2015-2019全国一卷数学高考真题知识点分析
2015-2019全国1卷三角函数和数列高考题 汇编(含答案解析)

2020.2.15三角函数和数列高考题学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.记为等差数列的前n项和.已知,,则A. B. C. D.2.关于函数有下述四个结论:是偶函数在区间单调递增在有4个零点的最大值为2其中所有正确结论的编号是A. B. C. D.3.记为等差数列的前n项和.若,,则A. B. C. 10 D. 124.记为等差数列的前n项和.若,,则的公差为A. 1B. 2C. 4D. 85.已知曲线:,:,则下面结论正确的是A. 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B. 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线6.已知等差数列前9项的和为27,,则A. 100B. 99C. 98D. 977.已知函数,为的零点,为图象的对称轴,且在上单调,则的最大值为A. 11B. 9C. 7D. 58.A. B. C. D.9.九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米如图,米堆为一个圆锥的四分之一,米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米约有A. 14斛B. 22斛C. 36斛D. 66斛10.函数的部分图象如图所示,则的单调递减区间为A. ,B. ,C. ,D. ,二、填空题(本大题共8小题,共40.0分)11.记为等比数列的前n项和.若,,则________.12.记为数列的前n项和,若,则_____.13.已知函数,则的最小值是______.14.设等比数列满足,,则的最大值为______.15.在平面四边形ABCD中,,,则AB的取值范围是________.16.函数的最小正周期是______.17.设等差数列的前n项和为,若,,则______,的最小值为______.18.已知数列是等差数列,是其前n项和若,则的值是____.三、解答题(本大题共5小题,共60.0分)19.的内角A,B,C的对边分别为a,b,设.求A;若,求sinC.20.在平面四边形ABCD中,,,,.求;若,求BC.21.的内角A,B,C的对边分别为a,b,c,已知的面积为.求sinBsinC;若,,求的周长.22.的内角A,B,C的对边分别为a,b,c,已知.求角C的大小;若,的面积为,求的周长.23.为数列的前n项和,已知,求的通项公式;Ⅱ设,求数列的前n项和.2020.2.15三角函数和数列高考题学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)24.记为等差数列的前n项和.已知,,则A. B. C. D.【答案】A【解析】【分析】本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题.根据题意,设等差数列的公差为d,则有,求出首项和公差,然后求出通项公式和前n项和即可.【解答】解:设等差数列的公差为d,由,,得,,,,故选:A.25.关于函数有下述四个结论:是偶函数在区间单调递增在有4个零点的最大值为2其中所有正确结论的编号是A. B. C. D.【答案】C【解析】【分析】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.根据绝对值的应用,结合三角函数的图象和性质分别进行判断即可.【解答】解:,则函数是偶函数,故正确;当时,,,则为减函数,故错误;当时,,由,得,即或,由是偶函数,得在上还有一个零点,即函数在有3个零点,故错误;当,时,取得最大值2,故正确,故正确是,故选C.26.记为等差数列的前n项和.若,,则A. B. C. 10 D. 12【答案】B【解析】解:为等差数列的前n项和,,,,把,代入得.故选:B.利用等差数列的通项公式和前n项和公式列出方程,能求出的值.本题考查等差数列的第五项的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.27.记为等差数列的前n项和.若,,则的公差为A. 1B. 2C. 4D. 8【答案】C【解析】【分析】本题主要考查等差数列公式及等差数列求和的基本量运算,属于简单题.利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出的公差.【解答】解:为等差数列的前n项和,设公差为d,,,解得,,的公差为4.故选C.28.已知曲线:,:,则下面结论正确的是A. 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B. 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线【答案】D【解析】【分析】本题考查三角函数的图象变换、诱导公式的应用,考查计算能力,属于基础题.利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数图象,再把得到的曲线向左平移个单位长度,得到函数的图象,即曲线,故选D.29.