2014-2015年上海市万里学校初三上学期期末数学试卷及参考答案

合集下载

2014--2015年初三数学期末试题及答案

2014--2015年初三数学期末试题及答案

A B DEABCD2014-2015学年第一学期初三年级期末质量抽测数 学 试 卷 120分钟, 120分 2015.1一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的. 1.已知∠A 为锐角,且sin A =12,那么∠A 等于A .15°B .30°C .45°D .60°2.下列图形中,既是轴对称图形又是中心对称图形的是 A .等边三角形B .等腰直角三角形C .正方形D .正五边形3.如图,等边三角形ABC 内接于⊙O ,那么∠BOC 的度数是 A .150° B .120° C .90° D .60°4.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比等于A .12 B .14 C .18D .19 5.如图,在△ABC 中,D 为AC 边上一点,若∠DBC =∠A ,BCAC =3,则CD 的长为A .1B .32C .2D .526.如图,点P 是第二象限内的一点,且在反比例函数ky x=的图象上,PA ⊥x 轴于点A , △PAO 的面积为3,则k 的值为A .3B .- 3C . 6D .-67.如图,AB 为⊙O 的弦,半径OD ⊥AB 于点C .若AB =8,CD =2,则⊙O 的半径长为A B .3 C .4 D .58.如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x , MP 2=y ,则表示y 与x的函数关系的图象大致为二、填空题(本题共16分,每小题4分) 9. 抛物线2(2)1y x =-+的顶点坐标是 .10.已知关于x 的一元二次方程220x x m --= 有两个不相等的实数根,则m 的取值范围是 .11. 如图,点P 是⊙O 的直径BA 的延长线上一点,PC 切⊙O 于 点C ,若30P ∠=,PB =6,则PC 等于 .12.如图,在平面直角坐标系中,已知点A (3,0),B (0,4),记Rt △OAB 为三角形①,按图中所示的方法旋转三角形,依次得到三角形②,③,④,……,则三角形⑤的直角顶点的坐标为 ;三角形⑩的直角顶点的坐标为 ;第2015个三角形的直角顶点的坐标为 .①A三、解答题(本题共30分,每小题5分)13. 计算2sin 453tan 45cos60︒-︒-︒+︒. 14. 解方程:01322=+-x x .15.已知△ABC 如图所示地摆放在边长为1的小正方形组成的网格内,将△ABC 绕点C 顺时针旋转90°,得到△11A B C . (1)在网格中画出△11A B C ;(2)直接写出点B 运动到点1B 所经过的路径的长.16. 如图,在平面直角坐标系xOy 中,一次函数y ax b =+的图象与反比例函数k y x=的图象交于A (-1,4),B (2,m )两点. (1)求一次函数和反比例函数的解析式; (2)直接写出不等式ax b +<kx的解集.17.如图,在△ABC 和△CDE 中,∠B =∠D =90°,C 为线段BD 上一点,且AC ⊥CE .AB =3,DE =2,BC =6.求CD 的长.18.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AC=3.(1)求∠B 的度数;(2)求AB 及BC 的长. 四、解答题(本题共20分,每小题5分) 19.已知抛物线22(21)y x m x m m =--+-. (1)求证:此抛物线与x 轴必有两个不同的交点;(2)若此抛物线与直线33y x m =-+的一个交点在y 轴上,求m 的值.EADBCBA20.如图,在修建某条地铁时,科技人员利用探测仪在地面A 、B 两个探测点探测到地下C 处有金属回声.已知A 、B 两点相距8米,探测线AC ,BC 与地面的夹角分别是30°和45°,试确定有金属回声的点C 的深度是多少米?21.已知: 如图,在Rt △ABC 中,∠ C =90°,BD 平分∠ABC ,交AC 于点D ,经过B 、D 两点的⊙O 交AB 于点E ,交BC 于点F , EB 为⊙O 的直径.(1)求证:AC 是⊙O 的切线; (2)当BC =2,cos ∠ABC 13时,求⊙O 的半径.22.已知,正方形ABCD 的边长为6,点E 为BC 的中点,点F 在AB 边上,且∠EDF =45°.(1)利用画图工具,在右图中画出满足条件的图形; (2)猜想tan ∠ADF 的值,并写出求解过程.AB CD五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知:如图,一次函数2+=x y 的图象与反比例函数ky x=的图象交于A 、B 两点,且点A 的坐标为(1,m ). (1)求反比例函数ky x=的表达式; (2)点C (n ,1)在反比例函数ky x=的图象上,求△AOC 的面积; (3)在x 轴上找出点P ,使△ABP 是以AB 为斜边的直角三角形,请直接写出所有符合条件的点P 的坐标.24.如图,已知△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE = 90°,AB =AC ,AD =AE .连接 BD 交AE 于M ,连接CE 交AB 于N ,BD 与CE 交点为F ,连接AF . (1)如图1,求证:BD ⊥CE ;(2)如图1,求证:FA 是∠CFD 的平分线; (3)如图2,当A C =2,∠BCE =15°时,求CF 的长.FEDCBA图1NM图2ABCDE F MN备用图25.如图,二次函数y=-x2+bx+c的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C.(1)求二次函数的解析式;(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积;(3)若点M在抛物线上,且在y轴的右侧.⊙ M与y轴相切,切点为D.以C,D,M为顶点的三角形与△AOC相似,求点M的坐标.备用图2014-2015学年第一学期初三年级期末质量抽测(样题)数学试卷参考答案及评分标准 2015.1一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:原式211322332+⨯-⎪⎪⎭⎫ ⎝⎛-⨯= …………………………4分 213213+--= 0=. ……………………………………5分14.解法一:∵ 2a =,3b =-,1c =,∴ .1124)3(2=⨯⨯--=∆ ……………………………………2分 ∴ 413±=x . ……………………………………3分 ∴ 原方程的根为:1211.2x x ==, ……………………………………5分 解法二: 21232-=-x x . 16921169232+-=+-x x . ………………………………………1分161432=⎪⎭⎫ ⎝⎛-x . ………………………………………2分4143±=-x . ………………………………………3分 ∴ 11x =,212x =. ………………………………………5分 解法三:()()0112=--x x ………………………………………2分 210x -=,或10x -=. ………………………………………3分 ∴ 11x =,212x =. ………………………………………5分15.解:(1)如图所示,△A 1B 1C 即为所求作的图形. ……………3分 (2)1BBπ. ……………………………5分16.解:(1)∵ 反比例函数ky x=经过A (-1,4),B (2,m )两点, ∴ 可求得k =-4,m =-2.∴ 反比例函数的解析式为 4y x=-.B (2,-2). ……………………………………2分 ∵ 一次函数y ax b =+也经过A 、B 两点,∴ 422.a b a b =-+⎧⎨-=+⎩,解得 22.a b =-⎧⎨=⎩,∴ 一次函数的解析式为 22y x =-+. ……………………………………3分 (2)如图,-1<x <0,或x >2. ……………………………………5分17.解:∵ 在△ABC 中,∠B =90º, ∴ ∠A +∠ACB = 90º.E ADB∵ AC ⊥CE , ∴ ∠ACB +∠ECD =90º.∴ ∠A =∠ECD . ……………………………………2分 ∵ 在△ABC 和△CDE 中,∠A =∠ECD ,∠B =∠D =90º,∴ △ABC ∽△CDE . ……………………………………3分∴ DEBC CDAB =. ……………………………………4分∵ AB = 3,DE =2,BC =6,∴ CD =1. ……………………………………5分 18.解:(1)∵ 在△ACD 中,90C ∠=︒,CD =3,AC =3, ∴tan 3CD DAC AC∠==∴ ∠DAC =30º. ……………………………………1分 ∵ AD 平分∠BAC ,∴ ∠BAC =2∠DAC =60º. ……………………………2分 ∴ ∠B =30º. …………………………………………3分(2) ∵ 在Rt △ABC 中,∠C =90°,∠B =30º,AC =3,∴ AB =2AC =6. ……………………………………4分DCBAtan3ACBCB=== (5)分四、解答题(本题共20分,每小题5分)19(1)证明:∵△=[]22(21)4()m m m----…………………………………… 1分=2244144m m m m-+-+=1>0,∴此抛物线与x轴必有两个不同的交点.…………………………… 2分(2)解:∵此抛物线与直线33y x m=-+的一个交点在y轴上,∴233m m m-=-+. (3)分∴2230m m+-=.∴13m=-,21m=. (5)分∴m的值为3-或1.20.解:如图,作CD⊥AB于点D.∴∠ADC=90°.∵探测线与地面的夹角分别是30°和45°,∴∠DBC=45°,∠DAC=30°.∵在Rt△DBC中,∠DCB=45°,∴DB=DC. ............................ 2分∵在Rt△DAC中,∠DAC=30°,∴ AC=2CD . ........................... 3分 ∵ 在Rt △DAC 中,∠ADC =90°,AB =8, ∴ 由勾股定理,得 222AD CD AC +=.∴ 222(8)(2)CD CD CD ++=. ……………………………………… 4分 ∴4CD =±∵4CD =- ∴4CD =+∴ 有金属回声的点C 的深度是(4+)米. ……………………………… 5分 21(1)证明:如图,连结OD .∴ OD OB =. ∴ 12∠=∠. ∵ BD 平分ABC ∠, ∴ 13∠=∠.∴ 23∠=∠. …………………………..1分 ∴ OD BC ∥. ∴ 90ADO C ∠=∠=°. ∴ OD AC ⊥. ∵ OD 是⊙O 的半径,∴ AC 是⊙O 的切线. (2)分(2)解:在Rt △ACB 中,90C ∠=,BC =2 , cos ∠ABC 13=, ∴ 6cos BCAB ABC==∠. …………………………………………………… 3分设O ⊙的半径为r ,则6AO r =-. ∵ OD BC ∥, ∴ AOD ABC △∽△. ∴OD AOBC AB =. ∴626r r -=. 解得 32r =. ∴ O ⊙的半径为32. ………………………………………………………… 5分22. 解:(1)如图1. ………………………… 1分(2)猜想tan ∠ADF 的值为13.……………………2分 求解过程如下: 如图2.在BA 的延长线上截取AG=CE ,连接DG . ∵ 四边形ABCD 是正方形,∴ AD=CD=BC=AB=6,∠DAF=∠ABC=∠ADC=∠BCD = 90°. ∴ ∠GAD = 90°.∴ △AGD ≌ △CED . ………………………………3分FEDCBA 图1∴ ∠GDA=∠EDC ,GD=ED ,AG=CE . ∵ ∠FDE =45°,∴ ∠ADF +∠EDC=45°. ∴ ∠ADF +∠GDA =45°. ∴ ∠GDF=∠EDF . ∵ DF = DF ,∴ ∠GDF ≌∠EDF . ……………………………… 4分 ∴ GF =EF . 设AF =x , 则FB=6-x ,∵ 点E 为BC 的中点, ∴ BE=EC=3.∴ AG=3. ∴ FG=EF=3+x .在Rt △BEF 中,∠B =90°, 由勾股定理,得 222BF BE EF +=, ∴ 2223(6)(3)x x +-=+ . ∴ x=2.∴ AF=2. ……………………………………………………………… 5分∴ 在Rt △ADF 中,tan ∠ADF =AF AD =13. 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)GABCDEF图223.解:(1)∵点A (1,m )在一次函数2+=x y 的图象上,∴ m=3.∴ 点A 的坐标为(1,3). (1)分∵点A (1,3)在反比例函数ky x=的图象上, ∴ k =3. ∴反比例函数ky x=的表达式为3y x =.…………………………………………2分 (2)∵点C (n ,1)在反比例函数3y x=的图象上, ∴ n=3. ∴ C (3,1). ∵ A (1,3),∴ S △AOC =4. …………………………………………………………5分(3)所有符合条件的点P 的坐标:P 1(1,0),P 21,0). ……………………………………………7分 24.(1)证明:如图1.∵ ∠BAC =∠DAE =90°,∠BAE =∠BAE ,∴ ∠CAE =∠BAD .NMF ED CBA在△CAE 和△BAD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,,, ∴ △CAE ≌△BAD . (1)分∴ ∠ACF=∠ABD . ∵ ∠ANC=∠BNF , ∴ ∠BFN =∠NAC =90°.∴ BD ⊥CE . ……………………………………2分(2)证明:如图1’.作AG ⊥CE 于G ,AK ⊥BD 于K . 由(1)知 △CAE ≌△BAD ,∴ CE = BD ,S △CAE =S △BAD . ………………… 3分 ∴ AG = AK .∴ 点A 在∠CFD 的平分线上. ………… 4分即 FA 是∠CFD 的平分线.(3)如图2.∵ ∠BAC = 90°,AB =AC ,∴ ∠ACB =∠ABC =45°.∵ ∠BCE =15°,MN图1'ABCDEFKG图2ABCDE F MN∴ ∠ACN =∠ACB-∠BCE= 30°=∠FBN . 在Rt △ACN 中∵ ∠NAC = 90°,AC =2,∠ACN = 30°,∴ ,33CN AN ==. …………………………………… 5分∵ AB=AC =2,∴ BN= 2-3. …………………………………… 6分在Rt △ACN 中∵ ∠BFN = 90°,∠FBN = 30°,∴ 1323NF BN -==.∴1CF CN NF =+=+ …………………………………… 7分25.解:(1)∵ 二次函数y=-x 2+bx +c 的图象与x 轴相交于点A (﹣1,0),B (2,0),∴ 01,042.b c b c =--+⎧⎨=-++⎩解得 1,2.b c =⎧⎨=⎩∴ 二次函数的解析式为y = -x 2+x+2. ………………………………………2分(2)如图1.∵二次函数的解析式为y =-x 2+x +2与y 轴相交于点C , ∴ C (0,2).设 E (a ,b ),且a >0,b >0. ∵ A (-1,0),B (2,0), ∴ OA =1,OB =2,OC =2. 则S 四边形ABEC = 11112(2)(2)222b a a b ⨯⨯++⋅+-⋅= 1a b ++ ∵ 点 E (a ,b )是第一象限的抛物线上的一个动点, ∴ b = -a 2 +a +2, ∴ S 四边形ABEC = - a 2+2a +3 = -(a -1)2+4∴ 当四边形ABEC 的面积最大时,点E 的坐标为(1,2),且四边形ABEC的最大面积为4.………………………………………………5分(3)如图2.设M (m ,n ),且m >0. ∵ 点M 在二次函数的图象上, ∴ n =-m 2 +m +2.∵ ⊙M 与y 轴相切,切点为D , ∴ ∠MDC =90°.∵ 以C ,D ,M 为顶点的三角形与△AOC 相似,∴12CD OA DM OC ==,或2CD OCDM OA==. …………………………………6分 ①当n >2时,22-122m m m mm m+-+==,或 . 解得 m 1=0(舍去),m 2=12, 或m 3=0(舍去),m 4=-1(舍去). ②同理可得,当n <2时,m 1=0(舍去) ,m 2=32,或m 3=0(舍去),m 4=3. 综上,满足条件的点M 的坐标为(12,94),(32, 54),(3,-4). ……………8分。

