力偶矩与力矩的区别和联系

合集下载

力矩与力偶矩的异同

力矩与力偶矩的异同

力矩与力偶矩的异同引言力矩和力偶矩是力学中常常使用的概念,它们在描述物体受力情况和求解平衡条件时起到了重要的作用。

本文将详细讨论力矩和力偶矩的异同,包括定义、计算方法、性质等方面的内容。

定义•力矩是描述作用在物体上的力对它的转动效果的物理量。

当一个力偏离物体的轴线施加在物体上时,就会产生力矩,力矩的大小等于力与轴线的距离乘以力的大小。

•力偶矩是一对大小相等、方向相反的力所组成的力偶对产生的转力。

力偶矩与力矩的定义类似,只是力偶矩是由一对力组成的。

计算方法力矩和力偶矩的计算方法类似,可以通过向量叉乘或者点乘来求解。

•向量叉乘:设有两个矢量A和B,其叉乘结果用符号A×B表示,其计算公式为:A×B = |A| |B| sinθ n 其中,|A|和|B|分别是矢量A和B的大小,θ是矢量A到矢量B的夹角,n是垂直于A和B所在平面的单位矢量。

•向量点乘:向量点乘的结果是一个标量,用符号A·B表示,其计算公式为:A·B = |A| |B| cosθ 其中,|A|和|B|分别是矢量A和B的大小,θ是矢量A和矢量B之间的夹角。

力矩与力偶矩的关系力矩和力偶矩之间存在着紧密的联系。

1.力矩是力偶矩的特殊情况:当一对力的大小相等、方向相反,并且作用在同一直线上时,它们所产生的力矩就是一个力偶矩。

2.力偶矩的大小等于力矩的大小的两倍:由力偶矩的定义可知,力偶矩是一对力产生的转力,它的大小等于一个力所产生力矩的两倍,即M = 2Fd。

3.力矩和力偶矩都是矢量:力矩和力偶矩都有大小和方向,因此可以用矢量表示。

4.力矩和力偶矩的方向规律相同:力矩和力偶矩的方向都遵循右手螺旋规则,即在右手握住转动轴,四指的方向表示力或者力偶矩的方向,那么拇指的方向就是转动轴的方向。

力矩的性质力矩具有以下性质:1.力矩的大小等于力与轴线的距离的乘积:设力F作用在物体上产生的力矩为M,力F到轴线的距离为r,则M = F * r。

力矩与力偶

力矩与力偶
也就是说力矩与矩心的位置有关。
1.2.2 力矩的性质 1.力F对O点这矩不仅取决于F的大小,同时还与矩心的位置即力臂d有关。 2.力在刚体上沿作用线移动时,力对点之矩不变。 3.力的大小等于零或力的作用线过矩心时,力矩等于零。 4.互成平衡的两个力对同一点之矩的代数和为零。
§1.2 力对点之矩
1.2.3 合力矩定理 平面力系有一合力时,合力对平面内任一点之矩,等于各分力对同一点之 矩的代数和。
Ft
D 2
0
Fn
cos
D 2
1000 160 103 cos 20 75.2N m 2
计算力对点之矩的方法:1.利用力对点之矩的定义式计算。 2.利用合力矩定理计算。
§1.3 力偶
生活实例:
1.3.1 力偶的概念 1.力偶的定义:一对大小相等、指向相反的平行力组成的特殊力系称为力
偶。记作F , F 。
§1.3 力偶
性质1 力偶在任一轴上的投影的代数和为零。 力偶无合力,力偶对刚体的移动不产生任何影 响,即力偶不能与一个力等效,也不能简化为 一个力。
性质2 力偶对于其作用面内任意一点之矩与该 点(矩心)的位置无关,它恒等于力偶矩。
1.3.2 力偶的基本性质
§1.3 力偶
推论1 力偶可在其作用面内 任意移而不会改变它对刚体 的转动效应。
思考题:如图所示的圆盘,在力偶M=Fr和力F的作用
下保持静止,能否说力偶和力保持平衡?为什么?
§1-4 力的平移定理
力的平移定理 力可以等效的平移到刚体上的任一点,
但必须附加一个力偶,其力偶矩的大小等 于原力对该点之矩。
§1.4 力的平移定理
力的平移定理换句话说,就是平移前的一个力与平移后的一个力和一个附 加力偶等效。即一个力可以分解成为同平面内另一点的一个力和一个力偶。反 之共面的一个力和一个力偶也可以合成为同平面内的一个力,这便是力的平移 定理的逆定理。