已知等差数列前9项的和为27,,则A. 100B. 99C. 98D. 97【答案】C【解析】【分析】本题考查的知识点是等差数列的性质,熟练掌握等差数列的性质,是解答的关键,属于基础题.根据已知可得,进而求出公差,可得答案.【解答】解:设的公差为d,等差数列前9项的和为27,.,,又,,.故选C.30.已知函数,为的零点,为图象的对称轴,且在上单调,则的最大值为A. 11B. 9C. 7D. 5【答案】B【解析】【分析】本题考查正弦型函数的图象和性质的综合运用,属于中档题.根据已知可得为正奇数,且,结合为的零点,为图象的对称轴,求出满足条件的解析式,并结合在上单调,可得的最大值.【解答】解:为的零点,为图象的对称轴,,即,,即,,即为正奇数,在上单调,则,即,解得:,当时,,,,,此时在不单调,不满足题意;当时,,,,,此时在单调,满足题意;故的最大值为9,故选B.31.A. B. C. D.【答案】D【解析】解:.故选:D.直接利用诱导公式以及两角和的正弦函数,化简求解即可.本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.32.九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米如图,米堆为一个圆锥的四分之一,米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米约有A. 14斛B. 22斛C. 36斛D. 66斛【答案】B【解析】【分析】本题主要考查椎体的体积的计算,比较基础.根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则,解得,故米堆的体积为,斛米的体积约为立方,,故选:B.33.函数的部分图象如图所示,则的单调递减区间为A. ,B. ,C. ,D. ,【答案】D【解析】解:由函数的部分图象,可得函数的周期为,,.再根据函数的图象以及五点法作图,可得,,即,由,,求得,,故的单调递减区间为,,故选:D.由周期求出,由五点法作图求出,可得的解析式,再根据余弦函数的单调性,求得的减区间.本题主要考查由函数的部分图象求解析式,由周期求出,由五点法作图求出的值;还考查了余弦函数的单调性,属于基础题.二、填空题(本大题共8小题,共40.0分)34.记为等比数列的前n项和.若,,则________.【答案】【解析】【分析】本题主要考查等比数列前n项和的计算,结合条件建立方程组求出q是解决本题的关键.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:在等比数列中,由,得,即,解得,则,故答案为.35.记为数列的前n项和,若,则_____.【答案】【解析】【分析】本题考查了数列的递推公式和等比数列的求和公式,属于基础题.先根据数列的递推公式可得是以为首项,以2为公比的等比数列,再根据求和公式计算即可.【解答】解:为数列的前n项和,,当时,,解得,当时,,,由可得,,是以为首项,以2为公比的等比数列,,故答案为.36.已知函数,则的最小值是______.【答案】【解析】【分析】本题考查三角函数恒等变换,涉及导数法求函数区间的最值,属中档题.由题意可得是的一个周期,问题转化为在上的最小值,求导数计算极值和端点值,比较可得.【解答】解:由题意可得是的一个周期,故只需考虑在上的值域,先来求该函数在上的极值点,求导数可得,令可解得或,可得此时,或;的最小值只能在点,或和边界点中取到,计算可得,,,,函数的最小值为,故答案为:.37.设等比数列满足,,则的最大值为______.【答案】64【解析】【分析】本题考查数列的通项,数列与函数相结合,属于中档题.求出数列的公比与首项,化简,然后求解最值.【解答】解:等比数列满足,,设公比为q,可得,解得,,解得,则,当或时,取得最大值:,故答案为64.38.在平面四边形ABCD中,,,则AB的取值范围是________.【答案】【解析】【分析】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.【解答】如图所示,延长BA,CD交于点E,则在中,,,,设,,,,,,,,而,的取值范围是故答案为:39.函数的最小正周期是______.【答案】【解析】【分析】本题考查了三角函数的图象与性质,关键是合理使用二倍角公式,属于基础题.用二倍角公式可得,然后用周期公式求出周期即可.【解答】解:,,的周期,故答案为.40.设等差数列的前n项和为,若,,则______,的最小值为______.【答案】0,【解析】【分析】本题考查等差数列的第5项的求法,考查等差数列的前n项和的最小值的求法,考查等差数列的性质等基础知识,考查推理能力与计算能力,属于基础题.利用等差数列的前n项和公式、通项公式列出方程组,能求出,,由此能求出的的最小值.【解答】解:设等差数列的前n项和为,,,解得,,,,或时,取最小值为.故答案为0,.41.已知数列是等差数列,是其前n项和若,则的值是____.【答案】16【解析】【分析】本题考查等差数列的通项公式,考查等差数列的前n项和,是基础题.