泛函分析考试题集与答案
泛函分析考试题集与答案

d1(x,y) min( d(x,y),1) 0或d2(x,y)
均有d(x,y)0成立,于是x y成立
2)d(y,x) d(x,y),
因此d1(y,x) min(d(y,x),1) min( d(x,y),1) d1(x, y)和d2(y,x)d(y,x) d(x, y)d2(x,y)
21 d(y,x) 1 d(x, y)2
若R是赋范空间,d(x,0) ||x|| |x|p,所以x,k R,必须有:||kx|||k|||x||成立,即|kx|p|k ||x|p,p1, 当p1时,若R是度量空间,p1时,若R是赋范空间。
2.若( X , d)是度量空间,则d1min( d ,1),d2d也是使X成为度量空间。
1 21 d
映射
T:
c*0l1,
f
(f(e1), f(e2), ,
f (en),
) (1,2, ,n, )
使得
x
(x1, x2, ,xn,
) c0,
有f ( x)xi i成立
i1
则T线性保距同构映射,因此c*0l1
9.设H是Hilbert空间,xn是H中正交集,则以下三条等价;
1)xn收敛,2)y H,(xn,y)收敛,3)||xn||2收敛
1取S1O(0, ) X,则T在S1上无界,因此x1S1,
使得||Tx1||1成立。
1
取S2O(0,2) X,则T在S2上无界,因此x2S2,
22
使得||Tx2||2成立。
类似地过程一直进行,直到
1
取SnO(0,n) X,则T在Sn上无界,因此xnSn,2n
使得||Txn||n成立。
因此,xnX,使得xn0,但||Txn||
泛函分析基础试卷参考答案

又对en{0,, 0, 1, 0,, }X, || en||1,
|| T ||sup|| x ||1|| T x |||| T en|||| {0,, 0, an, 0,} || = | an|(5分)
所以|| T ||supn| an|M.
所以|| T ||M.(3分)
所以2A x, y0x, yH
所以A x0xH
所以A0.(5分)
4.证明无穷维赋范线性空间X的共轭空间X '也是无穷空间.
证设{ x1, x2,}是X中线性无关向量,
由Hnha-Banach定理
存在f1X ', f1(x1)0,
存在f2X ', f2(x2)0, f2(x1)0
存在f3X ', f3(x3)0, f3(x1)f3(x2)0
所以(T), (5分)
对[0, 1],定义线性算子T : XX,对xC [0, 1]
(T x) (t) x (t)t[0, 1]
由|| T x ||maxt[ 0, 1]| x (t) |
maxt[ 0, 1]| x (t) |
|| x ||
所以T有界.且
T (AI)(AI) TI
所以(A),
所以(A)[0, 1]. (5分)
令SB1A1B (XX),则
S TB1A1ABI, A B B1A1I (2分)
所以ST1,所以T是正则算子. (1分)
二.以下各题每题15分,共75分
1.设X是度量空间, {xn}是X中Cauchy列,证明若存在{xn}的收敛子列{xn k},则{xn}收敛.
证设xX, xn kx (k)
对任何> 0,存在K, k > K时,
泛函分析考试题型及答案

泛函分析考试题型及答案一、选择题(每题2分,共20分)1. 设函数空间E为所有连续函数的集合,定义泛函F(u)=∫₀¹u(x)dx,则F(u)是线性的。
A. 正确B. 错误答案:A2. 每一个线性泛函都可以表示为一个内积。
A. 正确B. 错误答案:B3. 泛函分析中的“泛函”一词指的是函数的函数。
A. 正确B. 错误答案:A4. 弱收敛和强收敛是等价的。
A. 正确B. 错误答案:B5. 紧算子总是有界算子。
A. 正确B. 错误答案:A6. 每一个闭算子都是有界的。
A. 正确B. 错误答案:B7. 每一个有界线性算子都是紧算子。
A. 正确B. 错误答案:B8. 每一个线性泛函都可以用Riesz表示定理表示。
A. 正确B. 错误答案:A9. 每一个线性算子都可以分解为一个紧算子和一个有界算子的和。
A. 正确B. 错误答案:B10. 每一个线性算子都可以分解为一个有界算子和一个紧算子的和。
A. 正确B. 错误答案:A二、填空题(每题3分,共15分)1. 设X是赋范线性空间,如果对于X中的每一个序列{x_n},都有‖x_n‖→0当且仅当x_n→0,则称X是______空间。
答案:完备2. 设T是线性算子,如果T(X)是X的闭子空间,则称T是______算子。
答案:闭3. 设E是Hilbert空间,如果对于每一个x∈E,都有∥Tx∥≥∥x∥,则称T是______算子。
答案:正4. 设E是Banach空间,如果对于每一个序列{x_n}⊂E,都有∑‖x_n‖<∞当且仅当∑x_n收敛,则称E是______空间。
答案:自反5. 设E是线性空间,如果对于每一个序列{x_n}⊂E,都有∑x_n收敛当且仅当∑‖x_n‖<∞,则称E是______空间。