2015年上海市各区初三年级第一学期期末考试数学试题(全含答案)

2015年上海市各区初三年级第一学期期末考试数学试题(全含答案)

2015年上海市各区初三年级第⼀学期期末考试数学试题(全含答案)2015年上海市六区联考初三⼀模数学试卷(满分150分,时间100分钟) 2015.1⼀. 选择题(本⼤题满分4×6=24分)1. 如果把Rt ABC ?的三边长度都扩⼤2倍,那么锐⾓A 的四个三⾓⽐的值()A. 都扩⼤到原来的2倍;B. 都缩⼩到原来的12; C. 都没有变化; D. 都不能确定;2. 将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为()A. 2(1)y x =+;B. 2(3)y x =-;C. 2(1)2y x =-+;D. 2(1)2y x =--;3. ⼀个⼩球被抛出后,如果距离地⾯的⾼度h (⽶)和运⾏时间t (秒)的函数解析式为25101h t t =-++,那么⼩球到达最⾼点时距离地⾯的⾼度是()A. 1⽶;B. 3⽶;C. 5⽶;D. 6⽶;4. 如图,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于()A. 2;B. 4;C. 245;D. 365;5. 已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于()A. 2sin m α?;B. 2cos m α?;C. 2tan m α?;D. 2cot m α?;6. 如图,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对⾓线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的⾯积分别记作1S 、2S 、3S 、4S ,那么下列结论中,不正确的是()A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ?=?;⼆. 填空题(本⼤题满分4×12=48分)7. 已知34x y =,那么22x y x y-=+ ;8. 计算:33()22a ab -+-= ; 9. 已知线段4a cm =,9b cm =,那么线段a 、b 的⽐例中项等于 cm10. ⼆次函数2253y x x =--+的图像与y 轴的交点坐标为;11. 在Rt ABC ?中,90C ∠=?,如果6AB =,2cos 3A =,那么AC = ; 12. 如图,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =,要使DE ∥AB ,那么:BC CD 应等于;13. 如果抛物线2(3)5y a x =+-不经过第⼀象限,那么a 的取值范围是;14. 已知点G 是⾯积为227cm 的△ABC 的重⼼,那么△AGC 的⾯积等于;15. 如图,当⼩杰沿着坡度1:5i =的坡⾯由B 到A 直⾏⾛了26⽶时,⼩杰实际上升的⾼度AC = ⽶(结论可保留根号)16. 已知⼆次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个⼆次函数的图像⼀定经过除点(1,3)外的另⼀点,这点的坐标是;17. 已知不等臂跷跷板AB 长为3⽶,当AB 的⼀端点A 碰到地⾯时(如图1),AB 与地⾯的夹⾓为30°;当AB 的另⼀端点B 碰到地⾯时(如图2),AB 与地⾯的夹⾓的正弦值为13,那么跷跷板AB 的⽀撑点O 到地⾯的距离OH = ⽶18. 把⼀个三⾓形绕其中⼀个顶点逆时针旋转并放⼤或缩⼩(这个顶点不变),我们把这样的三⾓形运动称为三⾓形的T-变换,这个顶点称为T-变换中⼼,旋转⾓称为T-变换⾓,三⾓形与原三⾓形的对应边之⽐称为T-变换⽐;已知△ABC 在直⾓坐标平⾯内,点(0,1)A -,(B ,(0,2)C ,将△ABC 进⾏T-变换,T-变换中⼼为点A ,T-变换⾓为60°,T-变换⽐为23,那么经过T-变换后点C 所对应的点的坐标为;三. 解答题(本⼤题满分10+10+10+10+12+12+14=78分)19. 已知在直⾓坐标平⾯内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0),与y 轴相交于点C ;(1)求抛物线的表达式;(2)求△ABC 的⾯积;20. 如图,已知在△ABC 中,AD 是边BC 上的中线,设BA a =,BC b =;(1)求AD (⽤向量,a b 的式⼦表⽰)(2)如果点E 在中线AD 上,求作BE 在,BA BC ⽅向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表⽰结论的分向量)21. 如图,某幢⼤楼的外墙边上竖直安装着⼀根旗杆CD ,⼩明在离旗杆下⽅⼤楼底部E 点24⽶的点A 处放置⼀台测⾓仪,测⾓仪的⾼度AB 为1.5⽶,并在点B 处测得旗杆下端C 的仰⾓为40°,上端D 的仰⾓为45°,求旗杆CD 的长度;(结果精确到0.1⽶,参考数据:sin 400.64?≈,cos 400.77?≈,tan 400.84?≈)22. ⽤含30°、45°、60°这三个特殊⾓的四个三⾓⽐及其组合可以表⽰某些实数,如:12 可表⽰为1sin 30cos 60tan 45sin 302=?=?==…;仿照上述材料,完成下列问题:(1)⽤含30°、45°、60填空:2= = = =…;(2)⽤含30°、45°、60°这三个特殊⾓的三⾓⽐,结合加、减、乘、除四种运算,设计⼀个等式,要求:等式中须含有这三个特殊⾓的三⾓⽐,上述四种运算都⾄少出现⼀次,且这个等式的结果等于1,即填空:1=23. 已知如图,D 是△ABC 的边AB 上⼀点,DE ∥BC ,交边AC 于点E ,延长DE ⾄点F ,使EF DE =,联结BF ,交边AC 于点G ,联结CF(1)求证:AE EG AC CG=;(2)如果2CF FG FB =?,求证:CG CE BC DE ?=?24. 已知在平⾯直⾓坐标系xOy 中,⼆次函数2y ax bx =+的图像经过点(1,3)-和点(1,5)-;(1)求这个⼆次函数的解析式;(2)将这个⼆次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请⽤m 的代数式表⽰平移后函数图象顶点M 的坐标;(3)在第(2)⼩题的条件下,如果点P 的坐标为(2,3),CM 平分PCO ∠,求m 的值;25. 已知在矩形ABCD 中,P 是边AD 上的⼀动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP ∠=∠,如果2AB =,5BC =,AP x =,PM y =;(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当4AP =时,求EBP ∠的正切值;(3)如果△EBC 是以EBC ∠为底⾓的等腰三⾓形,求AP 的长;2015年上海市六区联考初三⼀模数学试卷参考答案⼀. 选择题1. C2. A3. D4. C5. B6. B⼆. 填空题 7.15 8. 1322a b -- 9. 6 10. (0,3) 11. 4 12.53 13. 3a <- 14. 915. 16. (3,3)- 17. 3518. ( 三. 解答题19.(1)256y x x =-+;(2)(2,0)A ,(3,0)B ,(0,6)C ,3ABC S ?=;20.(1)12b a -;(2)略; 21. 3.84CD m ≈22.(1)sin 60?,cos 30?,tan 45sin 60;(2)(sin 30cos60)tan 45cot 45?+÷?;23. 略;24.(1)24y x x =-;(2)(2,4)M m -;(3)92m =;25.(1)4y x x =-(25x <≤);(2)3tan 4EBP ∠=;(3;崇明县2014学年第⼀学期教学质量调研测试卷九年级数学(测试时间: 100分钟,满分:150分)⼀、选择题(本⼤题共6题,每题4分,满分24分)1、已知52a b =,那么下列等式中,不⼀定正确的是………………………………() (A)25a b = (B)52a b = (C)7a b += (D)72a b b += 2、在Rt ABC ?中,90C ∠=?,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不⼀定成⽴的是……………………………………………………………………()(A)tan b a B = (B)cos a c B = (C)sin a c A= (D)cos a b A = 3、如果⼆次函数2y ax bx c =++的图像如图所⽰,那么下列判断中,不正确的是………()(A)0a > (B)0b > (C)0c < (D)240b ac ->4、将⼆次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数表达式为…………………………………………………………………………()(A)2(1)1y x =++(B)2(1)1y x =+- (C)2(1)1y x =-+ (D)2(1)1y x =-- 5、下列说法正确的是……………………………………………………()(A) 相切两圆的连⼼线经过切点 (B) 长度相等的两条弧是等弧 (C) 平分弦的直径垂直于弦 (D) 相等的圆⼼⾓所对的弦相等6、如图,点D 、E 、F 、G 为ABC ?两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC ?的⾯积三等分,那么下列结论正确的是 ………………………………………()(A)14DE FG = (B)1DF EG FB GC ==(C)AD FB =(D)AD DB =(第3题图)(第6题图)⼆、填空题(本⼤题共12题,每题4分,满分48分)7、已知点P 是线段AB 的黄⾦分割点()AP PB >,如果2AB =cm ,那么线段AP = cm .8、如果两个相似三⾓形的⾯积⽐为1:4,那么它们的周长⽐为.9、如果⼆次函数22(1)51y m x x m =-++-的图像经过原点,那么m = .A B CD E F G10、抛物线221y x =-在y 轴右侧的部分是(填“上升”或“下降”).11、如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为.12、已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是.13、某飞机的飞⾏⾼度为1500m ,从飞机上测得地⾯控制点的俯⾓为60°,此时飞机与这地⾯控制点的距离为 m .14、已知正六边形的半径为2cm ,那么这个正六边形的边⼼距为 cm .15、如图,已知在ABC ?中,90ACB ∠=?,6AC =,点G 为重⼼,GH BC ⊥,垂⾜为点H ,那么GH = .16、半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆⼼距O 1O 2的长为10cm ,那么公共弦AB 的长为 cm .17、如图,⽔库⼤坝的横截⾯是梯形,坝顶AD 宽5⽶,坝⾼10⽶,斜坡CD 的坡⾓为45?,斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为⽶.18、如图,将边长为6cm 的正⽅形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,那么EBG ?的周长是 cm .(第15题图)(第17题图)(第18题图)三、解答题(本⼤题共7题,满分78分)19、(本题满分10分)计算:2014cos301(cot 45)sin60?-+-?+?20、(本题满分10分,其中第(1)⼩题5分,第(2)⼩题5分)已知:如图,□ABCD 中,E 是AD 中点,BE 交AC 于点F ,设BA a =、BC b =.(1)⽤,a b 的线性组合表⽰FA ;(2)先化简,再直接在图中求作该向量:1151()()()2424a b a b a b -+-+++.C F E DAB C A B CD F G H QE21、(本题满分10分,其中第(1)⼩题6分,第(2)⼩题4分)如图,在Rt ABC ?中,90C ∠=?,点D 是BC 边上的⼀点,6CD =,3cos 5ADC ∠=, 2tan 3B =.(1)求AC 和AB 的长;(2)求sin BAD ∠的值.22、(本题满分10分,其中第(1)⼩题5分,第(2)⼩题5分)如图,轮船从港⼝A 出发,沿着南偏西15?的⽅向航⾏了100海⾥到达B 处,再从B 处沿着北偏东75?的⽅向航⾏200海⾥到达了C 处.(1)求证:AC AB ⊥;(2)轮船沿着BC ⽅向继续航⾏去往港⼝D 处,已知港⼝D 位于港⼝A 的正东⽅向,求轮船还需航⾏多少海⾥.23、(本题满分12分,其中第(1)⼩题6分,第(2)⼩题6分)如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠.(1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的⽐值.DD A B CEF 北 A B C 东24、(本题满分12分,其中每⼩题各4分)如图,已知抛物线258y x bx c =++经过直线112y x =-+与坐标轴的两个交点A 、B ,点C 为抛物线上的⼀点,且90ABC ∠=?.(1)求抛物线的解析式;(2)求点C 坐标;(3)直线112y x =-+上是否存在点P ,使得BCP ?与OAB ?相似,若存在,请直接写出P 点的坐标;若不存在,请说明理由.25、(本题满分14分,其中第(1)⼩题5分,第(2)⼩题5分,第(3)⼩题4分)已知在ABC ?中,5AB AC ==,6BC =,O 为边AB 上⼀动点(不与A 、B 重合),以O 为圆⼼OB 为半径的圆交BC 于点D ,设OB x =,DC y =.(1)如图1,求y 关于x 的函数关系式及定义域;(2)当⊙O 与线段AC 有且只有⼀个交点时,求x 的取值范围;(3)如图2,若⊙O 与边AC 交于点E (有两个交点时取靠近C 的交点),联结DE ,当DEC ?与ABC ?相似时,求x 的值.C AD O B · · · (图1) B C A (备⽤图1)E C A D O B · · · · (图2) B CA (备⽤图2)2014学年徐汇区数学⼀模⼀. 选择题1. 将抛物线22y x =-向右平移⼀个单位,再向上平移2个单位后,抛物线的表达式为()A. 22(1)2y x =--+;B. 22(1)2y x =---;C. 22(1)2y x =-++;D. 22(1)2y x =-+-; 2. 如图,平⾏四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC = 2:3,那么下列各式错误的是()A. 2BE EC =;B. 13EC AD =; C.23EF AE =; D. 23BF DF =;3. 已知Rt △ABC 中,90C ∠=?,CAB α∠=,7AC =,那么BC 为() A. 7sin α; B. 7cos α; C. 7tan α; D. 7cot α;4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△D C A 成⽴的是()A. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =?;D. DC AB AC BC=; 5. 已知⼆次函数222y ax x =-+(0a >),那么它的图像⼀定不经过()A. 第⼀象限;B. 第⼆象限;C. 第三象限;D. 第四象限;6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =,那么:ADE BEC S S ??=()A. 1:24;B. 1:20;C. 1:18;D. 1:16;⼆. 填空题 7. 如果53a b =,那么a b a b-+的值等于; 8. 抛物线2(1)2y x =-+的顶点坐标是;。