设等差数列的首项为,公差为d,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前n项和求得的值.【解答】解:设等差数列的首项为,公差为d,则,解得..故答案为16.三、解答题(本大题共5小题,共60.0分)42.的内角A,B,C的对边分别为a,b,设.求A;若,求sin C.【答案】解:的内角A,B,C的对边分别为a,b,c.设.则,由正弦定理得:,,,.,,由正弦定理得,解得,,,.【解析】由正弦定理得:,再由余弦定理能求出A.由已知及正弦定理可得:,可解得C的值,由两角和的正弦函数公式即可得解.本题考查了正弦定理、余弦定理、三角函数性质,考查了推理能力与计算能力,属于中档题.43.在平面四边形ABCD中,,,,.求;若,求BC.【答案】解:,,,.由正弦定理得:,即,,,,.,,,.【解析】本题考查三角函数中角的余弦值、线段长的求法,考查正弦定理、余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.由正弦定理得,求出,由此能求出;由,得,再由,利用余弦定理能求出BC.44.的内角A,B,C的对边分别为a,b,c,已知的面积为.求sin B sin C;若,,求的周长.【答案】解:由三角形的面积公式可得,,由正弦定理可得,,;,,,,,,,,,,,,,,周长.【解析】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.根据三角形面积公式和正弦定理可得答案,根据两角余弦公式可得,即可求出,再根据正弦定理可得,根据余弦定理即可求出,问题得以解决.45.的内角A,B,C的对边分别为a,b,c,已知.求角C的大小;若,的面积为,求的周长.【答案】解:已知等式利用正弦定理化简得:,整理得:,,,,又,;由余弦定理得,,,,,,的周长为.【解析】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sin C不为0求出cos C的值,即可确定出C的度数;利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出的值,即可求的周长.46.为数列的前n项和,已知,求的通项公式;Ⅱ设,求数列的前n项和.【答案】解:由,可知,两式相减得,即,,,,舍或,则是首项为3,公差的等差数列,的通项公式;Ⅱ,,数列的前n项和.【解析】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.根据数列的递推关系,利用作差法即可求的通项公式;Ⅱ求出,利用裂项法即可求数列的前n项和.。
2015年高考全国卷1理科数学(解析版)资料

注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设复数z 满足1+z1z-=i ,则|z|=(A )1 (B (C (D )2 【答案】A考点:1.复数的运算;2.复数的模.(2)sin20°cos10°-con160°sin10°=(A ) (B (C )12- (D )12【答案】D 【解析】试题分析:原式=sin20°cos10°+cos20°sin10°=sin30°=12,故选D.考点:诱导公式;两角和与差的正余弦公式(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n 【答案】C 【解析】试题分析:p ⌝:2,2n n N n ∀∈≤,故选C.考点:特称命题的否定(4)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A )0.648 (B )0.432(C )0.36(D )0.312【答案】A 【解析】试题分析:根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.考点:独立重复试验;互斥事件和概率公式(5)已知M (x 0,y 0)是双曲线C :2212x y -=上的一点,F 1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是 (A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233) 【答案】A考点:向量数量积;双曲线的标准方程(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
2015高考数学真题 全国1理科解析