答案:序列完备三、简答题(每题10分,共30分)1. 简述Hahn-Banach定理的内容。
答案:Hahn-Banach定理指出,如果X是一个赋范线性空间,p是X 的一个线性子空间,f是p上的一个线性泛函,并且存在一个常数M使得对于所有x∈p,有|f(x)|≤M‖x‖,则存在X上的一个线性泛函F,使得F|p=f,并且对于所有x∈X,有|F(x)|≤M‖x‖。
泛函分析(含答案)

山东师范大学试题(时间:120分钟 共100分)课程编号: 4081331 课程名称:数学分析方法 适用年级: 2004学制: 四 适用专业:数学与应用数学 试题类别: 补考考生注意事项1、全题三个大题,22个小题。
判断正确(√)与错误(×)(本题10个小题,每题3分,共30分):1、 ( )距离空间X 中的序列{}n x 收敛于X x ∈*的充要条件是{}n x 的任意子列收敛于*x ;t P311 22、 ( )任一离散空间必是完备的;t 311 93、 ( )全有界集不一定可分;f 312 214、 ( )相对紧集的闭包是紧集; t 313 345、 ( )完备距离空间的闭子空间可能是完备的;f 313 296、 ()X 是完备距离空间,闭X F F T ⊂→:,如果存在[)1,0∈α,使()()F y x y x Ty Tx ∈∀<,,,,ρρ,则 F x ∈∃*!使得**x Tx =;f 280 Th17、 ( )有界数列空间m 不是可分的;t 292 7.6.5 8、 ( )函相对紧集未必是有界的;f 294 系19、 ( )紧有界线性算子T 连续⇔T 有界; t318 Th210、 ( )在空间[)[]3,21,0 =X ,()y x y x -=,ρ中,[)1,0=F 是相对紧集。
f ⎭⎬⎫⎩⎨⎧-n 11不收敛(本题共五个小题,每小题14分,共70分):1、证明:连续函数空间[]b a C ,在范数()x f f bx a ≤≤=max 下构成一Banach 空间。
证1 显然[]b a C ,为一线性空间;2 ()()()00max 0;0max ≡⇔=⇔=≥=≤≤≤≤x f x f f x f f bx a bx a ;()()f x f x f f bx a bx a αααα===≤≤≤≤max max()()()()g f x g x f x g x f g f bx a bx a bx a +=+≤+=+≤≤≤≤≤≤max max max因而[]b a C ,为一赋范线性空间3 下证[]b a C ,的完备性设{}n f 是[]b a C ,的一基本列,及0>∀ε,0>∃N ,使得N n m >,时,有()ερ<-=n m n m f f f f ,。
泛函分析期末试题及答案

泛函分析期末试题及答案一、选择题1. 下列哪个不是泛函分析的主要研究对象?A. 函数空间B. 向量空间C. 线性映射D. 点集答案:D2. 泛函是指将一个向量空间的元素映射到一个标量的函数。
以下哪个选项是泛函的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶空间答案:C3. 在泛函分析中,范数是一种度量向量空间中向量大小的方法。
以下哪个选项是范数的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶范数答案:B4. 下列哪个不是泛函分析中的基本定理?A. 嵌入定理B. 开铃定理C. Hahn-Banach定理D. Banach-Steinhaus定理答案:B5. 泛函分析中的内积是指满足一定条件的映射。
以下哪个选项是内积的定义?A. 函数空间B. 向量空间C. 线性映射D. 内积空间答案:D二、填空题1. 完成下列范数的定义:范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。
2. 填写完整的Hahn-Banach定理的表述:设X是一个实或复数的线性空间,Y是X的一个线性子空间,f是定义在Y上的线性泛函,对于所有的y∈Y,有f(y) ≤ p(y),其中p是X上的一个次线性泛函,且满足p(y) ≤ p(x)对所有的x∈X成立,则存在一个定义在整个X上的线性泛函F,满足F(x) ≤ p(x)对所有的x∈X成立,并且在Y上,F和f的限制是相等的。
三、计算题1. 对于给定的函数空间C[0,1],计算函数f(x) = x^2在C[0,1]上的范数。
解答:根据范数的定义,范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。
泛函分析答案