新人教版2014-2015学年名校九年级上学期期末数学试题及答案

新人教版2014-2015学年名校九年级上学期期末数学试题及答案

新人教版2014-2015学年名校九年级上学期期末数学试题时间120分钟满分100分 2015.8.27一、选择题(每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.三角形的两边长分别是3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A. 11 B. 13 C. 11或13 D. 11和133.用配方法把代数式x2﹣4x+5变形,所得结果是()A.(x﹣2)2+1 B.(x﹣2)2﹣9 C.(x+2)2﹣1 D.(x+2)2﹣54.如图,在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A. B. C. D.5.如图,△ABC中,∠C=70°,∠B=30°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在边BC上,则∠B′C′B的度数为()A. 30° B. 40° C. 46° D. 60°5题图 6题图 9题图6.如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC 等于()A. 30° B. 60° C. 90° D. 45°7.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1) B.(﹣2,1) C.(﹣2,﹣1) D. 2,1)8.半径为8cm的圆的内接正三角形的边长为()A. 8cm B. 4cm C. 8cm D. 4cm9.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B. 4 C. 6 D. 810.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A. B. C. D.二.填空题:(每空2分,共18分.)11.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.12.某商店10月份的利润为600元,12月份的利润达到864元,则平均每月利润增长的百分率是.13.已知m是方程3x2﹣6x﹣2=0的一根,则m2﹣2m= .14.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是.则他将铅球推出的距离是m.14题图 17题图15.点A(3,n)关于原点对称的点的坐标是(m,2),那么m= ,n= .16.如果圆锥的底面周长是20π,侧面展开图所得的扇形的圆心角为120°,那么该圆锥的全面积为.17.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= 度.18.在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n= .三.解答题(共52分)用指定的方法解下列方程:19.x2+2x﹣35=0(配方法解)20.解方程:4x2+12x+9=0.21.在正方形网格中建立如图所示的平面直角坐标系xOy.△ABC的三个顶点都在格点上,点A、B、C的坐标分别是A(4,4 )、B(1,2 )、C(3,2 ),请解答下列问题.(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)将△ABC绕点O逆时针旋转90°,画出旋转后的△A3B3C3.并写出点A3的坐标:A3(,).22.下图是输水管的切面,阴影部分是有水部分,其中水面AB宽16cm,水最深4cm.(1)求输水管的半径.(2)当∠AOB=120°时,求阴影部分的面积.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.25.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).(1)求售价与利润的函数关系式;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?参考答案一、1.故选:C . 2.故选B . 3.故选A . 4.故选:B . 5.故选B .6故选B . 7.故选B . 8.故选:A . 9.故选:D . 10.故选:B .二. 11 k >﹣1且k ≠0 . 12. 20% . 13. . 14. 10 m .15. m= ﹣3 ,n= ﹣2 . 16. 400π . 17. 23 度. 18. 4 .三19.解答: 解:移项得:x 2+2x=35,配方得:x 2+2x+1=35+1,即(x+1)2=36,开方得:x+1=6,x+1=﹣6,解得:x 1=5,x 2=﹣7.20解答: 解:移项,得4x 2+12x=﹣9,化二次项的系数化为1,得x 2+3x=﹣,等式两边同时加上一次项系数一半的平方 ,得(x+)2=0,解得,x 1=x 2=﹣.21解答: 解:(1)(2)(3)所作图形如图所示:,点A 3的坐标为(﹣4,4),故答案为:﹣4,4.22.解答: 解:(1)设圆形切面的半径,过点O 作OD ⊥AB 于点D ,交⊙O 于点E ,则AD=BD=AB=×16=8cm,∵最深地方的高度是4cm,∴OD=r=4,在Rt△OBD中,OB2=BD2+OD2,即r2=82+(r﹣4)2,解得r=10(cm).(2)∵∠AOB=120°,∴∠OAB=∠OBA=30°,∴OD=OA=5cm,AD=OA=5cm,∴AB=10cm,∴S阴影=S扇形﹣S△AOB=﹣×10×5=(cm)2.23.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.24.解答:(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=8,∴⊙O的半径为4.25.解答:解:(1)由题意得:y=(210﹣10x)(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣10(x﹣5.5)2+2402.5.∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元),∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.。

2014-2015学年人教版九年级上学期期末数学试卷(精选3套,详细解析)

2014-2015学年人教版九年级上学期期末数学试卷(精选3套,详细解析)