2015年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学试题解析1.解析 由1i 1z z +=-得()()()()1i 1i 1i i 1i 1i 1i z -+--+===++-,所以1z =.故选A . 2.解析 原式sin 20cos10cos 20sin10=+=1sin 302=.故选D . 3.解析 否命题是对原命题的条件与结论同时否定,因为存在的否定是任意,大于的否定是小于等于,所以:p n ⌝∀∈N ,22nn ….故选C .4.解析 根据独立重复试验公式得,该同学通过测试的概率为2233=C 0.60.40.6P ⨯⨯+=0.648.故选A .5.解析由题可得()1F,)2F ,且220012x y -=,即220022x y =+, 所以12MF MF ⋅=()00,x y -⋅)00,x y -=2220003310x y y +-=-<,解得0y <<A . 6.解析 设圆锥底面半径为r ,则米堆底面弧度为12384r ⨯⨯=,解得163r =,所以米堆的体积为1143⨯⨯3⨯216320539⎛⎫⨯= ⎪⎝⎭立方尺,故堆放的米约为320 1.62229÷≈斛. 故选B .7.解析 由题可得BC AC AB =-,所以()1133CD BC AC AB ==-, 所以AD AC CD =+=()141333AC AC AB AC AB +-=-.故选A . 8.解析 由题可得511244T =-=,即2T =, 所以2T ωπ==π.由图可知034x =, 所以324k ϕπ+=π+π,解得24k ϕπ=π+,k ∈Z .令0k =,解得4ϕπ=,所以()cos 4f x x π⎛⎫=π+ ⎪⎝⎭.令224k x k πππ+π+π剟,解得132244k xk -+剟. 故选D . 9.解析 11111,0,,,1,0.012242S n m S m n ===→===>→111,,2,0.01484S m n ===>→111,,3,0.0181664S m n ===>→⋅⋅⋅→111,,7,0.01128256128S m n ===<→输出7n =.故选C .10.解析 ()()5522x x yx x y ⎡⎤++=++⎣⎦.展开式中含2y 的项为()522225C x x y -+=()32225C x x y +,而()32x x +中含5x 的项为()2121533C C x x x =,所以52x y 的系数为2153C C 30⨯=.故选C .11.解析 由正视图和俯视图可知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为221422r r r r ⨯π+π+π⨯+22r r ⨯=25r π+241620r =+π,解得2r =.故选B .12.解析 设()()e21xg x x =-,()h x ax a =-,可转化成存在唯一的整数0x ,使得()()g x h x <.因为()()'e 21x g x x =+,所以当12x <-时,()'0g x <,()g x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减;当12x >-时,()'0g x >,()g x 在1,2⎛⎫-+∞ ⎪⎝⎭上单调递增.因为当0x =时,()01g =-,()00h =,所以()()00g h <.又因为存在唯一的整数0x ,使得()()g x h x <,所以()()()()1111g h g h ⎧⎪⎨--⎪⎩……,即e 32ea a -⎧⎪⎨--⎪⎩……,解得32e a …,又因为1a <,所以312ea <….故选D .y=e x13.解析由题意可知函数(ln y x =是奇函数,所以(ln x+(ln 0x -=,即 ()22ln ln 0a x x a +-==,解得1a =.14. 解析 如图所示,设圆心为(),0C a ,其中0a >,连接AC , 则半径4AC BC a ==-,由题可得2OA =,所以()22242a a -=+,解得32a =, 故圆的方程为2232524x y ⎛⎫-+= ⎪⎝⎭.15.解析 作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点()1,3A 与原点连线的斜率最大,故yx的最大值为3.16.解析 解法一:如图所示,75B C BAD ∠=∠=∠=,延长BA ,CD 交于点E ,则可知BE CE =,且在ADE △中,105DAE ∠=,45ADE ∠=,30E ∠=. 在BEC △中,由正弦定理可得sin 756sin 30BC BE CE ===+所以由题意可得(DE ∈.在ADE △中,由正弦定理可得sin 45sin105DE AE ⋅==)1DE ,所以(0,AE∈.又因为AB BE AE=-, 所以AB的取值范围是.EDCBA解法二(构造法):如图所示,构造BEC △,使得75B BCE ∠=∠=,则30BEC ∠=,取BE 边上一点A ,CE 边上一点D ,使得75BAD ∠=.若平移AD 使点D 与点C 重合,此时四边形ABCD 退化为A BC '△,且可在A BC '△中利用正弦定理求得2sin 306sin 75A B '==-AD 使点D 与点E 重合,此时四边形ABCD 退化为BEC '△,且可在BEC △中利用正弦定理求得BE =2sin 756sin 30=+.又因为ABCD 是平面四边形,所以点D 应在点C 与点E 之间,且不与点C与点E 重合,所以AB的取值范围是.17.解析 (1) 由2243n n n a a S +=+① 可得2+1+1+1243n n n a a S +=+②式①-式②得()()+1+120n n n n a a a a +--=.又因为0n a >,所以+12n n a a -=.