力矩-力偶系

力矩-力偶系

a b
M o (F ) Fd F (ob ab) F (l sin h cos )
2.合力矩定理 • 力系与其合力等效,对于使物体转动的效果,这种 性质依然存在,即合力对于一点O之矩,等于各分 力对点O之矩的代数和,这一普遍规律称为合力矩 定理。可用下式表示。
式中:
§1-3 力对点之矩、力偶
一、力对点之矩 —— 力矩 1 力矩
力的转动效果由两个因素决定: 1)、力的大小与点O到力作用线 的垂直距离 2)、力使物体绕O转动的方向
式中, Mo(F)=±Fh 表示此二因素,称为 力对点之矩简称力矩 力对点之矩的实质是 力 对通过矩心且垂直于平面 的轴的矩
其中O称为矩心,h 称为力臂,力矩为代数量,力使物体绕矩心逆 时针转动时为正,顺时针为负。
例题:梁AB 受一主动力偶作用,其力偶矩M=100 Nm ,梁长l=5m ,梁的自重不计,求两支座的约束 反力。 • 解 (1)以梁为研 究对象,进行受力 分析并画出受力图 • 因系统为力偶系, 故FA必须与FB大 小相等、方向相反、 作用线平行。 • (2)列平衡方程
∑M=0
FBl - M = 0
(1)力偶无合力。 力偶不能用一个力来等效,也不能用一个力来平衡。 可以将力和力偶看成组成力系的两个基本物理量。 (2)力偶对其作用平面内任一点的力矩,恒等于其力偶矩。
2.力偶的性质
(3)力偶的等效性——作用在同一平面的两个力偶,若它 们的力偶矩大小相等、转向相同,则这两个力偶是等效的。 则可得: • 1)力偶可以在其作用面内任意移转而不改变它对物体的作 用。即力偶对物体的作用与它在作用面内的位置无关。 • 2)只要保持力偶矩不变,可以同时改变力偶中力的大小和 力偶臂的长短,而不会改变力偶对物体的作用。

力矩和力偶

力矩和力偶

力矩 和力

1.力偶的概念
在日常生产、生活中,常会看到物体同时受到大 小相等、方向相反、作用线平行的两个力的作用。如 汽车司机转动方向盘时加在方向盘上的两个力,如图2 -17所示;钳工师傅用双手转动丝锥攻螺纹时,两手作 用于丝锥扳手上的两个力,如图2-18所示;拧水龙头 时加在开关上的两个力等。这样的两个力显然不是前 面所讲的一对平衡力,它们作用在物体上将使物体产 生转动效应。
力矩 和力

当力的作用线与转轴平行或相交,即力的作用线
与轴线共面时,力对转轴之矩为零。当力的作用线不
在与轴线垂直的平面上,如图2-13所示的正六面体,
求其所受力F对z轴的力矩时,可将其分解成两个分力
F1和F2。令F1与转轴z平行、F2在与转轴z垂直的平面内,
则F1对z轴不产生力矩作用,而F对z轴之矩实际上就是
力矩和力偶
1.1 力矩 1.2 力偶
1.力对点之矩
以扳手拧紧螺丝 为例来分析力对物体 的转动效应。如图211所示,作用于扳手 一端的力F使扳手绕O 点转动。
1)力对点之矩的概念
力矩 和力

1.力对点之矩
1)力对点之矩的概念
O点称为力矩中心,简称矩心。扳手绕矩
心的转动效应不仅与力F的大小有关,还与矩
F2对O点的力矩,即
Mz(F)=MO(F2)=±F2d
(2-19)
力矩 和力

