第三讲坐标变换的原理和实现方法

合集下载

数学中的坐标系与坐标变换

数学中的坐标系与坐标变换

数学中的坐标系与坐标变换数学是一门广泛应用于各个领域的学科,而坐标系和坐标变换则是数学中的重要概念。

本文将介绍什么是坐标系,坐标变换的概念以及它们在数学和现实生活中的应用。

一、坐标系坐标系是在某一平面或空间中确定点的位置的一种方式。

它由坐标轴和原点组成。

常见的坐标系包括二维笛卡尔坐标系和三维笛卡尔坐标系。

1. 二维笛卡尔坐标系二维笛卡尔坐标系由两条垂直的数轴组成,通常称为x轴和y轴。

原点是坐标系的交点,用(0,0)表示。

在二维笛卡尔坐标系中,每个点都可以表示为一个有序对(x, y),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标。

2. 三维笛卡尔坐标系三维笛卡尔坐标系在二维笛卡尔坐标系的基础上增加了一条垂直于x轴和y轴的z轴。

在三维笛卡尔坐标系中,每个点都可以表示为一个有序组(x, y, z),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标,z表示点在z轴上的坐标。

二、坐标变换坐标变换是指将一个点的坐标从一个坐标系转换到另一个坐标系的过程。

坐标变换在数学和物理学中都有着广泛的应用。

1. 平移平移是一种坐标变换,通过向所有的点添加一个常量向量,从而将一个坐标系中的点转换到另一个坐标系中。

例如,将一个点的坐标由(x, y)变为(x+a, y+b),其中(a, b)表示平移的向量。

2. 旋转旋转是一种坐标变换,通过围绕一个给定的中心点将点按照一定角度旋转,从而将一个坐标系中的点转换到另一个坐标系中。

旋转可以使用旋转矩阵或旋转角度表示。

3. 缩放缩放是一种坐标变换,通过改变点的坐标的比例,从而将一个坐标系中的点转换到另一个坐标系中。

缩放可以使点的坐标变大或变小,可以根据缩放因子在x方向和y方向上进行分别缩放。

三、数学与现实生活中的应用坐标系和坐标变换在数学和现实生活中有着广泛的应用。

以下是一些常见的应用情景:1. 几何学中的图形表示:坐标系可以用来表示几何图形,例如在平面上绘制直线、圆等图形,或者在空间中绘制立方体、球体等图形。

坐标平移变换

坐标平移变换
坐标平移变换在实际应用中具有广泛 的应用,如遥感图像处理、医学图像 处理、自动驾驶等领域。
展望未来研究方向
进一步研究坐标平移变换的理 论基础,包括变换矩阵的推导 、变换过程的数学描述等方面

探索新的坐标平移变换方法, 以适应不同应用场景和需求, 如非线性变换、多维变换等。
研究坐标平移变换与其他图像 处理和计算机视觉技术的结合 ,以提高图像处理和计算机视 觉系统的性能和鲁棒性。
06
总结与展望
总结
坐标平移变换是图像处理和计算机视 觉领域中的一种基本技术,用于将图 像或数据从一种坐标系转换到另一种 坐标系。
坐标平移变换可以通过线性代数和矩 阵运算实现,其中最常用的变换矩阵 是2x2和3x3的变换矩阵。
坐标平移变换通常用于纠正图像的几 何失真、拼接全景图像、增强机器视 觉系统的鲁棒性等方面。
图像旋转
通过坐标平移,可以将图像旋转一 定角度,实现图像的旋转处理。
在物理和工程领域中的应用
物理模拟
在物理模拟中,坐标平移 用于模拟物体在空间中的 运动轨迹和速度。
工程测量
在工程测量中,坐标平移 用于确定物体的位置和尺 寸,如建筑物的位置、桥 梁的长度等。
自动化控制
在自动化控制中,坐标平 移用于调整机器的位置和 方向,如自动化流水线、 机器人手臂等。
三维坐标平移变换的实例
要点一
总结词
三维坐标平移变换是指在空间中的移动,涉及x、y和z三个 坐标轴。
要点二
详细描述
在三维坐标系中,假设有一个点C(x,y,z)在空间中的坐标为 (5,7,9),现在将点C向右平移3个单位,再向下平移2个单位, 最后向前平移1个单位,新的坐标变为(8,5,8),即 C'(x',y',z')=C(x,y,z)+(dx,dy,dz)=(5,7,9)+(3,-2,-1)=(8,5,8)。