当1n =时,2111243a a S +=+,即211230a a --=,解得13a =或11a =-(舍去),所以{}n a 是首项为3,公差为2的等差数列,通项公式为=21n a n +. (2)由=21n a n +可得()()1112123n n n b a a n n +===++11122123n n ⎛⎫- ⎪++⎝⎭. 记数列{}n b 前n 项和为n T ,则12n n T b b b =++⋅⋅⋅+=1111111235572123n n ⎡⎤⎛⎫⎛⎫⎛⎫-+-+⋅⋅⋅+-= ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦1112323n ⎛⎫-= ⎪+⎝⎭()323n n +. 18.解析 (1)连接BD ,设BDAC G =,连接EG ,FG ,EF .在菱形ABCD 中,取1GB =,由120ABC ∠=,得AG GC ==BE ⊥平面ABCD ,AB BC =,可知AE EC =.又AE EC ⊥,所以EG =EG AC ⊥.在Rt EBG △中,可得BE =DF =Rt FDG △中,FG =BDFE 中,由C'A'EA BC D2BD =,BE =,2DF =,可得2EF =222EF EG FG =+,所以EG FG ⊥.又因为AC FG G =,所以EG ⊥平面AFC .又因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)如图所示,以G 为坐标原点,分别以GB ,GC 的方向为x ,y 轴正方向,GB 为单位长度,建立空间直角坐标系G xyz -.由(1)知()0,A,(E,1,0,2F ⎛- ⎝⎭,()C,所以(AE =,1,2CF ⎛=- ⎝⎭,所以cos ,AE CF =AE CF AE CF⋅=AE与直线CF19.解析(1)由散点图变化情况可知选择y c =+(2)由题意知()()()81821108.8681.6iii i i w w yyd w w==--===-∑∑.又y c =+一定过点(),y ω,所以c y d ω=-=56368 6.8100.6-⨯=,所以y 与x 的回归方程为100.6y =+ (3)①由(2)知,当49x =时,()100.668576.6t y =+=,0.2576.649z =⨯-=66.32(千元),所以当年宣传费为49x =时,年销售量为()576.6t ,利润预估为66.32千元.GABCDEF②由(2)知,(0.20.2100.6z y x x=-=+-=x+20.12=)226.8 6.820.12-++6.8=时,年利润的预估值最大,即26.846.24x==(千元).20.解析(1)由题意知,0k=时,联立24y axy=⎧⎪⎨=⎪⎩,解得()M a,()N a-.又2xy'=,在点M处,Mk=y a x-=-,y a--=,在点N处,Nk=y a x-=+,即0y a++=y a--=y a++=.(2)存在符合题意的点,证明如下:设点P()0,b为符合题意的点,()11,M x y,()22,N x y,直线PM,PN的斜率分别为1k,2k.联立方程24y kx axy=+⎧⎪⎨=⎪⎩,得2440x kx a--=,故124x x k+=,124x x a=-,从而121212y b y bk kx x--+=+=()()1212122kx x a b x xx x+-+=()k a ba+.当b a=-时,有12k k+=,则直线PM与直线PN的倾斜角互补,故OPM OPN∠=∠,所以点()0,P a-符合题意.21.解析(1)设曲线()y f x=与x轴相切于点(),0x,则()00f x=,()00f x'=,即30021430x axx a⎧++=⎪⎨⎪+=⎩,解得12x=,34a=-,所以当34a=-时,x轴为曲线()y f x=的切线.(2)当()1,x∈+∞时,()ln0g x x=-<,从而()()(){}min,h x f x g x=…()0g x<,故()h x在()1,+∞无零点;当1x==时,若54a=-,则()5104f a=+…,()()(){}1min1,1h f g==()10g=,故1x=是()h x的零点;若54a <-,则()10f <,()()(){}()1min 1,110h f g f ==<,故1x =不是()h x 的零点;当()0,1x ∈时,()ln 0g x x =->,所以只需考虑()f x 在()0,1的零点个数. (ⅰ)若3a -…或0a ?,则()23f x x a '=+在()0,1无零点,()f x 在()0,1单调.而()104f =,()514f a =+,所以当3a -…时,()f x 在()0,1有一个零点;当0a …时,()f x 在()0,1没有零点.(ⅱ)若30a -<<,则()f x在⎛⎝单调递减,在⎫⎪⎪⎭单调递增,故在()0,1中,当x =()f x取最小值,最小值为f =14.①若0f >,即304a -<<,则()f x 在()0,1无零点;②若0f =,即34a =-,则()f x 在()0,1有唯一零点;③若0f <,即334a -<<-,由于()104f =,()514f a =+,所以当5344a -<<-时,()f x 在()0,1有两个零点;当534a -<-…时,()f x 在()0,1有一个零点.