2014-2015学年人教版九年级上学期期末数学试卷考试时间100分钟,试卷满分100分一. 选择题(每小题3分,共30分)1.“ a 是实数,0≥a ”这一事件是( )A .必然事件B .不确定事件C .不可能事件D .随机事件2. 把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 3.已知反比例函数xy 1=,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x >1 时, 0 <y <1D .当 x <0 时, y 随着 x 的增大而增大 4.如图,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180° 5.如果关于x 的一元二次方程22(21)10k x k x -++=有两个 不相等的实数根,那么k 的取值范围是() A .14k >-B .14k >-且0k ≠ C .14k <- D .14k ≥-且0k ≠ 6.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧tan 的值是( )A .1BCD 7.如图,在大小为4×4的正方形网格中与①中三角形相似的是( )A .②B . ③C . ④和③D . ②和④8.已知抛物线k x a y +-=2)2((是常数,>k a a ,0),A (﹣3,y 1)、B (3,y 2)、C (4,y 3)是抛物线上三点,则y 1,y 2,y 3由小到大依序排列为( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 2<y 3<y 1 D .y 3<y 2<y 1 9.如图,△AOB 是等边三角形,B (2,0),将△AOB 绕O 点逆时针方向旋转90°到△A′OB′位置,则点A′ 的坐标是( )(第4题)(第6题)A .(﹣1,)B .(﹣,1)C .(,﹣1)D .(1,﹣)10. 已知二次函数c bx ax y ++=2的图象如图所示,那么 一次函数c bx y +=和反比例函数xay =在同一平面直角坐标系中的图象大致是( )A .B .C .D .二.填空题(每小题3分,共24分.) 11. 已知点M )3,21(m -关于原点对称的点在第一象限,那么的取值范围是________. 12. 如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为 13.一种药品经过两次降价,药价从原来每盒 60 元降至现在的 48.6 元,则平均每次降价的百分率是 .14. 如图,在平面直角坐标系中,点O为坐标原点,点P 在第一象限,☉P 与x 轴交于O 、A 两点,点A 的坐标为(6,0),☉P的半径为13,则点P 的坐标为 .15.如图,在△ABC 中,AB=24,AC=18,D 是AC 上一点,AD=12,AB 上取一点E ,A 、D 、E 三点为顶点组成的三角形与△ABC 相似,AE 的长是_____ _. 16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行.点P (a 3,a )是反比例函数xk y =(k >0)的图象上与正方形的一个交点,若图中阴影部分的 面积等于9,则k 的值为 .(第16题) 17. 轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达 C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔 A 的距离是 海里.18. 二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),下列说法:①若b 2﹣4ac=0,则抛物线的顶点一定在x 轴上; ②若a-b+c=0,则抛物线必过点(-1,0);③若a <0,且一元二次方程ax 2+bx+c=0有两根x 1,x 2(x 1<x 2),则ax 2+bx+c <0的解集为x 1<x <x 2;④若33ca b +=,则方程ax 2+bx+c=0有一根为-3. (第12题) (第14题) (第15题)其中正确的是 (把正确的序号都填上)三.解答题(本大题共有5题,满分46分) 19.(每小题6分,共12分)(1)2tan 603sin 30cos 45+--o o o . (2)解方程:2410x x ++=20.(本题8分) 如图,一次函数y 1=kx+b 的图象与反比例函数2my x=(x >0)的图象交于A (1,6),B (a ,2)两点.(1)求一次函数与反比例函数的解析式; (2)直接写出y 1≤y 2时x 的取值范围.21.(本题8分) 小华和小丽两人玩数字游戏,先由小丽心中任意想一个数记为 x ,再由小华猜小丽刚才想的数字,把小华猜的数字记为 y ,且他们想和猜的数字只能在 1、2、3、4这四个数字中.(1)请用树状图或列表法表示出他们想和猜的所有情况;(2)如果他们想和猜的数字相同,则称他们“心灵相通” .求他们“心灵相通”的概率; (3)如果他们想和猜的数字满足x y 1-≤,则称他们“心有灵犀” .求他们“心有灵犀”的概率.22. (本题8分) 如图,直线PM 切⊙O 于点M,直线PO 交⊙O 于A 、B 两点,弦AC ∥PM ,连接OM 、BC. 求证:(1)△ABC ∽△POM ;(2)2OA 2=OP·BC.23. (本题10分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润甲y (万元)与进货量x(吨)近似满足函数关系x y 3.0=甲;乙种水果的销售利润乙y (万元)与进货量x (吨)近似满足函数关系bx ax y +=2乙(其中0≠a ,a ,b 为常数),且进货量x 为1吨时,销售利润乙y 为1.4万元;进货量x 为2吨时,销售利润乙y 为2.6万元.(1)求乙y (万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?2014—2015学年第一学期九年级数学期末质量检测评分标准11.m0< 12.1413.010 14.(3,2) 15.916或16.3 17.25 18.①、②、④三.解答题(本大题共有5题,满分46分)19.(1)21-2⎛⨯⎝…………………………………3分=313+-22…………………………………5分=4………………………………………6分(2)(2)解:2x4x1+=-,2x4x 414++=-+2(x2)3+=…………………………………3分x+2=…………………………………5分12x2,x2==.………………………………………6分20. (1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,…………………………………3分∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=-2x+8,反比例函数的解析式为y2=;…………………6分(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.…………………………………8分(2)根据(1)得所以可能的情况有16中,想和猜的数相同的情况有4种,∴P(心灵相通)=41164=…………………6分(3)根据(1)得所以可能的情况有16中,数字满足|x-y|≤1的情况有10种,∴P(心有灵犀)105168==…………………8分22.(1)证明:∵直线PM切⊙O于点M,∴∠PMO=90°,∵弦AB是直径,∴∠ACB=90°,∴∠ACB=∠PMO,∵AC∥PM,∴∠CAB=∠P,∴△ABC∽△POM;…………………4分(2)∵△ABC∽△POM,∴,又AB=2OA,OA=OM,∴,∴2OA2=OP·BC.…………………8分23.解:(1)由题意,得:解得∴y乙=-0.1x2+1.5x.…………………4分(2)W=y甲+y乙=0.3(10-t)+(-0.1t2+1.5t)∴W=-0.1t2+1.2t+3.W=-0.1(t-6)2+6.6.∴t=6时,W有最大值为6.6.∴10-6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.…………………10分2014-2015学年人教版九年级上学期期末数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣15.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A.B.C.D.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是.(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.22.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(﹣,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x之间的函数表达式.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于x的二次函数y=mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.24.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.25.我们规定:函数y=(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数y=就是反比例函数y=(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数;(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数y=的图象经过点B、E,求该奇特函数的表达式;(3)把反比例函数y=的图象向右平移4个单位,再向上平移个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.2014-2015学年人教版九年级上学期期末数学试卷答案解析参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.考点:比例的性质.专题:计算题.分析:根据内项之积等于外项之积得到2x=15,然后解一次方程即可.解答:解:∵=,∴2x=15,∴x=.故选B.点评:本题是基础题,考查了比例的基本性质,比较简单.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定考点:点与圆的位置关系.分析:点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解答:解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选A.点评:本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.考点:锐角三角函数的定义.分析:首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.解答:解:∵在Rt△ABC中,∠C=90°,AB=5,BC=4,∴AC===3,∴sinB==.故选D.点评:本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣1考点:反比例函数的性质.分析:如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()解答:解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.点评:本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.5.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°考点:圆周角定理.分析:已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.解答:解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选B.点评:本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.考点:概率公式.分析:先统计出奇数点的个数,再根据概率公式解答.解答:解:∵正方体骰子共六个面,点数为1,2,3,4,5,6,奇数为1,3,5,∴点数为奇数的概率为:=.故选:C.点评:此题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A .B .C .D .考点: 动点问题的函数图象.分析: 分段讨论,当0≤x ≤2时,作PQ ⊥AC ,根据锐角三角函数和勾股定理求出AQ 、PQ 、CQ 、PC 2;当2<x <4时,PC 在BC 上,是一次函数;当4<x ≤6时,PC 在AC 上,是一次函数,根据函数关系式分析即可得出结论.解答: 解:当0≤x ≤2时,作PQ ⊥AC ,∵AP=x ,∠A=60°∴AQ=,PQ=, ∴CQ=2﹣,∴PC==, ∴PC 2=x 2﹣2x+4=(x ﹣1)2+3;当2<x <4时,PC=4﹣x ,当4<x ≤6时,PC=2﹣(6﹣x )=x ﹣4,故选:C .点评: 本题主要考查了动点问题的函数图形,分段讨论,列出每段函数的解析式是解决问题的关键.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为 6π .考点: 弧长的计算.分析: 直接利用弧长的计算公式计算即可.解答: 解:弧长是:=6π.故答案是:6π.点评:本题考查了弧长的计算公式,正确记忆公式是关键.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是2:5.考点:相似三角形的应用.分析:由题意知三角尺与其影子相似,它们周长的比就等于相似比.解答:解:∵,∴三角尺的周长与它在墙上形成的影子的周长的比是.点评:本题考查相似三角形的性质,相似三角形的周长的比等于相似比.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是③⑤.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.考点:二次函数图象与系数的关系.分析:根据二次函数的图象开口方向即可判断A;由二次函数的图象与y轴的交点位置即可判断B;把x=﹣1代入二次函数的解析式即可判断C;根据二次函数的对称轴即可求出D.解答:解:①∵二次函数的图象开口向上,∴a>0,故本选项错误;②∵二次函数的图象与y轴的交点在点(0,﹣1)的上方,∴c>﹣1,故本选项错误;③、∵二次函数的图象的对称轴是直线x=,∴﹣=,﹣3b=2a,2a+3b=0,故本选项正确;④∵二次函数的图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;⑤∵二次函数的图象的对称轴是直线x=,∴﹣=,∴﹣3b=2a,b=﹣a,∴y最小值=a+b+c=a+×(﹣a)+c=;即y的最小值为,故本选项正确;故答案为:③⑤.点评:本题考查了二次函数的图象和系数的关系,题目具有一定的代表性,是一道比较好的题目,注意用了数形结合思想,二次函数的图象开口方向决定a的符号,二次函数的图形与y轴的交点位置决定c的符号,根据二次函数的图象的对称轴是直线x=得出﹣=,把x=代入y=ax2+bx+c(a≠0)得出y=a+b+c等等.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是(﹣1,1).(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是(4025,﹣1).考点:规律型:点的坐标.分析:(1)把正方形ABCD先沿x轴翻折,则点B关于x轴对称,得到B点的坐标为:(﹣3,1),再向右平移2个单位”后点B的坐标为:(﹣3+2,1),即B1(﹣1,1).(2)首先由正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),然后根据题意求得第1次、2次、3次变换后的点B的对应点的坐标,即可得规律:第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),继而求得把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标.解答:解:(1)∵正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),∴根据题意得:第1次变换后的点B的对应点的坐标为(﹣3+2,1),即B1(﹣1,1),(2)第2次变换后的点B的对应点的坐标为:(﹣1+2,﹣1),即(1,﹣1),第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),∴把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标是:(4025,﹣1).故答案为:(﹣1,1);(4025,﹣1).点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点B的对应点的坐标为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n ﹣3,﹣1)是解此题的关键.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.考点:特殊角的三角函数值.分析:将tan30°=,cos60°=,tan45°=1,sin30°=分别代入运算,然后合并即可得出答案.解答:解:原式==.点评:本题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.考点:二次函数的三种形式;二次函数的性质.分析:(1)由于二次项系数是1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h求解即可;(3)先求出方程x2﹣4x+3=0的两根,再根据二次函数的性质即可求解.解答:解:(1)y=x2﹣4x+3=(x2﹣4x+4)﹣4+3=(x﹣2)2﹣1;(2)∵y=(x﹣2)2﹣1,∴对称轴为直线x=2,顶点坐标为(2,﹣1);(3)解方程x2﹣4x+3=0,得x=1或3.∵y=x2﹣4x+3,a=1>0,∴抛物线开口向上,∴当1<x<3时,函数y<0.点评:本题考查了二次函数解析式的三种形式,二次函数的性质,难度适中.利用配方法将一般式转化为顶点式是解题的关键.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.考点:相似三角形的判定与性质.分析:(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.解答:(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.点评:本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高BC.解答:解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.点评:本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将原三角形转化为两个直角三角形是解题的关键.17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.考点:圆周角定理;勾股定理;垂径定理.专题:计算题.分析:(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r 的方程,求出方程的解即可得到圆的半径r的值.解答:(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.点评:此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.考点:反比例函数与一次函数的交点问题;三角形的面积.专题:计算题.分析:(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,(2)可求得点B的坐标,设P(x,y),由S△PBC=18,即可求得x,y的值.解答:解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),∵S△PBC==18,∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)点评:本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.考点:解直角三角形.专题:计算题.分析:(1)过点C作CD⊥AB,垂足为D,设CD=3k,则AB=AC=5k,继而可求出BD=k,从而求出tanB的值;(2)在Rt△BCD中,先求出BC=k=10,求出k的值,继而得出AB的值.解答:解:(1)过点C作CD⊥AB,垂足为D,(1分)在Rt△ACD中,,(1分)设CD=3k,则AB=AC=5k,(1分)∴.(1分)在△BCD中,∵BD=AB﹣AD=5k﹣4k=k.(1分)∴.(1分)(2)在Rt△BCD中,,(1分)∵BC=10,∴.(1分)∴.(1分)∴AB=.(1分)点评:本题考查了解直角三角形的知识,过点C作CD⊥AB,构造直角三角形是关键.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.考点:待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.分析:(1)根据待定系数法即可求得;(2)正确画出图形;(3)通过图象可以看出点B纵坐标t的取值范围.解答:解:(1)∵抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).∴,解得,∴抛物线的表达式为y=﹣x2﹣2x+3.(2)此抛物线如图所示.(3)2<t≤4.如图,由图象可知点B纵坐标t的取值范围为2<t≤4.点评:本题考查了待定系数法求解析式,以及画图的能力和识别图形的能力,要熟练掌握.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.考点:切线的性质.分析:(1)连接AE,由圆周角定理和等腰三角形的性质,结合切线的性质可证得∠CBF=∠BAE,可证得结论;(2)由(1)结论结合正弦值,在Rt△ABE中可求得BE,可求出BC,过C作CM⊥BF,在Rt△BCM中可求得BM,CM,再利用平行线分线段成比例可求得BF.解答:(1)证明:如图1,连结AE.∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=∠BAC.∵BF是⊙O的切线,∴∠CBF=∠BAE,∴∠CBF=∠CAB.(2)解:由(1)可知∠CBF=∠BAE,∴sin∠BAE=sin∠CBF=,在Rt△ABE中,sin∠BAE=,∴=,∴BE=,∴BC=2,如图2,过C作CM⊥BF于点M,则sin∠CBF==,即=,解得CM=2,由勾股定理可求得BM=4,又∵AB∥CM,∴=,。