泛函分析答案泛函分析题1_3列紧集p191.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对?ε > 0,存在A的列紧的ε网.证明:(1) 若子集A是列紧的,由Hausdorff定理,ε > 0,存在A的有限ε网N.而有限集是列紧的,故存在A的列紧的ε网N.(2) 若?ε > 0,存在A的列紧的ε/2网B.因B列紧,由Hausdorff定理,存在B的有限ε/2网C.因C ?B ?A,故C为A的有限ε网.因空间是完备的,再用Hausdorff定理,知A是列紧的.1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界.证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数.(1) 若f无上界,则?n∈ +,存在x n∈D,使得f (x n) > 1/n.因D是紧集,故D是自列紧的.所以{x n}存在收敛子列x n(k) →x0∈D (k→∞).由f的连续性,f (x n(k))→f (x0) (k→∞).但由f (x n) > 1/n知f (x n)→ +∞(n→∞),所以f (x n(k))→ +∞ (k→∞),矛盾.故f有上界.同理,故f有下界.(2) 设M = sup x∈D f(x),则?n∈ +,存在y n∈D,使得f (y n) > M- 1/n.{y n}存在子列y n(k) →y0∈D (k→∞).因此f ( y0 ) ≥M.而根据M的定义,又有f ( y0 ) ≤M.所以f ( y0 ) = M.因此f能达到它的上确界.同理,f能达到它的下确界.1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k 个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的.证明:(1) 若A是度量空间(X, ρ)中的完全有界集.则存在A的有限1-网N = { x0, x1, x2, ..., x n }.令R = ∑1 ≤j≤nρ(x0, x j) + 1.则?x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1.因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R.所以A是度量空间(X, ρ)中的有界集.(2) 注意到ρ(e k , e j) = 21/2 ( ?k ≠ j ),故E中任意点列都不是Cauchy列.所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).因此,E不是列紧集.由l 2是完备的,以及Hausdorff定理,知E不是全有界集.但E显然是有界集.1.3.4 设(X, ρ)是度量空间,F1, F2是它的两个紧子集,求证:?x i ∈F i( i = 1, 2),使得ρ(F1, F2) = ρ(x1, x2).其中ρ(F1, F2) = inf {ρ(x, y) | x∈F1, y∈F2 }证明:由ρ(F1, F2)的定义,?n∈ +,?x i(n)∈F i( i = 1, 2),使得ρ(x1(n), x2(n)) < ρ(F1, F2) + 1/n.因F1, F2紧,故不妨假设{x1(n)}, {x2(n)}都是收敛列.设它们的极限分别为x1, x2,则ρ(x1, x2) ≤ρ(F1, F2).因此ρ(F1, F2) = ρ(x1, x2).1.3.5 设M是C[a, b]中的有界集,求证集合{F(x) =?[a, x]f(t) dt | f∈M }是列紧集.证明:设A = {F(x) =?[a, x]f(t) dt | f∈M }.由M有界,故存在K > 0,使得?f∈M,ρ( f, 0) ≤K.先证明A是一致有界的和等度连续的.F∈A,存在f∈M,使得F(x) =?[a, x]f(t) dt.由于ρ(F, 0) = max x∈[a,b] | F(x) | = max x∈[a, b] | ?[a, x]f(t) dt |≤ max x∈[a, b] | f(t) | · (b -a ) = ρ( f, 0) · (b -a ) ≤K (b -a ).故A是一致有界的.ε > 0,?s, t∈[a, b],当| s-t| < ε/K时,F∈A,存在f∈M,使得F(x) =?[a, x]f(u) du.| F(s) -F(t) | = | ?[s, t]f(u) du | ≤ max u∈[a, b] | f(u) | · | s -t |= ρ( f, 0) · | s -t | ≤K · (ε/K) = ε.故A是等度连续的.由Arzela-Ascoli定理,A是列紧集.1.3.6 设E = {sin nt}n≥ 1,求证:E在C[0, π]中不是列紧的.证明:显然E是一致有界的.根据Arzela-Ascoli定理,我们只要证明E不是等度连续的即可.我们的想法是找一个E中的点列f n,以及[0, π]中的两个点列s n 和t n,使得| s n -t n | → 0,但| f n(s n)-f n(t n)|不收敛于0.