综上所述,当34a >-或54a <-时,()h x 有一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点. 22.解析 (1)连接OE ,AE ,由已知得AE BC ⊥,AC AB ⊥.在Rt AEC △中,由已知得DE =DC ,故DEC DCE ∠=∠,所以OBE OEB ∠=∠.又90ACB ABC ∠+∠=,所以90DEC OEB ∠+∠=,故90OED ∠=,DE 为圆O 的切线.(2)设1CE =,AE x =,则OA ==AB =BE =,由射影定理可得2AE CE BE =⋅,所以2x =x =ACE △中,有tan AEACE EC∠==ACE ∠在ABC △中,所以60ACB ∠=.23. 解析 (1)因为cos x ρθ=,sin y ρθ=,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(2)解法一:3C 的直角坐标系方程为y x =,所以2C 的圆心到直线3C 的距离d ==,所以MN =,所以212C M N S =⨯△12=.解法二:将4θπ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ=12ρρ-MN =2C 的半径为1,所以2C MN △的面积为12. 24.解析 (1)当1a =时,()1f x >,即12110x x +--->. 当1x -…时,不等式化为40x ->,无解; 当11x -<<时,不等式化为320x ->,解得213x <<; 当1x …时,不等式化为20x -+>,解得12x <…. 综上所述,当1a =时,()1f x >的解集为2,23⎛⎫⎪⎝⎭. ED COBA(2)0a >,()12,1312,112,x a x f x x a xa x a x a --<-⎧⎪=+--⎨⎪-++>⎩剟,如图所示,函数()f x 的图像与x 轴所围成三角形的三个顶点分别为21,03a A -⎛⎫⎪⎝⎭,()21,0B a +,(),1C a a +,()2213ABC S a =+△,即()22163a +>,解得2a >,所以a 的取值范围是()2,+∞.。
2015 年高考全国 1 卷数学试卷分析(附答案)

2015 年高考全国 1 卷数学试卷分析一.整体解读试卷紧扣考试说明,从考生熟悉的基础知识入手,宽角度、多视点、有层次地考查了学生的数学理性思维能力、对数学本质的理解能力及数学素养和潜能的区分度,达到了“考基础、考能力、考素质、考潜能”的考试目标。
试卷所涉及的知识内容限定在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1、回归教材,注重基础2015 年新课标卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点,选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理(理科)、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型。
同时,在立体几何、导数等题目上进行了一些微创新,与我国古代《九章算术》中的著名题目相联系,这些题目的设计回归教材和中学教学实际。
2、适当设置题目难度与区分度与往年新课标卷相对比,今年的选填难度仍然设置在选择题和填空题的最后两道。
尤其以选择题第 12 题和填空题第 16 道为代表。
有的同学平时此类型的题目见的较少,需要在考场紧张的状态下独自解决,这考查了同学在压力状态下分析问题,解决问题的能力。
对此,我们之前给出的建议是,不要在这类型的题目花费过多的时间,从而压缩了后面解答题部分的答题时间,同时也影响考试情绪。
3、布局合理,考查全面,着重数学方法和数学思想的考察在解答题部分,文、理两科试卷均对高中数学中的重点内容时行了考查。
包括数列、立体几何、概率统计、解析几何、导数五大版块和三选一问题。
以知识为载体,立意于能力,让数方法和数学思统方式贯穿于整个试题的解答过程之中。
4、命题考察的沿续性2015 年新课标卷,在力求创新基础上,也有一些不变的东西。
例如 2015 年新课标 1 卷理科选择题第 7 题与 2014 年新课标 1 卷文科第 6 题的命题方式基本完全一致。
1二.考点分布1.理科集合0 复数 5 函数 5 向量 5 简易逻辑 5 程序框图 5 线性规划 5 二项式定理 5 解三角形10 几何证明选讲10 坐标系与参数方程10 不等式选讲10 数列12 概率与统计17 导数17 立体几何22 解析几何222015年普通高等学校招生全国统一考试理科数学第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设复数z满足1+z1z-=i,则|z|=(A)1 (B)2 (C)3 (D)2(2)sin20°cos10°-con160°sin10°=(A)32- (B)32(C)12- (D)12(3)设命题P:∃n∈N,2n>2n,则⌝P为(A)∀n∈N,2n>2n (B)∃n∈N,2n≤2n(C)∀n∈N,2n≤2n (D)∃n∈N,2n=2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B)0.432 (C)0.36 (D)0.312(5)已知M(x0,y0)是双曲线C:2212xy-=上的一点,F1、F2是C上的两个焦点,若12MF MF⋅<0,则y0的取值范围是(A)(-33,33) (B)(-36,36)(C)(223-,223) (D)(233-,233)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有(A)14斛 (B)22斛 (C)36斛 (D)66斛(7)设D 为错误!未找到引用源。
