近几年高考试题数学及答案
【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
山西省2019-2015近五年高职高考对口升学考试(数学)试题及答案

山西省近五年对口升学高考2019-2015数学真题目录山西省2019年对口升学高考数学试题 (1)参考答案 (3)山西省2018年对口升学高考数学试题 (4)参考答案 (6)山西省2017年对口升学高考数学试题 (7)参考答案 (10)山西省2016年对口升学考试数学试题 (11)参考答案 (14)山西省2015年对口升学高考数学试题 (15)参考答案 (17)山西省2019年对口升学高考数学试题本试卷分选择题和非选择题两部分,满分100分,考试时间90分钟。
一、单项选择题(本大题共10小题,每小题3分,共计30分)1.设A={x |x ≥0}则下列正确的是()A.{}A∈0 B.A⊂0 C.A∈∅ D.A⊂∅2.下列函数在定义域内为增函数的是()A.21xy = B.xy 21log = C.xy -=2 D.xy 1=3.已知21log 3=x ,则=x ()A.23x = B.321=x C.x=213 D.321⎪⎭⎫⎝⎛=x 4.已知等差数列的前三项和123=S ,则=2a ()A.4B.3C.12D.85.已知()1,2-=AB ,()4,m BC =,当A 、B 、C 三点共线时,m 的值为()A.2B.-2C.8D.-86.= 60cos ()A.21 B.21- C.23 D.23-7.下列函数为奇函数的是()A.x x y +=2 B.xx y +=3 C.12+=x y D.xy =8.=+4lg 3lg ()A.7lg B.4lg 3lg ⋅ C.12 D.12lg 9.,//,,//βαβα⊥n m 则()A.nm // B.nm ⊥ C.α//n D.β//m10.抛物线12+=y x 的准线方程为()A.45-=x B.43=x C.1-=x D.41-=x 二、填空题(本题共8小题,每题4分,共计32分)1.632aa a ⋅=_____________________.2.()⎩⎨⎧<-≥-=0,10,x x x x x f ,则()()1f f =______________________.3.设0cos >x ,则x 的取值范围为___________________.4.,6021 ===b a b a 则()=-⋅b a a ________________.5.设直线012=+-y x 与01=-+y ax 垂直,则a =________________.6.设正方体的边长为1,则它的外接球的直径为________________.7.平面内有5个点,任意3点都不在同一条直线上,共可以连_____条直线.8.()21101转化为十进制数为___________________.三、解答题(本大题共6小题,共38分)1.(6分)求函数x x x y 2ln 22+--=的定义域.2.(6分)三个数构成等比数列,这三个数的和为14,积为64,求这三个数.3.(6分)在ABC ∆中,1312cos ,54cos ==B A ,求C cos .4.(6分)已知直线b x y +=,圆02222=+-+y x y x 中,b 为何值时,直线与圆相切.5.(6分)某人射击4次,每次射中的概率均为0.6,求他在4次射击中,至少射中2次的概率.6.(8分)已知三角形两边之和为4,这两条边的夹角为60º,求此三角形的最小周长.山西省2019年对口升学高考数学试题数学参考答案一、选择题1-5DACAD,6-10ABDBB 二、填空题1.a2.-23.⎭⎬⎫⎩⎨⎧∈+<<-z k k x k x ,2222ππππ4.0 5.2 6.37.108.13三、解答题1.解:依题意⎩⎨⎧>≥--02022x x x ,解得2≥x ,所求定义域为[)+∞,22.解:因为三个数成等比数列,所以可设这三个数分别为m,mp,mp²于是有m+mp+mp²=14(1)m•mp•mp²=64(2)由(2)得mp=4(3)代入(1)得m+4+4p=14(4)解(3)(4)得m=2p=2或m=8p=1/2于是这三个数分别是2,4,8或8,4,23.解:2235sin 1cos 1cos 513A AB B =-==-()6533)sin sin cos (cos )cos(]cos[cos -=--=+-=+-=B A B A B A B A C π4.解:圆02222=+-+y x y x 的圆心,半径分别为(1,-1),2由d=r 得:()211)1(122=-++--b,解得4,021-==b b 5.设所求概率为P()()8208.010144=--=P P P 6.设三角形已知两边中一边为x,则另一边为4-x,第三边长为()4231612360cos )4(2)4(2222+-=+-=---+x x x x x x x 当x=2时,第三边长最小为2,于是所求三角形最小周长为4+2=6.山西省2018年对口升学高考数学试题一、单项选择题(本题共10题,每小题3分,共30分)1.设全集U=R ,集合A={X I IX-1I ≤2},B={X I X ≤0},则A ∩(C U B)=()A.[0,3]B(0,3]C[-1,0]D(-1,0]2.在等比数列{a n }中,已知a 1=3,a 2=6,则a 4=()A.12B.18C.24D.483.lg3+lg5=()A.lg8B.lg3*lg5C.15D.lg154.下列函数为偶函数的是()A.y=sinxB.y=sin(π+x)C.y=sin(π-x)D.y=sin(2π-x)5.下列函数在定义域内为增函数的是()A.Y=x 0.5B.y=log 0.5xC.y=2-xD.y=x16.已知向量a =(m,-1),b =(m,6-m),而且b a ⊥则m=()A.-3B.2C.-3或2D.-2或37.已知log 3x=2,则()A.X 2=3B.X=23C.32=XD.3X =28.如果角α的终边过点P (-3,4)则cos α=()A.