事实上,这是可以做到的,只要令f n (u) = sin (2n u),s n = (π/2)(1 + 1/(2n)),t n = (π/2)(1 - 1/(2n)).则s n + t n = π;s n -t n = π/(2n)→ 0(n→∞).因此,| f n(s n)-f n(t n)| = 2 | sin (2n s n) - sin (2n t n) |= 2 | sin (n (s n -t n)) cos (n (s n + t n)) |= 2 | sin (π/2) cos (n π) | = 2.所以,E不是等度连续的.进而,E在C[0, π]中不是列紧的.1.3.7 求证S空间的子集A是列紧的充要条件是:?n∈ +,?C n> 0,使得x = (ξ1, ξ2, ..., ξn, ...)∈A,都有| ξn | ≤C n( n = 1, 2, ...).证明:(?) 设x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... )是A中的点列.存在{x k}的子列{x1, k}使得其第1个坐标ξ1(1, k)收敛;存在{x1, k}的子列{x2, k}使得其第2个坐标ξ2(2, k)收敛;如此下去,得到一个{x k}的子列的序列,第( j +1)个子列是第j个子列的子列,且第j个子列的第j个坐标是收敛的.选取对角线构成的点列{x j, j},则{x j, j}是{x k}的子列,且每个坐标都收敛.根据习题1.2.1的证明可知,S空间的点列收敛的充要条件是坐标收敛.故{x j, j}是收敛点列.所以,A是列紧的.(?) 我们只要证明,?n∈ +,A中的点的第n个坐标所构成的集合是有界集.若不然,设A中的点的第N个坐标所构成的集合是无界的.则存在A中的点列x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... ),使得| ξN(k) | > k.显然,{ ξN(k) }无收敛子列,故{ x k }也无收敛子列,这与A列紧相矛盾.这样就完成了必要性的证明.1.3.8 设(X, ρ)是度量空间,M是X中的列紧集,映射f : X →M满足ρ( f (x1), f (x2)) < ρ( x1, x2 )(?x1, x2∈M, x1≠x2).求证:f在X中存在唯一的不动点.证明:(1) 首先证明cl(M)是紧集.为此只要证明cl(M)列紧即可.设{ x n }是cl(M)中的点列,则存在M中的点列{ y n }使得ρ( x n, y n) < 1/n.因M列紧,故{ y n }有收敛子列{ y n(k)},设y n(k) →u∈cl(M).显然{ x n(k)}也是收敛的,并且也收敛于u∈cl(M).所以cl(M)是自列紧的,因而是紧集.(2) 令g(x) = ρ( x, f (x)),则g是X上的连续函数.事实上,由ρ( f (x1),f (x2)) < ρ( x1, x2 )可知f : X →M是连续的,因而g也连续.由习题1.3.2知存在x0∈cl(M),使得g(x0) = inf {ρ( x, f (x)) | x∈cl(M) }.(3) 若g(x0) > 0,则ρ( x0, f (x0)) > 0,即x0≠f (x0).故ρ( x0, f (x0)) = g(x0) ≤g( f (x0)) = ρ( f (x0), f ( f (x0))) < ρ( x0, f (x0)),矛盾.所以,必有g(x0) = 0,即ρ( x0, f (x0)) = 0,因此x0就是f的不动点.1.3.9 设(M, ρ)是一个紧距离空间,又E?C(M),E中的函数一致有界并且满足下列的H?lder条件:| x(t1) -x(t2) | ≤Cρ(t1, t2)α(?x∈E,?t1, t2∈M ),其中0 < α≤ 1,C > 0.求证:E在C(M)中是列紧集.证明:由H?lder条件易知E是等度连续的.又E中的函数一致有界,由Arzela-Ascoli定理知E是C(M)中的列紧集.[第3节完] 泛函分析题1_4线性赋范空间p391.4.1 在2维空间 2中,对每一点z = (x, y),令|| z ||1 = | x | + | y |;|| z ||2 = ( x 2 + y 2 )1/2;|| z ||3 = max(| x |, | y |);|| z ||4 = ( x 4 + y 4 )1/4;(1) 求证|| · ||i( i = 1, 2, 3, 4 )都是 2的范数.(2) 画出( 2, || · ||i )( i = 1, 2, 3, 4 )各空间中单位球面图形.(3) 在 2中取定三点O = (0, 0),A = (1, 0),B= (0, 1).试在上述四种不同的范数下求出?OAB三边的长度.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.