2015年—2019年全国高考文理科数学试题各题考查主要知识点统计

11 三角函数图象与性质
12 立几外接球 13 曲线切线方程
三次奇函数切线 方程 三角形中线向量
三视图最短路径
抛物线直线数量 积 分段函数零点范 围 数学文化几何概 型 双曲线渐近线弦 长 正方体线面角面 积最值 线性规划
填 14 等比数列求和 空 题 15 独立事件概率
16 双曲线渐近线离心率
17 解三角形
概率均值茎叶图
翻折垂直体积
立几作图体积比
导数切线范围 椭圆面积不等式 极坐标参数方程
椭圆中点弦定值
导数单调性最大 值
极坐标参数方程
不等式选讲
不等式选讲
全国高考试题各题考查主要知识点统计 新课标 III 卷理科数学
全国新 课标 1
2019Ⅲ理 集合交集
2 复数运算
3 随机统计问题
4 二项式定理
5 等比数列通项
程序框图
8 抛物线与椭圆
数学文化古典概 型
9 三角函数性质
长方体异线角
三角函数化简求 10
值 11 双曲线离心率
函数与导数综合 12
问题
三角函数单调性
函数奇偶性对称 性求和 椭圆三角形离心 率
13 统计平均值
曲线的切线导数
填 14 函数奇偶性 空 题 15 解三角形
线性规划 三角恒等变换
数学文化与立体 圆锥线面角侧面
古典概型 抛物线垂直距 离 三角函数最值
函数奇偶性
长方体球体积
解三角形 等差数列等比 数列 平行体积 直方图独立性 检验 椭圆轨迹定点 导数单调性求 参 极坐标参数方 程 不等式选讲
4
2016Ⅱ文
2015Ⅱ文
集合交集 复数共轭 三角函数图像 正方体球表面积 抛物线求参
高考数学历年真题试卷解析

高考数学历年真题试卷解析高考数学作为高考三科之一,一直是考生们最为关注的科目之一。
而数学的试题也是历年高考试题中最具挑战性和难度的。
因此,在备考数学考试时,做好历年真题的复习和解析显得尤为重要。
一、选择题在高考数学试题中,选择题占据了很大的比重。
每道选择题往往包含了多种解法,可谓是应用题解题能力的集大成者。
这就要求考生们在答题时既要准确把握题中信息,又要理清解题思路,找到最简单、最直接、最巧妙的解题方法。
解析举例:2015年高考全国Ⅰ卷数学试题中的选择题第11题:已知 $x>0$,$\log_{\sqrt{3}}x=2\log_{3}x+1$,则$x$的值是()(A)$3$ (B)$9$ (C)$81$ (D)$27$解析:题目给出的式子中,底数和真数都是不同的,因此应按照换底公式进行化简。
将 $\log_{\sqrt{3}}x=\frac{\log_3x}{\log_3\sqrt{3}}$ 带入原式,又 $\log_3\sqrt{3}=\frac{1}{2}$,则原式变为 $\frac{\log_3 x}{\frac{1}{2}}=2\log_3 x+1$,整理得$\log_3 x=2$,即 $x=3^2=9$,所以答案为 B。
二、填空题填空题不仅考查考生对知识点的掌握,还考查了解题思路和解题技巧的能力。
由于答案只有一个或少数几个,一些难题往往需要结合多种知识点进行综合解答。
解析举例:2019年高考全国Ⅰ卷数学试题中的填空题第10题:已知函数$f(x)=\begin{cases}2x+1,&x\leq 0\\x^2,&x>0\end{cases}$.(1)函数$f(x)$的定义域为______.(2)当$x<0$时,$f(x)=______.$(3)若$f(x)=k$有两个不相等的解,则$k$的取值范围为______.解析:根据题目中函数的定义可以得出 $x\leq 0$ 时的定义域,即 $(-\infty,0]$。
2013-2019年高考全国卷1理科数学试题各考点及命题分析

2013-2019年全国卷1理科数学试题各考点及命题分析2020.3.14一.考试说明:2015年开始,增加了数学传统文化知识的考察(事实上在2015,2016年的试卷中已经有所体现,),强调了试题的基础性,综合性,应用性,创新性。
新课程数学学科确定了高中数学核心素养的6个要素:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析,对于新课标提出的新要求,教师如何落实在教育教学中是关键。
2020年考试大纲沿用2019年的,2019年题目开始向新高考过渡,突出能力的考察。
二、各知识点的考察方式及难易程度:1、集合与常用逻辑:1个小题(15年考常用逻辑),属基础题。
集合主要考察交并补,集合基本关系,还会和解不等式,求函数定义域和值域相结合。
2、复数:1个小题,属基础题。
考察复数四则运算,共轭复数、实部和虚部、模、对应的点坐标等概念。