-3/5B.3/5C.-4/5D.4/59.设直线m 平行于平面α,直线n 垂直于平面β,而且α⊥β,n ⊄α则必有()A.m//nB.m ⊥nC.m ⊥βD.n//α10.已知F 1,F 2是椭圆191622=+Y X 的两焦点,过点F 2的直线交椭圆于A,B 两点,若二、填空题(共8题,每小题4分共计32分)1.=+-3324)271(2.设⎩⎨⎧<-≥-=0,0,)(x x x x x f 则=-+)1()1(f f 3.已知曲线y=2sin(x-3π)与直线y=α有交点,则α的取值范围是4.已知向量a ,b 满足I a I=I b I=I a -b I=1,则=∙b a 5.如果直线x+ay+3=0与直线2x+y-3=0垂直,则a=6.一个圆锥高为4,母线长为5,则该圆锥的体积是7.设(1-2x )5=a 0+a 1x+…+a 5x 5,则a 0+a 1+a 2+a 3+a 4+a 5=8.十进制15的二进制是三.解答题(本大题共6小题,共38分)1.(6分)求函数)(2x 2ln )(X x f -=的定义域和最大值2.(6分)设{an}是公差为正数的等差数列a 1=1,而且a 1,a 2,a 5成等比,求通项公式a n3.(6分)已知2cos sin 3=-αα,求sin α的值4.(6分)已知过原点的直线l 与圆x 2+(y-5)2=16相切,求直线l 的方程5.(6分)从0,1,2,3这四个数中任取两个数a ,b (a ≠b )求随机变量X=ab 的分布列6.(8分)已知在∆ABC 中,∠BAC=1200,BC=3,AC=1,(1)求∠B;(2)若D 为BC 边上一点,DC=2BD ,求AD 的长度。
高考数学 真题分类汇编:专题(15)复数(理科)及答案

专题十五 复数1.【20xx 高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )A .1-B .0C .1D .2【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.【20xx 高考四川,理2】设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i【答案】C【解析】32222i i i i i i i i-=--=-+=,选C. 【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.【20xx 高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i -B .32i +C .23i +D .23i -【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】复数的基本运算,共轭复数的概念.【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【20xx 高考新课标1,理1】设复数z 满足11z z+-=i ,则|z|=( )(A )1 (B (C (D )2【答案】A【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.【20xx 高考北京,理1】复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.【20xx 高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-【答案】A【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 【考点定位】共轭复数.【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.【20xx 高考山东,理2】若复数z 满足1z i i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A 【解析】因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.8.【20xx 高考安徽,理1】设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .9.【20xx 高考重庆,理11】设复数a +bi (a ,b ∈R ),则(a +bi )(a -bi )=________.【答案】3【解析】由a +得=,即223a b +=,所以22()()3a bi a bi a b +-=+=.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a +,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【20xx 高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【20xx 江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒=【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【20xx 高考湖南,理1】已知()211i i z -=+(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.【20xx 高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i a b z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.【20xx 高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.。
2023年全国高考数学试题及答案