设z = (x, y), w = (u, v)∈ 2,s = z + w= (x + u, y + v ),|| z||1 + || w||1 = (| x | + | y |) + (| u | + | v |) = (| x | + | u |) + (| y | + | v |)≥ | x + u | + | y + v | = || z+ w||1.( || z||2 + || w||2 )2 = ( ( x 2 + y 2 )1/2 + ( u 2 + v 2 )1/2 )2= ( x 2 + y 2 ) + ( u 2 + v 2 ) + 2(( x 2 + y 2 )( u 2 + v 2 ))1/2 ≥ ( x 2 + u 2 ) + ( y 2 + v 2 ) + 2( x u+ y v )= ( x + u )2 + ( y + v)2 = ( || z+ w||2 )2.故|| z||2 + || w||2 ≥ || z+ w||2.|| z||3 + || w||3 = max(| x |, | y |) + max(| u |, | v |)≥ max(| x | + | u |, | y | + | v |) ≥ max(| x + u |, | y + v |) = || z+ w||3.|| ·||4我没辙了,没找到简单的办法验证,权且用我们以前学的Minkowski不等式(离散的情况,用H?lder不等式的离散情况来证明),可直接得到.(2) 不画图了,大家自己画吧.(3) OA = (1, 0),OB = (0, 1),AB = (- 1, 1),直接计算它们的范数:|| OA||1 = 1,|| OB||1 = 1,|| AB||1 = 2;|| OA||2 = 1,|| OB||2 = 1,|| AB||2 = 21/2;|| OA||3 = 1,|| OB||3 = 1,|| AB||3 = 1;|| OA||4 = 1,|| OB||4 = 1,|| AB||4 = 21/4.1.4.2 设c[0, 1]表示(0, 1]上连续且有界的函数x(t)全体.?x∈c[0, 1],令|| x || = sup{| x(t) | | 0 < t≤ 1}.求证:(1) || ·||是c[0, 1]空间上的范数.(2) l∞与c[0, 1]的一个子空间是等距同构的.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.|| x || = sup{| x(t) | | 0 < t≤ 1}.|| x || + || y || = sup{| x(t) | | 0 < t≤ 1} + sup{| y(t) | | 0 < t≤ 1}≥ sup{| x(t) + y(t) | 0 < t≤ 1} = || x + y ||.所以|| ·||是c[0, 1]空间上的范数.(2) 任意取定(0, 1]中的一个单调递减列{a k },满足(i) a1 = 1;(ii) lim k→∞a k = 0.显然,在每个[a k + 1, a k]上为线性函数的f∈c[0, 1]是存在的.设X = { f∈c[0, 1] | f在每个[a k + 1, a k]上为线性函数}.容易验证X是c[0, 1]的子空间.定义? : X →l∞,f #? ( f ) = ( f (a1), f (a2), ...).则? : X →l∞是线性双射,且|| ? ( f ) ||∞= sup k ≥ 1 | f (a k) | = sup0 < t≤ 1 { | f (t ) | } = || f ||.所以,? : X →l∞是等距同构.因此,l∞与c[0, 1]的一个子空间是等距同构的.1.4.3 在C1[a, b]中,令|| f ||1 = (?[a, b] ( | f(x) |2 + | f’(x) |2) dx )1/2 (?f∈C1[a, b]).(1) 求证:|| · ||1是C1[a, b]上的范数.(2) 问(C1[a, b], || · ||1)是否完备?证明:(1) 正定性和齐次性都是明显的,和前面的习题一样,只验证三角不等式.我们先来证明一个比较一般的结果:若线性空间X上的非负实值函数p, q都满足三角不等式:p(x) + p(y) ≥p(x +y),q(x) + q(y) ≥q(x +y),?x, y∈X;则函数h = ( p2 + q2 )1/2也满足三角不等式.事实上,?x, y∈X,由Minkowski不等式,我们有h(x) + h(y) = ( p(x)2 + q(x)2 )1/2 + ( p(y)2 + q(y)2 )1/2≥ (( p(x)+ p(y))2 + ( q(x) + q(y))2 )1/2 ≥ ( p(x + y)2 + q(x + y)2 )1/2 = h(x + y).回到本题:若令p( f ) = (?[a, b] | f(x) |2dx )1/2,q( f ) = (?[a, b] | f’(x) |2dx )1/2,则( p( f ) + p( g ))2 = ((?