最新2014-2015学年人教版九年级上册数学期末测试卷及答案

最新2014-2015学年人教版九年级上册数学期末测试卷及答案

2014-2015学年度九年级上册数学期末试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是 ( )2.将函数y =2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( ) A .y =2(x -1)2-3 B .y =2(x -1)2+3C .y =2(x +1)2-3D .y =2(x +1)2+33.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于 ( )A.55°B.70°C.125°D.145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是( )A. 4 B. 5 C. 36 D. 6 5.一个半径为2cm 的圆内接正六边形的面积等于( )A .24cm 2B .2C .2D .26.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( ) A .35° B .45° C .55° D .75°7.函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若221-<<x x ,则( )A.21y y < B.21y y > C.21y y = D.1y 、2y 的大小不确定 8.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )A .B .C .D .9.一次函数y ax b =+与二次函数2y ax bx c =++在同一坐标系中的图像可能是( )第3题图 第6题图第4题图A .B .C .D .10.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)A.3B.3根号3 C.D.4二、填空题:1112.如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB= °.13.若函数221y mx x=++的图象与x轴只有一个公共点,则常数m的值是_______ 14.抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.15.如图,在一个正方形围栏中均匀地散步者许多米粒,正方形内有一个圆(正方形的内切园),一只小鸡仔围栏内啄食,则“小鸡正在院内”啄食的概率为_______.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A 经过的路线与直线l所围成的面积是_________ .三、解答下列各题1.解方程:(1)122=+xx(2)0)3(2)3(2=-+-xx第12题图第14题图第15题图2.已知关于x 的一元二次方程2(31)30kx k x +++=(0)k ≠. (1)求证:无论k 取何值,方程总有两个实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为整数,求k 的值.3.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC 关于原点O 逆时针旋转90°得到△A 1B 1C 1;②△A 1B 1C 1关于原点中心对称的△A 2B 2C 2. (2)△A 2B 2C 2中顶点B 2坐标为 .4.某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A 1表示,女生用B 1表示)和九年(2)班的1名男生1名女生(男生用A 2表示,女生用B 2表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率; (3)求2名主持人恰好1男1女的概率.5.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y 箱与销售价x 元/箱之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?6、如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.7、如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?参考答案1.DA 、是中心对称图形,不是轴对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、不是中心对称图形,是轴对称图形,故本选项错误;D 、既是中心对称图形又是轴对称图形,故本选项正确. 2.D将函数y =2x 2的图象向左平移1个单位,得: y =2(x +1)2,,再向上平移3个单位,可得到的抛物线是y =2(x +1)2+3.故选:D. 考点:抛物线的平移. 3.C .∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C 、A 、B 1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°-55°=125°, ∴旋转角等于125°. 4.D.∵OC ⊥AB ,OC 过圆心O 点,∴BC=AC=21AB=21×16=8,在Rt △OCB 中,由勾股定理得:68102222=-=-=BC OB OC5.B .连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,因而面积是因而正六边形的面积 6.A【解析】连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵∠ABD =55°,∴∠A =90°-∠ABD =35°,∴∠BCD =∠A =35°. 7.A因为函数m x x y +--=822的图象抛物线开口向下,所以在对称轴8224b x a -=-=-=--左侧,y 随x 的增大而增大,因为221-<<x x ,所以21y y <,故选:A. 8.A【解析】过O 点作OC⊥AB,垂足为D ,交⊙O 于点C ,由折叠的性质可知OD 为半径的一半,而OA为半径,可求∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理求∠AOB,然后求得弧AB的长,利用弧长公式求得围成的圆锥的底面半径,最后利用勾股定理求得其高即可.解:过O点作OC⊥AB,垂足为D,交⊙O于点C,由折叠的性质可知,OD=OC=OA,由此可得,在Rt△AOD中,∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理,得∠AOB=180°﹣∠A﹣∠B=120°,∴弧AB的长为=2设围成的圆锥的底面半径为r,则2πr=2π,∴r=1cm.∴圆锥的高为=.故选A.9.C.A.由一次函数y ax b=+的图象可得:a>0,b>0,此时二次函数2=++的y ax bx c图象应该开口向上,故A错误;B.由一次函数y ax b=+的图象可得:a>0,b>0,此时二次函数2=++的y ax bx c图象应该开口向上,对称轴x=﹣<0,故B错误;C.由一次函数y ax b=+的图象可得:a<0,b<0,此时二次函数2=++的y ax bx c图象应该开口向下,对称轴x=﹣<0,故C正确.D.由一次函数y ax b=+的图象可得:a<0,b<0,此时二次函数2=++的y ax bx c图象应该开口向下,故D错误;10.求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解:圆锥的底面周长是6,则6=,∴n=180°,即圆锥侧面展开图的圆心角是180度. 则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度. ∴在圆锥侧面展开图中BP=m .故小猫经过的最短距离是m .11.(1,2).已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.试题解析:∵y=x 2-2x+3=x 2-2x+1-1+3=(x-1)2+2, ∴抛物线y=x 2-2x+3的顶点坐标是(1,2). 12.根据旋转可得AC=AD ,∠CAD=∠BAE , ∵AC=AD ,∠C=80°, ∴∠C=∠ADC=80°,∴∠CAD=180°-80°-80°=20°, ∴∠BAE=20°.13.需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m 的值.试题解析:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点; ②若m≠0,则函数y=mx 2+2x+1,是二次函数. 根据题意得:△=4-4m=0, 解得:m=1.故答案为:0或1.14.根据图象可知抛物线的对称轴为x=-1,一个交点为(1,0),那么可推出另一交点为(-3,0),结合图象即可求出y >0时,x 的范围. 解:根据抛物线的图象可知:抛物线的对称轴为x=-1,已知一个交点为(1,0), 根据对称性,则另一交点为(-3,0), 所以y >0时,x 的取值范围是-3<x <1. 15.设正方形的边长为a ,再分别计算出正方形与圆的面积,计算出其比值即可. 试题解析:设正方形的边长为a ,则S 正方形=a 2,因为圆的半径为2a,所以S 圆=π(2a )2=24a ,所以“小鸡正在圆圈内”啄食的概率为:2244a a ππ=.16.∵在Rt △ACB 中,BC=2,AC=2∴由勾股定理得:AB=4,∴AB=2BC ,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=22120490125236036023πππ⨯⨯++⨯⨯=+17.解:()1212=+x x 方程两边同时加1得: 2122=++x x ()212=+x 21±=+x 所以: 21±-=x()()()032322=-+-x x()()0233=+--x x()()013=--x x所以:13==x x 或小题(1)用配方法好解,小题(2)适合用提公因式法。

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年上学期期末考试九年级数学试题(考试时间:120分钟 满分:150分)一、选择题(本题共10道题,每小题3分,共30分)1.下列方程中,是一元二次方程的是( )A. 221x x y ++=B. 2110x x+-= C. 20x = D. 2(1)(3)1x x x ++=- 2.下列汽车标志中,既是轴对称又是中心对称图形的是( )3.下列说法中正确的是( )A.不确定事件发生的概率是不确定的B.事件发生的概率可以等于事件不发生的概率C.事件发生的概率不可能等于0D.抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于24.如图45,15中,∠=∠=O CBO CAO ,则AOB ∠的度数是( )A.75 B.30 C.45 D.60 5.掷一枚六面分别标有1到6的均匀骰子,向上一面的点数大于2且小于5的概率为1P ,抛两枚硬币,正面均朝上的概率为2P ,则( )A.12P P <B.12P P >C.12P P =D.不能确定6.在同圆中,下列四个命题:○1圆心角是顶点在圆心的角;○2两个圆心角相等,它们所对的弦也相等;○3两条弦相等,所对的劣弧也相等;○4等弧所对的圆心角相等。