2023年全国高考数学试题及答案题目一1. 设函数 $f(x)=\frac{1}{x-2}$,求 $a$ 的值使得 $f(f(a))=2$。
答案一解:由题意,$f(f(a))=2$,代入函数 $f(x)=\frac{1}{x-2}$,得到:$$f(f(a))=\frac{1}{\frac{1}{a-2}-2}=2$$将分式倒数化为乘法,化简上式:$$\frac{1}{\frac{1}{a-2}-2}=2$$$$\frac{1}{\frac{a-2-2(a-2)}{a-2}}=2$$$$\frac{1}{\frac{-3a+6}{a-2}}=2$$$$\frac{a-2}{-3a+6}=2$$$$a-2=-6a+12$$$$7a=14$$$$a=2$$所以,当 $a=2$ 时,$f(f(a))=2$。
---题目二2. 已知函数 $y=sin(x)$ 的图像上有两个点:$A(x_1, y_1)$ 和$B(x_2, y_2)$,其中 $x_1>0$,$x_2>0$,且 $x_1-x_2=\frac{\pi}{2}$。
求平面直角坐标系中点$A$ 和点$B$ 的坐标。
答案二解:由题意可得,$x_1-x_2=\frac{\pi}{2}$。
根据三角函数的周期性,$sin(x)$ 在一个周期 $2\pi$ 内有两个相等的点。
所以,$sin(x_1)=sin(x_2)$,即 $x_1$ 和 $x_2$ 互为余弦函数的关系。
由余弦函数的性质可得,$cos(\frac{\pi}{2}-x_2)=cos(x_1)$。
因为 $x_1>0$,所以 $0<\frac{\pi}{2}-x_2<\frac{\pi}{2}$。
根据余弦函数在锐角区间的单调性可知,$cos(\frac{\pi}{2}-x_2)>cos(0)=1$。
所以,$cos(\frac{\pi}{2}-x_2)=1$,即 $\frac{\pi}{2}-x_2=2k\pi$,其中 $k$ 为整数。
2022年全国新高考I卷数学试题(选择题部分答案及解析)

3
3 时,V
81 , 4
所以正四棱锥的体积V 的最小值为 27 , 4
所以该正四棱锥体积的取值范围是
27 4
,64 3
.
故选:C.
二、选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多 项符合题目要求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.
(
)
学科网( 北京) 股份有 限公司
A.1
【答案】A 【解析】
B. 3 2
C. 5 2
D. 3
【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.
【详解】由函数的最小正周期 T 满足 2 T ,得 2 2 ,解得 2 3 ,
3
3
又因为函数图象关于点
3 2
学科网( 北京) 股份有 限公司
量约为( 7 2.65 )( )。
A.1.0109 m3 B. 1.2109 m3
C. 1.4109 m3
D. 1.6109 m3
【答案】C
【解析】
【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.
【详解】依题意可知棱台的高为 MN 157.5 148.5 9(m),所以增加的水量即为棱台的体积
学科网( 北京) 股份有 限公司
【详解】将点 A 的代入抛物线方程得1 2 p ,所以抛物线方程为 x2 y ,故准线方程为 y 1 , 4
A 错误;
k AB
1 (1) 1 0
2
,所以直线
AB
的方程为
y
2x
1,
y 2x 1
联立
x2
y
,可得 x2 2x 1 0 ,解得 x 1 ,故 B 正确;
高考数学历年函数试题及答案

1. 设(x )是定义在R 上的偶函数,其图象关于直线x=1对称,对任意x1,x2∈[0,]都有(Ⅰ)设);41(),21(,2)1(f f f 求=(Ⅱ)证明)(x f 是周期函数。
2. 设函数.,1|2|)(2R x x x x f ∈--+=(Ⅰ)判断函数)(x f 的奇偶性;(Ⅱ)求函数)(x f 的最小值.3. 已知函数()2sin (sin cos f x x x x =+(Ⅰ)求函数()f x 的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中,画出函数()y f x =在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象4.(本小题满分12分)求函数xx x x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.5.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.6.△ABC 的三个内角为A 、B 、C ,求当A 为何值时,2cos 2cos C B A ++取得最大值,并求出这个最大值7.设a 为实数,函数x a ax x x f )1()(223-+-=在)0,(-∞和),1(+∞都是增函数, 求a 的取值范围.8. 设函数f (x )=2x 3+3ax 2+3bx+8c 在x =1及x =2时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的x ,3,0〕〔∈都有f (x )<c 2成立,求c 的取值范围. 9.已知函数32()1f x x ax x =+++,a ∈R .x(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 10.在ABC ∆中,内角A 、b 、c 的对边长分别为a 、b 、c.已知222a c b -=,且sin 4cos sin B A C =,求b.11. 已知函数42()36f x x x =-+.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线()y f x =上,若该曲线在点P 处的切线l 通过坐标原点,求l 的方程12. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ; (Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像13. 已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为3,1((Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式;(Ⅱ)若)(x f 的最大值为正数,求a 的取值范围解答: 2. 解:(Ⅰ).7)2(,3)2(=-=f f由于),2()2(),2()2(f f f f -≠-≠-故)(x f 既不是奇函数,也不是偶函数.由于),2[)(+∞在x f 上的最小值为)2,(,3)2(-∞=在f 内的最小值为.43)21(=f故函数),()(+∞-∞在x f 内的最小值为.433. 解x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区间]2,2[ππ-上的图象是 4.解:xx x x x x x f cos sin 22cos sin )cos (sin )(22222--+=所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41 5. 解:函数f (x )的导数:.163)(2-+='x ax x f(Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;(II )当3-=a时,133)(23+-+-=x x x x f =,98)31(33+--x由函数3x y =在R 上的单调性,可知当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a时,函数))((R x x f ∈不是减函数.综上,所求a 的取值范围是 6. 解: 由,222,AC B C B A -=+=++ππ得所以有 .2sin 2cos A C B =+当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π7. 解:其判别试.81212124222a a a -=+-=∆(ⅰ)若,26,08122±==-=∆a a 即 当.),()(,0)(',),3()32,(为增函数在时或+∞-∞>+∞∈-∞∈x f x f ax x 所以.26±=a (ⅱ) 若,08122<-=∆a .),()(,0)('为增函数在恒有+∞-∞>x f x f所以 ,232>a 即 ).,26()26,(+∞--∞∈ a (ⅲ)若,08122>-=∆a 即,0)(',2626=<<-x f a 令 解得 .323,3232221a a x a a x -+=--=当;)(,0)(',)(),(21为增函数时或x f x f x x x x >∞+∈-∞∈当.)(,0)(',),(21为减函数时x f x f x x x <∈依题意1x ≥0得2x ≤1. 由1x ≥0得a ≥,232a -解得 1≤.26<a由2x ≤1得,232a -≤3,a -解得 .2626<<-a 从而 .)26,1[∈a综上,a 的取值范围为),26,1[),26[]26, +∞-∞- 即 ∈a ).,1[]26,(+∞--∞ 9. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增; 当23a>,由()0f x '=求得两根为3a x -=即()f x在3a ⎛⎫--∞ ⎪ ⎪⎝⎭,递增,33a a ⎛---+ ⎪⎝⎭,递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增; (2)(法一)∵函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,⎝⎭递减,∴23313a ⎧---⎪⎪-,且23a>,解得:2a ≥。
2020年高考全国II卷理科数学试题(含解析)

2020年全国统一高考数学试卷(理科)(全国新课标Ⅱ)一、选择题1.已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}-C.{2,1,0,3}--D.{2,1,0,2,3}--【答案】A 【解析】∵{1,0,1,2}AB =-,∴ (){2,3}UC A B ⋃=-.2.若α为第四象限角,则( ) A.cos20α> B.cos20α<C.sin 20α>D.sin 20α<【答案】D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名 B.18名 C.24名 D.32名 【答案】B【解析】因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)( ) A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022n S S a ⨯==+⨯=块. 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.【答案】B【解析】设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是5d =. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.5【答案】C【解析】取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a ++++++-+++==-=--,得4k =.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H【答案】A【解析】该几何体是两个长方体拼接而成,如图所示,显然选A.8.