[a, b] | f(x) |2dx )1/2 + (?[a, b] | g(x) |2dx )1/2)2= ?[a, b] | f(x) |2dx + 2(?[a, b] | f(x) |2dx )1/2 · (?[a, b] | g(x)|2dx )1/2 + ?[a, b] | g(x) |2dx≥?[a, b] | f(x)|2dx + 2 ?[a, b] | f(x) | · | g(x)| dx + ?[a, b] | g(x)|2dx = ?[a, b] ( | f(x) | + | g(x)| )2dx ≥?[a, b] ( | f(x) + g(x)| )2dx = ( p( f + g ))2.所以有p( f ) + p( g ) ≥p( f + g ).特别地,p( f’) + p( g’) ≥p( f’+ g’),即q( f ) + q( g ) ≥q( f + g ).因此,线性空间C1[a, b]上的非负实值函数p, q都满足三角不等式.根据开始证明的结论,|| · ||1也满足三角不等式.所以,|| · ||1是C1[a, b]上的范数.(2) 在C1[- 1, 1]中,令f n(x) = (x2 + 1/n2 )1/2 ( ?x∈[- 1, 1] ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ?x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ?x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).故在L2[- 1, 1]中,f n(x) → | x |,f’n(x) → 2sign( x ).因此,它们都是L2[- 1, 1]中的基本列,故[- 1, 1] | f n(x) -f m(x) |2 dx → 0(m, n→∞);[- 1, 1] | f’n(x) -f m’(x) |2 dx → 0(m, n→∞).故|| f n-f m ||1 = (?[- 1, 1] ( | f n(x) -f m(x) |2 + | f’n(x) -f m’(x) |2 ) dx )1/2→ 0 (m, n→∞).即{ f n }是C1[- 1, 1]中的基本列.下面我们证明{ f n }不是C1[- 1, 1]中的收敛列.若不然,设{ f n }在C1[- 1, 1]中的收敛于f∈C1[- 1, 1].因|| f n-f ||1 = (?[- 1, 1] ( | f n(x) -f(x) |2 + | f’n(x) -f’(x) |2 ) dx )1/2≥ (?[- 1, 1] | f n(x) -f(x) |2dx )1/2,故在L2[- 1, 1]中,f n(x) →f.而在前面已说明L2[- 1, 1]中,f n(x) → | x |;由L2[- 1, 1]中极限的唯一性以及f的连续性,知f(x) = | x |.这样就得到f?C1[- 1, 1],矛盾.所以,{ f n }不是C1[- 1, 1]中的收敛列.这说明C1[- 1, 1]不是完备的.对一般的C1[a, b],只要令f n(x) = (x - (a + b )/2)2 + 1/n2 )1/2( ?x∈[a, b] )就可以做同样的讨论,就可以证明C1[a, b]不是完备空间.1.4.4 在C[0, 1]中,对每个f∈C[0, 1],令|| f ||1 = (?[0, 1] | f(x) |2dx )1/2,|| f ||2 = (?[0, 1] ( 1 + x) | f(x) |2dx )1/2.求证:|| · ||1和|| · ||2是C[0, 1]中的两个等价范数.证明:(1) 在习题1.4.3的证明中已经包含了|| · ||1是C[0, 1]中的范数的证明.下面我们证明|| · ||2是C[0, 1]中的范数,我们仍然只要验证三角不等式.|| f ||2 + || g ||2 = (?[0, 1] ( 1 + x) | f(x) |2dx )1/2 + (?[0, 1] ( 1 + x) | g(x) |2dx )1/2= || (1 + x)1/2f(x) ||1 + || (1 + x)1/2g(x) ||1≥ || (1 + x)1/2f(x) + (1 + x)1/2g(x) ||1= || (1 + x)1/2 ( f(x) + g(x) ) ||1≥ (?[0, 1] (1 + x) | f(x) + g(x) |2dx )1/2= || f + g ||2.所以,|| · ||2也是C[0, 1]中的范数.(2) 我们来证明两个范数的等价性.?f∈C[0, 1]|| f ||1 = (?[0, 1] | f(x) |2dx )1/2 ≤ (?[0, 1] ( 1 + x) | f(x) |2dx )1/2 = || f ||2,|| f ||2 = (?