其中真命题有( )A.4个B.3个C.2个D.1个7.抛物线22(1)3y x =---与y 轴交点的纵坐标为( )A.3-B. 4-C.5-D.1-8.用配方法解关于x 的方程20x px q ++=,方程可变形为( ) A.224()24p p q x -+= B.224()24p q p x -+= C.224()24p p q x +-= 第4题D.224()24p p q x --= 9.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向旋转到BCF △,旋转角为()0180a a <<,则a =( )A.60 B.90 C.120 D.4510.已知二次函数2y ax bx c =++的图象如图所示,其对称轴为直线1x =-,给出下列结论(1)24b ac >; (2)0abc >; (3)20a b +=; (4)0a b c ++>; (5)420a b c -+<.则正确的结论有( )A. 2个B. 3个C. 4个D. 5个第9题C第16题第17题B二、填空题(本大题共8小题,每小题3分,共24分)11.方程2x =的根是 .12.众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是13.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为,那么x 满足的方程是14.如果函数232(3)1k k y k x kx -+=-++是二次函数,那么k 值为15.一个圆锥的侧面展开图是半径为1的半圆,该圆锥的底面半径是16.二次函数2y x bx c =-++的图象如图所示,则一次函数y bx c =+的图象不经过第 象限. 17.如图所示,一条公路的转变处是一段圆弧(图中的弧AB )点O 是这段弧的圆心,C 是AB 上一点,,OC AB ⊥ 垂足为D ,AB=300m ,CD=50m ,则这段弯路的半径是18.观察下列一组数:13579,,,,,27142334⋅⋅⋅它们是按一定规律排列的,那么这一组数的第n 个数是三、解答题(本大题共96分)19.解方程:(10分)(1) 2660x x --=(2) 22760x x -+=20.△ABC 在平面直角坐标系中的位置如图所示(A 、B 、C 三点在格点上),把△ABC 绕原点O 顺时针旋转90,A 、B 、C 旋转后的对应点分别是1A 、1B 、1C(1)画出旋转后的111△ABC ,并直接写出1A、1B 、1C 的坐标; (2)在旋转过程中,求点A 到点1A 所经过的路径的长.(12分)21.某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销。

2014-2015学年九年级上数学期末试卷及答案解析

2014-2015学年九年级上数学期末试卷及答案解析

2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()23.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,7.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二28.如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣19.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )10.如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( )二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 _________ . 12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是_________ .13.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P 1.使得点P 1与点O 关于点A 成中心对称;第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称;第三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称;第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点P 5,使得点P 5与点P 4关于点B 成中心对称;…照此规律重复下去,则点P 2013的坐标为 _________ .14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A 、K 、Q 、J 和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是 _________ . A . a <0B .a ﹣b+c <0 C . ﹣D . 4ac ﹣b 2<﹣8a15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第_________象限.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC 于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x 的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()=2≤3.(2013•鄂州)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.(2013•盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.(2013•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.(2013•资阳)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中÷=127.(2013•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二2.8.(2013•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()﹣<最小值:9.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()BG=4AG==210.(2013•日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD 平分∠ABC,则下列结论不一定成立的是()∴==,二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是4或﹣4.12.(2013•兰州)若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵14.(2013•永州)一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是.从这副牌中任意抽取一张,则这张牌是标有字母的概率是=故答案为:=15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.16.(2013•兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.时,抛物线与,×x<<17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是在﹣2<b<2范围内的任何一个数.18.(2013•宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是①②④(写出所有正确结论的序号).,根据垂径定理可得:=由=E=∴,∵,AG===E=AD=,×=3∴(∴,,;三.解答题(共10小题)19.(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)x个月,则乙队施工)20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.=﹣21.(2013•铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC 点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.AE=CE=•AE=.22.(2013•南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.BC=3AM=6r=6r=CE=2r=OM=6﹣BE=2OM=BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6﹣BE=2OM=,∴,.23.(2013•重庆)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.∴∴××,解得,x++时,有最大值24.(2013•义乌市)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.,=11时,25.(2013•盐城)如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.y=y=∴﹣x,FH=FOB==x×,×=1,﹣﹣,=,AD==2xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=26.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC 上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.BE EH=:B==EQ=AEH==,EH=BE::27.(2013•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.,解得,mN=N=mON==点坐标为(m×≤,,,当≤(+,到达最高位置时的坐标为()28.(2013•无锡)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.==∴=,即==362)代入,解得x=36(负值舍去))代入,解得xx x y=31。