电力电子坐标变换课件

电力电子坐标变换课件
实验结果与仿真结果对比
将实验结果与仿真结果进行对比,验证仿真模型的准确性和有效性 。
PART 06
结论与展望
研究成果总结
01
坐标变换理论在电力电子领域的应用
介绍了坐标变换理论在电力电子领域的应用,包括在电机控制、电网管
理和可再生能源系统等领域的应用。
02
电力电子系统建模与仿真
对电力电子系统进行建模和仿真,通过实验验证了坐标变换理论的正确
变换方法
包括克拉克变换、派克变 换等,用于实现不同坐标 系之间的转换。
坐标变换在电力电子变换器设计中的作用
提高系统性能
通过坐标变换,可改善电力电子系统的性能,如 减小谐波、降低开关损耗等。
简化电路设计
通过适当的坐标变换,可简化电力电子电路的设 计过程,降低设计难度。
便于控制策略实施
坐标变换有助于实现更有效的控制策略,如状态 反馈控制、滑模控制等。
2023-2026
ONE
KEEP VIEW
电力电子坐标变换课 件
REPORTING
CATALOGUE
目 录
• 引言 • 坐标变换基本原理 • 电力电子中的坐标变换 • 电力电子变换器的控制策略 • 电力电子变换器的仿真与实验 • 结论与展望
PART 01
引言
背景介绍
电力电子在能源转换 和电力系统中的应用
电力电子系统的新应用领域
随着可再生能源、智能电网等领域的不断发展,电力电子系统的应用领域将不断扩大,需 要进一步研究和探索新的应用场景和技术。
电力电子系统的智能化和自主化
随着人工智能和机器学习技术的不断发展,电力电子系统的智能化和自主化将成为未来的 重要研究方向,需要加强相关技术的研究和应用。

(整理)坐标变换的原理和实现方法

(整理)坐标变换的原理和实现方法

由第二讲的内容可知,在三相静止坐标系中,异步电动机数学模型是一个多输入、多输出、非线性、强耦合的控制对象,为了实现转矩和磁链之间的解耦控制,以提高调速系统的动静态性能,必须对异步电动机的数学模型进行坐标变换。

3.1 变换矩阵的确定原则坐标变换的数学表达式可以用矩阵方程表示为y=ax (3-1)式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。

这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下:(1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则;(2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵;(3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。

假设电流坐标变换方程为:i=ci′ (3-2)式中,i′为新变量,i称为原变量,c为电流变换矩阵。

电压坐标变换方程为:u′=bu (3-3)式中,u′为新变量,u为原变量,b为电压变换矩阵。

根据功率不变原则,可以证明:b=ct (3-4)式中,ct为矩阵c的转置矩阵。

以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。

3.2 定子绕组轴系的变换(a-b-c<=>α-β)所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。

三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α轴重合。

假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即:(3-5)式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。

经计算并整理之后可得:(3-6)(3-7)图3-1 三相定子绕组和二相定子绕组中磁势的空间矢量位置关系用矩阵表示为:(3-8)如果规定三相电流为原电流i,两相电流为新电流i′,根据电流变换的定义式(3-2),式(3-8)具有i′=c-1i的形式,为了通过求逆得到c就要引进另一个独立于isα和isβ的新变量,记这个新变量为io,称之为零序电流,并定义为:(3-9)式中,k为待定系数。

坐标变换ppt课件

坐标变换ppt课件
❖ 假定在原坐标系统中变量为x 1 、x 2 、 … x n
❖ 令 Y CX ❖ C为变换系数,既可取常数,也可取时间的
函数。在线性变换中,系数与变量无关。
❖ 若要原变量和新变量间存在单值关系,转 换矩阵C须满秩。
精选ppt课件2021
3
二、综合矢量
二、综合矢量
❖ 时间矢量 –随时间作正弦变化的量 –可以用沿逆时针旋转的矢 量在y轴的投影表示 – y轴称为时间轴
精选ppt课件2021
7
二、综合矢量
综合矢量的计算
❖ 综合矢量的计算 –设有正序电流
精选ppt课件2021
8
二、综合矢量
综合矢量的计算
–正序电流综合矢量为
–其中, a为旋转算子
精选ppt课件2021
9
二、综合矢量
综合矢量的计算
❖ 图解
精选ppt课件2021
10
二、综合矢量
综合矢量的计算
–设有负序电流
精选ppt课件2021
20
二、综合矢量
综合矢量的优点
❖ 三相同时考虑 –除零序分量
❖ 在任意轴线上的投影 –表示与该轴线圈有关变量的瞬时值
精选ppt课件2021
21
三、坐标转换
各坐标系统间的转换
❖ 旋转电机的坐标变换:两大类
–坐标轴线放在定子上的静止坐标系统,如 abc,αβ0,+-0坐标系统
–坐标轴线放在转子上的旋转坐标系统,如 dq0,fb0坐标系统。
精选ppt课件2021
4
二、综合矢量
单时标多矢量法
❖ 单时标多矢量表示法 –三相对称系统 –三个旋转矢量 –一个时间轴
精选ppt课件2021
5