式(2-19)表明,力F对轴之矩等于该力 在垂直于此轴的平面上的分力(投影)对该 轴与此平面的交点的力矩。通常情况下,力 对轴之矩是代数量,其正负用右手法则来确 定,即用右手握住转轴,弯曲的四指指向力 矩的转向,拇指所指的方向如果与转轴的正 向相同,对应的力矩为正,反之为负。也可 以从轴的正向看,当力矩绕轴逆时针转动时 为正,反之为负,如图2-14所示。

力矩、力偶的概念及其性质

力矩、力偶的概念及其性质
C F
Ad B
F
是独立量;
⑶ 性质3 平面力偶等效定理
作用在同一平面内的两个力偶,只要它的力偶矩的大小相
等,转向相同,则该两个力偶彼此等效。
[证] 设物体的某一平面
QA
FR
F
A
FR
FR
B
DC
F
FR
B
Q
上作用一力偶(F,F') 现沿力偶臂AB方向 加一对平衡力(Q,Q'), 再将Q,F合成FR,
Q',F'合成F'R , 得到新力偶(FR, F'R ),
解: 简支梁上的载荷为力偶。由于力偶只能被力偶所平衡,
故支座A 、B 处反力必须组成一个力偶。B为滚动支座、约束
反力 NB应沿支承面的法线,固定支座A的约束反力RA ,它与 NB 应组成一力偶,故也应沿铅垂线而与NB方向相反,且 RA=NB。 根据平面力偶系平衡方程有:
m 0, m NB cos l 0
工程力学
力矩、力偶的概念及其性质
力对物体可以产生 移动效应--取决于力的大小、方向;
转动效应--取决于力矩的大小、转向。
一、力对点的矩 ⒈ 定义
A F
d
+
MO (F )
B
-
O
3
二、合力矩定理
⒈ 定理:平面汇交力系的合力对平面内任一点的矩,等于所 有各分力对同一点的矩的代数和
即:
⒉ 证明(略)
由合力投影定理有: od=ob+oc
得:NB 5.66kN RA
A
M
B
A
M
B
C l
C RA l
NB 45
(a)
(b)