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年上海市万里学校初三上学期期末数学试卷一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上] 1.(4分)如图,直线l1∥l2∥l3,两直线AC和DF与l1,l2,l3分别相交于点A,B,C和点D,E,F.下列各式中,不一定成立的是()A.B.C.D.2.(4分)用一个2倍放大镜照一个△ABC,下面说法中错误的是()A.△ABC放大后,面积是原来的2倍B.△ABC放大后,各边长是原来的2倍C.△ABC放大后,周长是原来的2倍D.△ABC放大后,面积是原来的4倍3.(4分)在Rt△ABC中,已知∠ACB=90°,BC=1,AB=2,那么下列结论正确的是()A.sinA=B.tanA=C.cosB=D.cotB=4.(4分)如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么()A.a<0,b>0,c>0 B.a>0,b<0,c>0 C.a>0,b<0,c<0 D.a>0,b>0,c<05.(4分)下列命题中,正确的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A.1个 B.2个 C.3个 D.4个6.(4分)下列判断错误的是()A.0•=B.如果(为非零向量),那么∥C.设为单位向量,那么||=1D.如果,那么或二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知x:y=5:2,那么(x+y):y=.8.(4分)计算:=.9.(4分)如图,在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E,如果AD=3,BD=4,AE=2,那么AC=.10.(4分)已知线段MN的长为2厘米,点P是线段MN的黄金分割点,那么较长的线段MP的长是厘米.11.(4分)二次函数y=x2﹣2x﹣3的图象与y轴的交点坐标是.12.(4分)如果将抛物线y=﹣2x2平移,使顶点移到点P(﹣3,1)的位置,那么所得新抛物线的表达式是.13.(4分)正八边形的中心角为度.14.(4分)用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x厘米,面积为y平方厘米,写出y关于x的函数解析式:.15.(4分)离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5米,那么旗杆的高为米(用含α的三角函数表示).16.(4分)如图,已知⊙O的半径为5,⊙O的一条弦AB长为8,那么以3为半径的同心圆与弦AB位置关系是.17.(4分)我们定义:如果一个图形上的点A′、B′、…、P′和另一个图形上的点A、B、…、P 分别对应,并且满足:(1)直线AA′、BB′、…、PP′都经过同一点O;(2)==…==k,那么这两个图形叫做位似图形,点O叫做位似中心,k叫做位似比.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且OB=BB′,如果点A(,3),那么点A′的坐标为.18.(4分)如图,已知△ABC中,AB=AC,tanB=2,AD⊥BC于点D,G是△ABC 的重心,将△ABC绕着重心G旋转,得到△A1B1C1,并且点B1在直线AD上,联结CC1,那么tanCC1B1的值等于.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.20.(10分)如图,已知AB∥CD,AD与BC相交于点O,且=.(1)求的值.(2)如果,请用表示.21.(10分)如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y 轴交于点C(0,6),对称轴为直线x=2,求二次函数解析式并写出图象最低点坐标.22.(10分)如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)23.(12分)如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF ⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.24.(12分)如图,在平面直角坐标系xOy中,点A(﹣m,0)和点B(0,2m)(m>0),点C在x轴上(不与点A重合)(1)当△BOC与△AOB相似时,请直接写出点C的坐标(用m表示)(2)当△BOC与△AOB全等时,二次函数y=﹣x2+bx+c的图象经过A、B、C三点,求m的值,并求点C的坐标(3)P是(2)的二次函数图象上的一点,∠APC=90°,求点P的坐标及∠ACP 的度数.25.(14分)如图,等边△ABC,AB=4,点P是射线AC上的一动点,联结BP,作BP的垂直平分线交线段BC于点D,交射线BA于点Q,分别联结PD,PQ.(1)当点P在线段AC的延长线上时,①求∠DPQ的度数,并求证:△DCP∽△PAQ;②设CP=x,AQ=y,求y关于x的函数解析式,并写出它的定义域;(2)如果△PCD是等腰三角形,求△APQ的面积.2014-2015学年上海市万里学校初三上学期期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上] 1.(4分)如图,直线l1∥l2∥l3,两直线AC和DF与l1,l2,l3分别相交于点A,B,C和点D,E,F.下列各式中,不一定成立的是()A.B.C.D.【解答】解:如图,∵直线l1∥l2∥l3,∴,,,∴A、B、D选项中的等式成立,C选项中的等式不一定成立.故选:C.2.(4分)用一个2倍放大镜照一个△ABC,下面说法中错误的是()A.△ABC放大后,面积是原来的2倍B.△ABC放大后,各边长是原来的2倍C.△ABC放大后,周长是原来的2倍D.△ABC放大后,面积是原来的4倍【解答】解:∵放大前后的三角形相似,∴放大后三角形的内角度数不变,面积为原来的4倍,周长和边长均为原来的2倍.故选:A.3.(4分)在Rt△ABC中,已知∠ACB=90°,BC=1,AB=2,那么下列结论正确的是()A.sinA=B.tanA=C.cosB=D.cotB=【解答】解:如图所示:∵∠ACB=90°,BC=1,AB=2,∴AC=,∴sinA=,故选项A错误;tanA==,故选项B错误;cosB=,故选项C错误;cotB=,正确.故选:D.4.(4分)如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么()A.a<0,b>0,c>0 B.a>0,b<0,c>0 C.a>0,b<0,c<0 D.a>0,b>0,c<0【解答】解:∵图象开口方向向上,∴a>0;∵图象的对称轴在x轴的正半轴上,∴﹣>0,∵a>0,∴b<0;∵图象与Y轴交点在y轴的负半轴上,∴c<0;∴a>0,b<0,c<0.故选:C.5.(4分)下列命题中,正确的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A.1个 B.2个 C.3个 D.4个【解答】解:(1)不在同一直线上的三点确定一个圆,错误;(2)平分弦(不是直径)的直径垂直于弦,错误;(3)相等的圆心角所对的弧相等,错误;(4)正五边形是轴对称图形,正确.故选:A.6.(4分)下列判断错误的是()A.0•=B.如果(为非零向量),那么∥C.设为单位向量,那么||=1D.如果,那么或【解答】解:A、0•=,故正确;B、如果(为非零向量),那么∥;故正确;C、设为单位向量,那么||=1,故正确;D、如果,没法判断与的关系;故错误.故选:D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知x:y=5:2,那么(x+y):y=7:2.【解答】解:由合比性质,得(x+y):y=7:2,故答案为:7:2.8.(4分)计算:=﹣+5.【解答】解:=2﹣3+5=﹣+5.故答案为:﹣+5.9.(4分)如图,在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E,如果AD=3,BD=4,AE=2,那么AC=.【解答】解:∵DE∥BC,∴=,即=,解得EC=,∴AC=AE+EC=2+=,故答案为:.10.(4分)已知线段MN的长为2厘米,点P是线段MN的黄金分割点,那么较长的线段MP的长是(﹣1)厘米.【解答】解:∵点P是线段MN的黄金分割点,∴较长的线段MP的长=MN=×2=(﹣1)cm.故答案为(﹣1).11.(4分)二次函数y=x2﹣2x﹣3的图象与y轴的交点坐标是(0,﹣3).