坐标系转换方法

坐标系转换方法

坐标系转换方法
坐标系转换的方法有多种,以下是三种主要的方法:
1. 线性变换法:这种方法将原始坐标系中的点映射到新的坐标系中。

通过选择合适的矩阵,可以将坐标变换为新的形式。

线性变换法在处理平面坐标系时特别有效。

2. 多项式拟合法:这种方法利用多项式来拟合两个坐标系之间的关系。

通过找到一组对应点,并拟合出多项式方程,可以将一个坐标系中的点转换为另一个坐标系中的点。

这种方法适用于任何维度的坐标系转换。

3. 最小二乘法:这种方法利用最小二乘原理,通过优化误差平方和,找到最佳的坐标转换方法。

它可以用于各种类型的坐标系转换,包括线性变换、多项式拟合等。

最小二乘法对于处理具有大量数据点的复杂转换非常有效。

这些方法都有其适用范围和优缺点,在实际应用中需要根据具体情况选择最合适的方法。

向量的坐标系和坐标变换

向量的坐标系和坐标变换

向量的坐标系和坐标变换向量是数学中的一个基本概念,它可以用来表示空间中的点和方向,是许多科学领域的重要工具。

在计算机图形学、物理学、机器学习等领域中,向量是不可或缺的一部分。

本文将介绍向量的坐标系和坐标变换。

一、坐标系坐标系是用来描述一个向量在空间中的位置的系统。

我们通常使用直角坐标系,它由三条相互垂直的坐标轴构成,分别标记为x 轴、y轴和z轴。

一个向量可以表示为(x, y, z)的形式,其中x表示向量在x轴上的投影,y表示向量在y轴上的投影,z表示向量在z轴上的投影。

在直角坐标系中,每一个点都可以表示为一组坐标。

例如,(3, 4, 0)表示x轴上投影为3,y轴上投影为4,z轴上投影为0的点。

同样地,向量也可以表示为一组坐标。

二、坐标变换坐标变换是指将一个向量从一个坐标系转换到另一个坐标系的过程。

在三维空间中,我们常用的坐标变换有平移、旋转和缩放。

1. 平移平移是指将一个向量从一个位置移动到另一个位置的过程。

在直角坐标系中,我们可以使用向量加法来进行平移运算。

例如,向量(1, 2, 3)加上向量(4, 5, 6)等于向量(5, 7, 9),表示向量在x轴上平移了4个单位,在y轴上平移了5个单位,在z轴上平移了6个单位。

2. 旋转旋转是指将一个向量绕一个轴旋转一定角度的过程。

在直角坐标系中,我们可以使用矩阵乘法来进行旋转运算。

例如,对向量(1, 0, 0)进行绕y轴旋转90度的运算,可以表示为:cos(90) 0 sin(90)0 1 0-sin(90) 0 cos(90)乘以向量(1, 0, 0)得到向量(0, 0, 1),表示向量绕y轴旋转90度后的结果。

3. 缩放缩放是指将一个向量的大小按照一定比例进行变换的过程。

在直角坐标系中,我们可以使用矩阵乘法来进行缩放运算。

例如,对向量(1, 2, 3)进行按照2倍缩放的运算,可以表示为:2 0 00 2 00 0 2乘以向量(1, 2, 3)得到向量(2, 4, 6),表示向量按照2倍缩放后的结果。

平面解析几何中的坐标变换

平面解析几何中的坐标变换

平面解析几何中的坐标变换在平面解析几何中,坐标系统是我们研究和描述平面上的点和图形的重要工具。

坐标变换是指将一个点的坐标转换为另一个坐标系统中的坐标的过程。

在本文中,我们将探讨平面解析几何中的常见坐标变换,包括平移、旋转、缩放和镜像。

一、平移变换平移变换是指将平面上的点沿着指定的向量移动一定的距离,而保持点在平移之前的方向不变。

假设有一个点P(x, y),我们要将它平移d单位,那么它的新坐标为P'(x+d, y+d)。

平移变换可以用矩阵表示:⎡x'⎤⎡1 0 d⎤⎡x⎤⎢⎥ = ⎢0 1 d⎥ * ⎢⎥⎣y'⎦⎣0 0 1⎦⎣y⎦其中,(x, y)为原坐标,(x', y')为平移之后的坐标,d为平移的距离。