工程力学中的力矩和力偶的应用

工程力学中的力矩和力偶的应用

工程力学中的力矩和力偶的应用工程力学是研究物体在受力作用下的运动和变形规律的工程学科。

其中,力矩和力偶是力学分析中常用的重要概念和工具。

本文将介绍力矩和力偶的概念,并阐述它们在工程力学中的应用。

一、力矩的概念及应用力矩是指力对物体产生转动效果的能力。

它与力的大小、作用点位置和力臂(垂直于力的作用线的距离)有关。

力矩可以用数学公式表示为:M = F × d其中,M表示力矩,F表示力的大小,d表示力臂的长度。

力矩的单位是牛顿·米(N·m)。

工程力学中,力矩的应用非常广泛。

以下是几个典型的应用案例:1. 平衡条件的分析在工程设计中,需要保证结构物或机器的平衡性,即避免出现倾覆或失衡的情况。

通过计算各个力矩的合力和合力矩,可以判断结构物或机器是否处于平衡状态。

如果合力为零且合力矩为零,那么系统就是平衡的。

2. 杆件的静力学分析在分析杆件(如梁、柱等)的受力状态时,力矩可以帮助我们计算出各个受力点的力和力矩。

通过力的平衡条件和力矩的平衡条件,可以解出未知受力的大小和方向,进而确定杆件的受力分布以及结构的稳定性。

3. 实际力的替代有时候,我们希望用一个力矩来代替一组力的合力作用。

这个力矩被称为"等效力矩"。

通过合理选择等效力矩的大小和位置,可以简化受力分析,更方便地计算系统的受力情况。

二、力偶的概念及应用力偶是两个大小相等、方向相反的力对物体产生的转动效果。

力偶对物体的转动产生的力矩大小与作用点位置无关,仅与力的大小和力臂有关。

力偶的力矩可以根据以下公式计算:M = F × 2a其中,M表示力偶的力矩,F表示每个力的大小,a表示力臂的长度。

力偶的单位也是牛顿·米(N·m)。

力偶在工程力学中的应用主要有以下两个方面:1. 转矩的调节在一些机械系统中,为了达到期望的输出效果,需要根据实际情况调节转矩。

通过对适当大小和位置的力偶的施加,可以在不改变力的大小和方向的前提下,调节转矩的大小和方向,从而实现系统的控制和调整。

2力、力矩、力偶-2

2力、力矩、力偶-2

力臂
顺时针转向为负。
矩心 h
力矩的单位 N.m, kN.m
O
F
注意:同一个力对不同点之矩是不同的, 计算力矩时一定要指明矩心。
力F 对A点之矩 ,为 力F 对B点之矩 ,为 力F 对C点之矩 ,为
MA(F )=FhA MB(F )= –FhB MC(F )=0
A hA C
F
hB B
力的作用线通过 矩心时,力对该点 之矩等于零。
W3 2gV3 19009.8 (240103 3 4) 53625 N
例2-7 带雨篷的门顶过梁长4m,横向尺寸如图。试验算 雨篷会不会绕A点倾覆
3000 350
ρ1=2600kg/m3
W3
F=1kN
W2
70
A
W1
ρ2=1900kg/m3
240 1000
计算倾覆力矩
W3
2.力矩的矢量表示 用右手螺旋法则将力矩表示为矢量 拇指表示力矩矢量的方向
MO (F)
n MO(F )
O
平面内,力对O点之矩实际上是力使物体绕着 过O点垂直于该平面的轴转动的物理量。
力对轴的矩
n F
Oh
n MO(F )
O
O
F
例2-7 带雨篷的门顶过梁长4m,横向尺寸如图。试验算 雨篷会不会绕A点倾覆
平衡?分别是多少?
1.1m
M A(W1) W1 1.1 82.5kN.m M A(W2) W2 2 240kN.m M A(F) F 1.6 144kN.m
F
W1
W2
1.6m
A
1m
3m
作业
P.27: 2-9
= –4 kN.m

项目三 力矩和力偶

项目三 力矩和力偶
平面力偶系合成以后,只有当合力偶矩等于零时,力偶系 才平衡。因此,平面力系的平衡条件是:力偶系中各分力偶的 力偶的力偶矩代数和为零
M=0
三、平面力系中的合成与平衡 作用在同一物体上的几个力偶称为力偶系。作用在同一平 面内的力偶称为平面力偶系。 由于力偶的特性可以推断,力偶系合成的结果必定是一个 合理偶,如果已知平面力系中各个力偶的力偶矩为M1、 M2…Mn,则合力偶的力偶矩M为各个分力偶的代数和。
M M 1 M 2 ... Mn = Min






O点称为力矩中心(简称矩心);O点到力F作用线的垂直距 离Lh,称为力臂。式子中的正负表示力矩的方向。一般规定: 力使物体绕矩心做逆时针方向转动时,力矩取正值符号,反 之为负号,力矩的单位常用N〃m或KN〃m 当力的作用线通过矩心时,因其力力臂为零故力矩等于零, 这时,力不可能使物体绕矩心转动。 当力沿其作用线移动时,因为力矩不变,故力矩也不变,力 对物体的转动效果也不变。
解:分解力F到垂直手柄的力F1 和沿手柄方向的力F2
MA(F ) MA(F 1) MA(F 2) F 1L1 F 2L 2 FL1 cos 15
=-39.7 N.m
负号说明力F使手柄绕A点顺时针转动



力矩和力偶
二、力偶和力偶矩 1.力偶和力偶矩 司机转动反向盘和钳工使用丝锥攻螺纹时,方向盘和丝锥 铰杠上通常受到大小相等、方向相反、作用线不在一条直线 上的两个平行力的作用。 在同一物体上作用等值反向的两个平行力,力的矢量和显 然等于零,但是由于它们不共线而不能相互平衡,是物体产 生转动。这种由大小相等、方向相反、作用线平行但不重合 的二力组成的力系称为力偶, 记作 ( F 、 。力偶中 F、 ) 二力之间的距离Ld称为力偶臂,力偶所在的平面称为力偶的 作用面。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力偶矩与力矩的区别和联系
答案:
一、作用不同:
力矩是力对物体产生转动作用的物理量。

