x3)=-(x2·x3)=-x2+3=-x5.所以D是正确的.故选D.【分析】根据合并同类项、同底数幂的乘法,可得答案.2.答案:B解析:【解答】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.【分析】根据提取公因式的方法计算3.答案:A解析:【解答】(-a)5·(-a)2n=(-a)2n+5,因为a<0,所以-a>0,所以(-a)2n+5>0,故选A.【分析】运用同底数幂的乘法计算得出答案.4.答案:A解析:【解答】长主体的体积为4×103×2×102×2.5×103=20×108=2×109(立方厘米),因为用a×10n表示一个大于10的数时,1≤a<10,n是正整数,故选A.【分析】先根据题意列出4×103×2×102×2.5×103再运用同底数幂的乘法计算.5.答案:D解析:【解答】A应为b5所以A错误;B应为2x3所以B错误;C不能就算所以C错误.故选D.【分析】根据同底数幂相乘,底数不变,指数相加即可求6.答案:B解析:【解答】81×27=37,故选B .【分析】先化为底数是3的同底数的幂,在运用法则计算 7.答案:D解析:【解答】A.22()()y x x y -=-正确; B.33()()y x x y -=--正确; C.22()()y x x y --=+正确; D.222()x y x y +=+错误 故选D .【分析】根据奇数次幂,偶数次幂的性质得出答案. 8.答案:-32解析:【解答】(-2)3·(-2)2=(-2)5=-25=-32. 【分析】运用同底数幂的乘法计算. 9.答案:a解析:【解答】a 7·(-a )6=a 7·a 6=a 7+6=a 13. 【分析】运用同底数幂的乘法计算. 10.答案:-(x +y )5解析:【解答】(x +y )2·(-x -y )3=(x +y )2·[-(x +y )] 3 =(x +y )2·[-(x +y )3]=-[(x +y )2·(x +y )3]=-(x +y )5. 【分析】先画出同底数幂的乘法,在运用法则计算. 11.答案:1.2×1013解析:【解答】(3×108)×(4×104)=3×108×4×104=12×1012=1.2×1013. 【分析】先把3与4相乘,108与104相乘,再求积 12.答案:(a -b )6m , (b -a )2m 解析:【解答】① 因为m 为正整数,所以2m 为正偶数,则(b -a )2m =(a -b )2m ,(a -b )2m -1·(b -a )2m ·(a -b )2m+1 =(a -b )2m -1·(a -b )2m ·(a -b )2m+1=(a -b )2m-1+2m+2m+1=(a -b )6m .② 因为m 为正整数,所以2m -1,2m +1都是正奇数, 则(a -b )2m -1=-(b -a )2m -1,(a -b )2m+1=-(b -a )2m+1, (a -b )2m -1·(b -a )2m ·(a -b )2m+1=[-(b -a )2m -1] ·(b -a )2m ·[-(b -a )2m+1] =(b -a )2m-1+2m+2m+1=(b -a )2m .【分析】在转化为同底数幂的过程中,要根据指数的奇偶性讨论符号问题. 13.答案:310,513解析:【解答】①424103333⨯⨯=,②436135555⨯⨯= 【分析】先确定同底数,化成同底数幂的形式再计算. 14.答案:1.5×1012m 2解析:【解答】3×107×5×104=15×1011=1.5×1012(m 2) 答:该农场的面积是1.5×1012m 2.【分析】根据题意列出式子3×107×5×104再计算. 15.答案:1.44×1015km 3 解析:【解答】 V=43πR 3 =43π×(7×104)3 =43π×73×1012 ≈43×3.14×73×1012≈1436×1012≈1.44×1015(km 3) 答:木星的体积大约是1.44×1015km 3. 【分析】根据球的体积公式V=43πR 3,将木星看作球,即可求出结果.。