3、函数与导数:2个小题(19年有3个小题)和1个大题,1个小题主要考查函数的奇偶性,单调性,周期性等基本性质,分段函数,函数的图像及变换,利用单调性或图像比较大小,函数与方程,一般不需求导(12年两个小题都用到导数),属基础或中档题,1个小题主要考察导数的几何意义,以及借助导数研究函数的单调性、极值、最值(简单应用),利用导数解不等式、恒成立问题、研究函数的零点问题(综合应用,多次考察),15年选择压轴,18年填空压轴,且和三角函数相结合,一般属中等或偏难题;大题主要考察导数的几何意义,以及借助导数研究函数单调性、极值、最值、零点等问题,还会和方程、不等式证明(综合法,分析法)等知识综合,通常用到构造函数法, 隐零点设而不求法,分离参数法,观察法(取特殊点分析,有时要较强观察能力),换元法,用到等价转化、分类讨论、数形结合的思想,属难题。
4、平面向量:1个小题,主要考查平面向量的线性运算(加法运算的几何意义偶尔会考),平面向量基本定理,平行和垂直,数量积,模,坐标表示和坐标运算,另外向量也可能与解析几何(圆锥曲线)等知识相结合考查,属基础题。
2019高考全国一卷数学题解析

2019高考全国一卷数学题解析
2019年全国一卷数学试题在考点上有所变化和亮点。
与往年相比,2019年增加了对数字估值和近似值的考查,加强了对考生运算能力的考查。
在解答题必做题题目顺序的设置上,也有所调整,如概率题被放在了压轴的位置,圆锥曲线与导数应用顺序依次提前一位,这体现出了“破套路”的特色。
理科第21题第二问绕过了考生熟悉的同一类知识点仅仅在一道大题中加深
考查的特点,出其不意地考查了构造法证明等比数列及求数列特殊项,然后结合题目中所给数据进行数据处理,体现出了高考试题注重在知识交汇处命题的特色。
以上内容仅供参考,如需更多关于2019年全国一卷数学试题的解析,可以查看相关教辅练习或在线课程资源,也可以请教数学老师或成绩优异的同学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点2015年(题)2016年
(题)
2017年
(题)
2018年
(题)
简单线性规划2121双曲线的性质2021交集及其运算0221利用导数研究函数的单调性0221正弦定理2020抛物线的性质0211程序框图1110由三视图求面积、体积1111二面角的平面角及求法1110椭圆的性质0111函数的图象与图象的变换0120复数的运算1110二项式定理1110函数y=Asin(ωx+φ)的图象变换1110利用导数研究函数的极值1100简单曲线的极坐标方程1001棱柱、棱锥、棱台的体积1110数列递推式1002余弦定理0101数列的求和0120复数的模0101几何概型0111等差数列的前n项和0011利用导数研究曲线上某点切线方程0011直线与平面所成的角0003充分条件、必要条件、充要条件2000正态分布曲线的特点及曲线所表示的
意义1010茎叶图2000函数的零点2000参数方程化成普通方程1010不等式的证明1000离散型随机变量的期望与方差1001直线与圆锥曲线的综合2000交、并、补集的混合运算1000直线与圆相交的性质1100相互独立事件和相互独立事件的概率
乘法公式1000古典概型及其概率计算公式0100对数值大小的比较0100数量积判断两个平面向量的垂直关系0110两角和与差的三角函数0110等差数列的性质0100双曲线的标准方程0100不等式的基本性质0110平面向量数量积的性质及其运算0110数列与函数的综合0100轨迹方程0100命题的真假判断与应用0010绝对值不等式的解法0011球的体积和表面积0010平面与平面垂直0011直线与抛物线的综合0011分段函数的应用0002直线与圆的位置关系0001利用导数研究函数的最值0002
等比数列的前n项和0000点、线、面间的距离计算0000奇偶性与单调性的综合1000两向量的和或差的模的最值1000定积分、微积分基本定理1000等差数列与等比数列的综合1000相似三角形的判定1000基本不等式及其应用1000简单空间图形的三视图1000正弦函数的图象1000函数恒成立问题1000异面直线及其所成的角0100根据实际问题选择函数类型0100圆的切线的判定定理的证明0100参数方程的概念0100带绝对值的函数0100正弦函数的奇偶性和对称性0100解三角形0100离散型随机变量及其分布列0100抽象函数及其应用0010圆锥曲线的综合0010极差、方差与标准差0010直线与平面平行0010相关系数0010概率的应用0001棱柱、棱锥、棱台的侧面积和表面积0001平面向量的基本定理0001三角函数的周期性0001二倍角的三角函数0001函数的零点与方程根的关系0001频率分布直方图0001补集及其运算0001排列、组合及简单计数问题0001三角形中的几何计算0001直线与椭圆的综合0001进行简单的合情推理0000平面向量数量积的坐标表示、模、夹0000系统抽样方法0000运用诱导公式化简求值0000三角函数的恒等变换及化简求值0000独立性检验0000
2019年(题)总计次数06
16
16
16
15
15
14
04
14
14
14
03
03
03
13
13
03
03
13
03
13
03
13
13
03
02
02
02
02
02
12
02
02
12
02
12
12
12
02
02
12
12
02
02
12
12
12
02
12
02
02
02
12
02。