设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为( ) A.4 B.8 C.16 D.32 【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==号成立,所以min 4c =,焦距min (2)8c =.9.设函数()ln |21|ln |21|f x x x =+--,则()f x ( )A. 是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)lnln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确.10.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( )B.32C.1【答案】C【解析】设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则2ABC S ∆==,可得3a =,于是r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1.11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【解析】2323x x y y---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m的01-序列12......n a a a ,11()(1,2,...,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A. 11010... B.11011... C. 10001... D.11001... 【答案】C【解析】对于A 选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a +===++++=>∑,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;对于C 选项,511111(1)(00001)555i i i C a a +===++++=∑,52111(2)(00000)055i i i C a a +===++++=∑,53111(3)(00000)055i i i C a a +===++++=∑,541111(4)(10000)555i i i C a a +===++++=∑,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。
2024年上海高考真题数学(含解析)

2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近几年高考试题数学及答案高考试题数学及答案
近几年的高考数学试题备受关注,不仅涉及到学生的学习成绩,也是对教育教学质量的一种度量。
本文将对近几年的高考数学试题及其答案进行分析和总结,并讨论其中的趋势和特点。
一、选择题
选择题是高考数学试题中常见的一种形式,对学生的基础知识和运算能力进行考查。
近几年的高考数学选择题基本按照学科知识体系进行设计,注重考察学生对基本概念和基础算法的掌握。
例如:
1. 已知直线l过点A(1,2)和点B(4,5),则点C(2,1)关于直线l的对称点坐标为()。
A. (5,6)
B. (3,4)
C. (1,2)
D. (0,-1)
解析:根据直线的定义,直线l上任意两点的连线与直线l垂直。
所以我们可以根据直线l的斜率,求出过点C的垂线l'的斜率。
然后通过l'与l的交点即可得到C的对称点的坐标。
2. 一个边长为2的正方形,将它的对角线分割成两段,其中一段边长为x,则另一段的边长为()。
A. 4-x
B. 1-x
C. 2-x
D. 3-x
解析:根据勾股定理,正方形的对角线与边长的关系为d^2 = a^2 + a^2 = 2a^2. 所以我们可以得出2 = x^2 + (4 - x)^2. 求解此方程即可得到答案。
二、解答题
解答题是高考数学试题中的重点和难点,要求学生有较强的问题分析能力、解决问题的能力和逻辑思维能力。
近几年的高考数学解答题涵盖了各个知识点,注重考察学生对知识的综合运用能力。
例如:
1. 如下图所示,一个棱长为2的正方体ABCDA'B'C'D',点X是CB'的中点,那么△AXC的面积为()。
(图略)
解析:首先,我们可以观察到△AXC是一个等腰直角三角形,所以我们可以利用勾股定理求出△AXC的两个边长,然后应用面积公式求解即可得到答案。
2. 一架飞机从A地飞往B地,已知AB两地的直线距离为600公里。
飞机的速度为300公里/小时,大于地面上两地的直线距离的一半。
飞
行员按两地距离的直线垂直向下飞行,飞机飞行多长时间后,离地面
最近处的距离是()?
A. 150公里
B. 300公里
C. 225公里
D. 450公里
解析:根据题目的描述,我们可以得出飞机是按两地直线的垂线飞
行的,那么所求的距离可以看作是一个直角三角形的斜边。
根据勾股
定理,a^2 + b^2 = c^2,我们可以求得所求的距离。
三、答案分析
从近几年的高考数学试题答案来看,答案的解析过程基本清晰和准确,没有出现歧义或容易引起混淆的解题步骤。
答案的结果也基本符
合预期,无明显的错误。
对于一些需要计算的答案,还给出了精确的
数值结果,以便学生核对和参考。
四、趋势和特点
近几年的高考数学试题与以往相比,更加注重学生的综合能力和创
新思维能力的考核。
试题设计更加贴近真实生活,能够培养学生的实
际问题解决能力。
同时,试题难度适当提高,考察学生对知识的深入
理解和运用。
总结:
近几年的高考数学试题数量较多,各个知识点都得到了充分的覆盖,试题形式多样,涵盖选择题和解答题等。
答案的解析过程清晰准确,
并且注重培养学生的综合能力和创新思维能力。
这些试题和答案的设
计能够全面考察学生的数学素养,对于提高学生的综合实力具有积极
的促进作用。