同底数幂乘法练习题

同底数幂乘法练习题

同底数幂乘法练习题一、选择题1. 根据同底数幂乘法法则,下列哪个等式是正确的?A. \( a^3 \times a^2 = a^5 \)B. \( a^3 \times a^2 = a^4 \)C. \( a^3 \times a^2 = a^6 \)D. \( a^3 \times a^2 = a^7 \)2. 如果 \( x^4 \) 和 \( x^5 \) 相乘,结果应该是:A. \( x^8 \)B. \( x^9 \)C. 不能确定D. \( x^{20} \)3. 计算 \( (3^2)^3 \) 的结果等于:A. \( 3^6 \)B. \( 3^5 \)C. \( 3^7 \)D. \( 3^8 \)4. 对于任意正整数 \( m \) 和 \( n \),下列哪个等式是错误的?A. \( (a^m)^n = a^{mn} \)B. \( a^m \times a^n = a^{m+n} \)C. \( a^m \times a^m = a^{2m} \)D. \( a^m \times a^n = a^{mn} \)二、填空题5. 计算 \( 2^3 \times 2^4 \) 的结果,并将答案填写在括号内:\( (2^7) \)。

6. 如果 \( a \) 是一个非零数,那么 \( a^3 \times a^2 \) 等于\( a \) 的幂次是 \( (a^5) \)。

7. 根据同底数幂乘法法则,\( (5^2)^4 \) 等于 \( 5 \) 的幂次是\( (5^{8}) \)。

8. 若 \( b^6 \) 和 \( b^3 \) 相乘,结果为 \( b \) 的幂次是\( (b^9) \)。

三、计算题9. 计算下列表达式的值:\( (3^2) \times (3^3) \)10. 简化下列表达式:\( (2^4)^3 \)11. 计算下列表达式的值:\( (x^2)^5 \times x^3 \)12. 简化下列表达式:\( (y^3)^2 \times y^4 \)四、应用题13. 一个立方体的体积是 \( x^3 \) 立方厘米,如果将这个立方体的边长扩大两倍,新的体积是多少?14. 某工厂生产的零件,每个零件的体积是 \( a^3 \) 立方厘米,如果工厂决定将零件的尺寸扩大两倍,那么新的零件体积是多少?五、证明题15. 证明同底数幂乘法法则 \( a^m \times a^n = a^{m+n} \) 对所有正整数 \( m \) 和 \( n \) 成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.1.1 同底数幂的乘法
知识点1 直接利用同底数幂的乘法法则计算 1.(2016·重庆中考)计算a 3·a 2正确的是( ) A.a B.a 5 C.a 6 D.a 9 2.(2016·呼伦贝尔中考)化简(-x )3(-x )2,结果正确的是( ) A.-x 6 B.x 6 C.x 5 D.-x 5
3.(2016·大庆中考)若a m =2,a n =8,则a m +
n = . 4.计算: (1) (-2)2·(-2)3·(-2)5;
(2) ⎝⎛⎭⎫-122×⎝⎛⎭
⎫-123

(3) -x 2·(-x )4·(-x )3; (4) (m -n )·(n -m )3·(n -m )4.
知识点2 同底数幂乘法法则的逆用
5.式子a 2m +
3不能写成( )
A.a 2m ·a 3
B.a m ·a m +
3
C.a 2m +3
D.a m +1·a m +
2
6.已知2a =5,2b =3,求2a +b +
3的值.
7.已知a x =5,a x +
y =30,求a x +a y 的值.
8.下列各式计算结果为a7的是( )
A.(-a)2·(-a)5
B.(-a)2·(-a5)
C.(-a2)·(-a)5
D.(-a)·(-a)6
9.我们约定a*b=10a×10b,2*3=102×103=105,则4*8等于( )
A.32
B.1012
C.1032
D.1210
10.计算:4×105×5×106
11.若x m-2·x m+3=x9成立,求m的值。

12.3n+4·(-3)3·35+n=
13.计算:(-a-b)4(a+b)3=(结果用幂的形式表示).
14.我国自行设计制造的“神舟九号”飞船进入圆形轨道后的飞行速度为7.9×103m/s,它绕地球一周需5.4×103s.该圆形轨道的一周有多少米?(结果用科学记数法表示)
15.已知(a+b)a·(b+a)b=(a+b)5,且(a-b)a+4·(a-b)4-b=(a-b)7,求a a b b的值.
16.记M(1)=-2,M(2)=(-2)×(-2),M(3)=(-2)×(-2)×(-2),……M(n)=,
(1)计算:M(5)+M(6);
(2)求2M(2 015)+M(2 016)的值;
(3)说明2M(n)与M(n+1)互为相反数.。

相关文档
最新文档