【解答】解:当x=0时,y=x2﹣2x﹣3=﹣3,所以二次函数y=x2﹣2x﹣3的图象与y轴的交点坐标为(0,﹣3).故答案为(0,﹣3).12.(4分)如果将抛物线y=﹣2x2平移,使顶点移到点P(﹣3,1)的位置,那么所得新抛物线的表达式是y=﹣2(x+3)2+1.【解答】解:抛物线y=﹣2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=﹣2(x+3)2+1.故答案为y=﹣2(x+3)2+1.13.(4分)正八边形的中心角为45度.【解答】解:正八边形的中心角等于360°÷8=45°;故答案为45.14.(4分)用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x厘米,面积为y平方厘米,写出y关于x的函数解析式:y=﹣x2+25x.【解答】解:由题意得:矩形的另一边长=50÷2﹣x=25﹣x,则y=x(25﹣x)=﹣x2+25x.故答案为y=﹣x2+25x.15.(4分)离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5米,那么旗杆的高为(1.5+20tanα)米(用含α的三角函数表示).【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.16.(4分)如图,已知⊙O的半径为5,⊙O的一条弦AB长为8,那么以3为半径的同心圆与弦AB位置关系是相切.【解答】解:过O作OC⊥AB于C,连接OA,则∠OCA=90°,AC=BC=AB=×8=4,在Rt△OCA中,OA=5,AC=4,由勾股定理得:OC===3,\∵3=3,∴以3为半径的同心圆与弦AB位置关系是相切.故答案为:相切.17.(4分)我们定义:如果一个图形上的点A′、B′、…、P′和另一个图形上的点A、B、…、P 分别对应,并且满足:(1)直线AA′、BB′、…、PP′都经过同一点O;(2)==…==k,那么这两个图形叫做位似图形,点O叫做位似中心,k叫做位似比.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且OB=BB′,如果点A(,3),那么点A′的坐标为(5,6).【解答】解:∵△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,∴BC∥B′C′,∴==,∴△A′B′C′与△ABC的相似比为2,而点A(,3),∴点A′的坐标为(×2,3×2),即A′(5,6).故答案为(5,6).18.(4分)如图,已知△ABC中,AB=AC,tanB=2,AD⊥BC于点D,G是△ABC 的重心,将△ABC绕着重心G旋转,得到△A1B1C1,并且点B1在直线AD上,联结CC1,那么tanCC1B1的值等于或.【解答】解:当△ABC绕着重心G逆时针旋转得到△A1B1C1,如图1,设GD=x,∵AB=AC,AD⊥BC于点D,∴BD=CD,∴重心G在AD上,∵G是△ABC的重心,∴AG=2GD=2x,∴AD=AG+DG=3x,在Rt△ABD中,∵tanB==2,∴BD=AD=x,∴CD=x,在Rt△CDG中,CG==x,∵△ABC绕着重心G旋转,得到△A1B1C1,并且点B1在直线AD上,∴∠BGD=∠DGD1,GD=GD1=x,C1D1=CD=x,而GD⊥BC,∴GD1⊥B1C1,点D1在CG上,∴CD1=CG﹣GD1=x﹣x=x,在Rt△CC1D1中,tan∠CC1D1===;当△ABC绕着重心G顺时针旋转得到△A1B1C1,如图2,设DG=x,与前面一样,可求得GD1=GD=x,C1D1=CD=x,则CD1=x+x=x,在Rt△CC1D1中,tan∠CC1D1===,综上所述,tanCC1B1的值等于或.故答案为或.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.【解答】解:原式=4×﹣×+×=1+3.20.(10分)如图,已知AB∥CD,AD与BC相交于点O,且=.(1)求的值.(2)如果,请用表示.【解答】解:(1)∵AB∥CD,∴△AOB∽△DOC,∴==,∴=;(2)由(1)知,AD=AO,∴=﹣=﹣.21.(10分)如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y 轴交于点C(0,6),对称轴为直线x=2,求二次函数解析式并写出图象最低点坐标.【解答】解:设二次函数解析式为y=a(x﹣2)2+k,把A(1,0),C(0,6)代入得:,解得:,则二次函数解析式为y=2(x﹣2)2﹣2=2x2﹣8x+6,二次函数图象的最低点,即顶点坐标为(2,﹣2).22.(10分)如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)【解答】解:过点O作OD⊥AC于点D,则AD=BD,∵∠OAB=45°,∴AD=OD,∴设AD=x,则OD=x,OA=x,CD=x+BC=x+50).∵∠OCA=30°,∴=tan30°,即=,解得x=25+25,∴OA=x=×(25+25)=(25+25)(米).答:人工湖的半径为(25+25)米.23.(12分)如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF ⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.【解答】解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.24.(12分)如图,在平面直角坐标系xOy中,点A(﹣m,0)和点B(0,2m)(m>0),点C在x轴上(不与点A重合)(1)当△BOC与△AOB相似时,请直接写出点C的坐标(用m表示)(2)当△BOC与△AOB全等时,二次函数y=﹣x2+bx+c的图象经过A、B、C三点,求m的值,并求点C的坐标(3)P是(2)的二次函数图象上的一点,∠APC=90°,求点P的坐标及∠ACP 的度数.【解答】解:(1)点C的坐标为(m,0)或(4m,0).或(﹣4m,0);(2)当△BOC与△AOB全等时,点C的坐标为(m,0),二次函数y=﹣x2+bx+c的图象经过A、B、C三点,,解得.二次函数解析式为y=﹣x2+4,点C的坐标为(2,0);(3)作PH⊥AC于H,设点P的坐标为(a,﹣a2+4),∵∠AHP=∠PHC=90°,∠APH=∠PCH=90°﹣∠CPH,∴△APH∽△PCH,∴=,即PH2=AH•CH,(﹣a2+4)2=(a+2)(2﹣a).解得a=,或a=﹣,即P(,1)或(﹣,1),如图:当点P1的坐标为(,1)时,OP1=2=OC,sin∠P1OE==∴∠COP=30°,∴∠ACP==75°当点P的坐标为(﹣,1)时,sin∠P2OF==,∠P2OF=30°.由三角形外角的性质,得∠P2OF=2∠ACP,即∠ACP=15°.25.(14分)如图,等边△ABC,AB=4,点P是射线AC上的一动点,联结BP,作BP的垂直平分线交线段BC于点D,交射线BA于点Q,分别联结PD,PQ.(1)当点P在线段AC的延长线上时,①求∠DPQ的度数,并求证:△DCP∽△PAQ;②设CP=x,AQ=y,求y关于x的函数解析式,并写出它的定义域;(2)如果△PCD是等腰三角形,求△APQ的面积.【解答】解:(1)①如图1,∵DQ是线段BP的中垂线,∴BD=PD,BQ=PQ.在△BDQ和△PDQ中,,∴△BDQ≌△PDQ(SSS),∴∠DPQ=∠DBQ=60°,∴∠CPD+∠APQ=60°.又∵∠ACB=∠CDP+∠CPD=60°,∴∠APQ=∠CDP.又∵∠DCP=∠QAP=120°,∴△DCP∽△PAQ;②∵△DCP∽△PAQ,∴==,∴==,∴CD=,BD=,∵BC=BD+CD=4,∴+=4,整理得:y=.∵x>0,y>0,∴0<x<4.∴y关于x的函数解析式为y=,它的定义域为0<x<4;(2)①当点P在线段AC的延长线上时,∠DCP=120°.∴当△PCD是等腰三角形时,CD=CP,∴=x,∴y=x+4,∴=x+4,解得:x1=﹣2﹣2(舍去),x2=﹣2+2,∴CP=﹣2+2,∴AQ=AP=AC+CP=4﹣2+2=2+2.过点Q作QH⊥AP,交PA的延长线于点H,如图2,=AP•QH=AP•AQ•sin∠HAQ∴S△APQ=×(2+2)2×=4+6;②当点P在线段AC上时,∠C=60°,∴当△PCD是等腰三角形时,△PCD是等边三角形,∴∠BDP=120°.又∵BD=DP,∴∠DBP=∠DPB=30°,∴∠BPC=90°,即BP⊥AC.∵BC=BA,∴AP=CP=2.∵△DCP∽△PAQ,△PCD是等边三角形,∴△APQ是等边三角形,∴AP=AQ.过点Q作QH⊥AP于H,如图3,═AP•QH=AP•AQ•sin∠HAQ=×2×2×=.∴S△APQ。

相关文档
最新文档