二、旋转变换旋转变换是指将平面上的点绕着一个给定的旋转中心顺时针或逆时针旋转一定的角度。

假设有一个点P(x, y),我们要将它绕旋转中心O旋转θ角度,那么它的新坐标为P'(x', y')。

旋转变换可以用矩阵表示:⎡x'⎤⎡cosθ -sinθ⎤⎡x⎤⎢⎥ = ⎢⎥ * ⎢⎥⎣y'⎦⎣sinθ cosθ⎦⎣y⎦其中,(x, y)为原坐标,(x', y')为旋转之后的坐标,θ为旋转角度。

三、缩放变换缩放变换是指将平面上的点按照一定的比例扩大或缩小,而不改变点在所缩放前的方向。

假设有一个点P(x, y),我们要将它按照给定的比例水平缩放sx,垂直缩放sy,那么它的新坐标为P'(x', y')。

缩放变换可以用矩阵表示:⎡x'⎤⎡sx 0⎤⎡x⎤⎢⎥ = ⎢⎥ * ⎢⎥⎣y'⎦⎣ 0 sy⎦⎣y⎦其中,(x, y)为原坐标,(x', y')为缩放之后的坐标,sx为水平缩放系数,sy为垂直缩放系数。

四、镜像变换镜像变换是指将平面上的点按照给定的镜像轴进行对称翻转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲坐标变换的原理和实现方法
坐标变换是计算机图形学领域中的重要概念之一,它可以用来描述物
体在平面或者三维空间中的位置和方向。

在计算机图形学中,常常需要将
物体从一个坐标系变换到另一个坐标系,以便于进行操作、渲染或者显示。

1.坐标变换的原理
在进行坐标变换之前,首先需要给定一个参考坐标系,通常称之为世
界坐标系。

然后,需要确定一个局部坐标系,用来表示参考坐标系中的一
些物体。

局部坐标系通常是以物体的一些点为原点,以物体一些方向为坐
标轴的。

坐标变换的原理可以归结为两个步骤:平移和旋转。

平移是指将物体沿着参考坐标系的一些方向移动一定的距离。

平移可
以用一个向量表示,这个向量称为平移向量。

在平移过程中,物体的位置
发生了变化,但是物体的方向不会改变。

旋转是指将物体沿着参考坐标系的一些轴进行旋转。

旋转可以用一个
旋转矩阵表示,这个矩阵称为旋转矩阵。

在旋转过程中,物体的位置不变,但是物体的方向发生了变化。

2.实现方法
实现坐标变换的方法有很多种,下面介绍几种常用的方法。

(1)矩阵变换法
矩阵变换法是坐标变换的一种常用方法,它通过矩阵的乘法来实现坐
标的转换。

首先,需要将物体的坐标变换矩阵相乘,得到变换后的坐标。

然后,将变换后的坐标赋给物体的顶点,即可实现物体的坐标变换。

矩阵
变换法可以实现平移、旋转、缩放等各种变换。

(2)四元数插值法
四元数插值法是一种基于四元数的坐标变换方法,它通过插值四元数
来实现物体的平滑旋转。

四元数插值法可以避免欧拉角存在的万向节锁问题,保留了旋转矩阵的简洁性。

四元数插值法适用于需要平滑旋转过程的
场景,比如游戏中的角色动画。

(3)欧拉角变换法
欧拉角变换法是一种将物体从一个坐标系变换到另一个坐标系的方法,它通过欧拉角来表示物体的旋转角度。

欧拉角变换法可以实现物体的绕固
定轴旋转,比如绕x轴、y轴或z轴旋转。

欧拉角变换法的优点是简单易懂,但是在实际应用中容易出现万向节锁问题。

(4)四元数变换法
四元数变换法是一种将物体从一个坐标系变换到另一个坐标系的方法,它通过四元数来表示物体的旋转。

四元数变换法相对于欧拉角变换法而言,可以避免万向节锁问题,并且计算效率更高。

四元数变换法的缺点是相对
于欧拉角变换法而言,计算过程相对复杂。

3.总结
坐标变换在计算机图形学中是一个基础而重要的概念,它可以描述物
体在平面或者三维空间中的位置和方向。

坐标变换的原理是通过平移和旋
转来实现的。

实现坐标变换的方法有很多种,矩阵变换法、四元数插值法、欧拉角变换法和四元数变换法都是常用的方法。

每种方法都有其适用的场
景和优缺点,根据具体的需求选择合适的方法进行坐标变换。

通过学习和
理解坐标变换的原理和实现方法,可以更好地应用于计算机图形学中的实际问题。

相关文档
最新文档