可以分为力对轴的矩和力对点的矩。

即:M=LxF。

其中L是从转动轴到着力点的距离矢量, F是矢量力;力矩也是矢量。

力偶是作用于同一刚体上的一对大小相等、方向相反、但不共线的一对平行力。

二、含义不同:
力偶矩为“力偶的力矩”的简称,亦称“力偶的转矩”。

力矩与力偶矩的联系是物体旋转的作用。

扩展:
力矩:
力矩表示力对物体作用时所产生的转动效应的物理量。

力和力臂的乘积为力矩。

力矩是矢量。

力对某一点的力矩的大小为该点到力的作用线所引垂线看长度(即力臂)乘以力的大小,其方向则垂直于垂线和力所构成的平面用右手螺旋法则来确定。

力对某一轴线力矩的大小,等于力对轴上任一点的力矩在轴线上的投影。

国际单位制中,力矩的单位是牛顿·米。

常用的单位还有千克力·米等。

力矩能使物体获得角加速度,并可使物体的动量矩发生改变,对同一物体来说力矩愈大,转动状态就愈容易改变。

力矩的计算公式为M=F*L,公式当中M表示的是力F对于转动轴O的力矩,只要是使物体产生逆时针方向转动效果的,称为正力矩,反之则称为负力矩。

力偶距:
由两个大小相等方向相反的平行力所组成的二力称为力偶,记为(F,F,),力偶两力之间的垂直距离称为力偶臂,记做d。

力偶不能合成为一个力,也不能通过一个力进行平衡,或是用一个力进行等效替换。

力偶可以使物体转动以及改变物体转动的状态。

力偶对物体的转动效果与力矩对物体的转动效果相同,力偶对物体的作用效应可以通过力偶距来进行衡量。

力偶距的计算可以通过力与力偶臂的乘积得到,计算公式为M=F*d。

只要是使物体产生逆时针方向转动效果的,称为正力偶矩,反之则称为负力偶矩。

力矩和力偶距的异同
共同点:
单位统一,符号规定统一。

差异点:
1.力矩随矩心位置不同而变化;力偶矩对物体作用效果与矩心选取无关。

2.力偶矩可以完全描述一个力偶;力对点之矩不能完全描述一个力偶。

但是,在取矩的平衡方程中,两者可以代数加减,以为都考虑的是对刚体的转动效果。

在写矩平衡方程时,我们会选择一个参考正转向(如无明确声明,则默认逆时针为参考正转向)。

参考受力图,如果力对矩心的转动作用与参考正转向一致则在方程中取正号,反之,当力对矩心的转动作用与参考正转向相反,该力的矩在平衡方程中取负号。

对不同的矩心,力矩的正负号可能会变。

力偶处理与上述力矩类似,但是正负号(大小)都不因矩心而变。

1、力矩和力偶矩的相同点:量纲相同并且都以逆时针转向为正。

2、不同点:力矩的大小、正负与力和矩心的相对位置有关。

3、力偶对任一点之矩都等于力偶矩。

4、力矩和力偶矩的解释:力矩是力对物体产生转动作用的物理量。

5、可以分为力对轴的矩和力对点的矩。

6、力偶矩为"力偶的力矩"的简称,亦称"力偶的转矩"。

7、力偶是两个相等的平行力,它们的合力矩等于平行力中的一个力与平行力之间距离(称力偶臂)的乘积,称作"力偶矩",力偶矩与转动轴的位置无关。

8、详细解释如下:力F与d的乘积再加上正好或负号来表示力F使物体绕O点转动的效应,并称为力F对O的矩,简称力矩。

9、力和力偶是组成力系的两个基本元体发生转动,力F与d的乘积来量度力偶对物体的转动效应,并把这一乘积加上正负号成为力偶矩。

相关文档
最新文档