[0, 1] ( 1 + x) | f(x) |2dx )1/2 ≤ 2 (?[0, 1] | f(x) |2dx )1/2 = 2 || f ||1.因此两个范数等价.1.4.5 设BC[0, ∞)表示[0, ∞)上连续且有界的函数f(x)全体,对每个f ∈BC[0, ∞)及a > 0,定义|| f ||a = (?[0, ∞) e-ax | f(x) |2dx )1/2.(1) 求证|| ·||a是BC[0, ∞)上的范数.(2) 若a, b > 0,a≠b,求证|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.证明:(1) 依然只验证三角不等式.|| f ||a + || g ||a = (?[0, ∞) e-ax | f(x) |2dx )1/2 + (?[0, ∞) e-ax | g(x) |2dx )1/2= || e-ax/2f(x)||L2 + || e-ax/2g(x)||L2≤ || e-ax/2f(x)+ e-ax/2g(x)||L2= || e-ax/2 ( f(x)+ g(x))||L2= (?[0, ∞) e-ax | f(x)+ g(x) |2dx )1/2= || f + g ||a,所以|| ·||a是BC[0, ∞)上的范数.(2) 设f n(x)为[n, +∞)上的特征函数.则f n∈BC[0, ∞),且|| f n||a = (?[0, ∞) e-ax | f n(x) |2dx )1/2 = (?[n, ∞) e-ax dx )1/2 = ((1/a)e-an)1/2.同理,|| f n||b = ((1/b)e-bn)1/2.故若a < b,则|| f n||a/|| f n||b = (b/a)1/2e-(b -a)n/2→ +∞ (n→+∞).因此|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.1.4.6 设X1, X2是两个B*空间,x1∈X1和x2∈X2的序对(x1, x2)全体构成空间X = X1?X2,并赋予范数|| x || = max{ || x1 ||1, || x2 ||2 },其中x = (x1, x2),x1∈X1,x2∈X2,|| · ||1和|| ·||2分别是X1和X2的范数.求证:如果X1, X2是B空间,那么X也是B空间.证明:(1) 先验证|| · ||的三角不等式.设x = (x1, x2), y = (y1, y2)∈X1?X2,则|| x + y || = || (x1 + y1, x2 + y2) || = max{ || x1 + y1 ||1, || x2 + y2 ||2 }≤ max{ || x1 ||1 + || y1 ||1, || x2 ||2 + || y2 ||2 }≤ max{ || x1 ||1, || x2 ||2 } + max{ || y1 ||1, || y2 ||2 }= || (x1, x2) || + || (y1, y2) ||= || x || + || y ||,而|| · ||的正定性和齐次性是显然的,所以,|| · ||是X1?X2的范数.(2) 设X1, X2是B空间,我们来证明X也是B空间.设x(n) = (x1(n), x2(n))是X = X1?X2中的基本列,则|| x(n) -x(m) || = max{ || x1(n) -x1(m) ||1, || x2(n) -x2(m)||2 } ≥ || x1(n) -x1(m) ||1,故{x1(n)}是X1中的基本列,同理,{x2(n)}是X2中的基本列.因X1, X2是B空间,故{x1(n)}和{x2(n)}分别是X1, X2中的收敛列.设x1(n) →x1∈X1,x2(n) →x2∈X2,令x = (x1, x2).则|| x(n) -x || = max{ || x1(n) -x1 ||1, || x2(n) -x2 ||2 }≤ || x1(n) -x1 ||1 + || x2(n) -x2 ||2→ 0 (n→∞).所以,|| x(n) -x ||→ 0 (n→∞).即{ x(n) }为X = X1?X2中的收敛列.所以X = X1?X2也是B空间.1.4.7 设X是B*空间.求证:X是B空间,必须且只须对?{x n}?X,∑n≥ 1 || x n || < +∞?∑n≥ 1x n 收敛.证明:(?) ?{x n}?X,记S n = ∑1 ≤j≤n x j,B n = ∑1 ≤j≤n || x n ||,则|| S n + p-S n || = || ∑1 ≤j≤n + p x j -∑1 ≤j≤n x j ||= || ∑n +1 ≤j≤n + p x j ||≤∑n +1 ≤j≤n + p || x j ||= B n + p-B n → 0,(n→∞).故{ S n }为X中的Cauchy列.由X完备,故{ S n }为X中的收敛列,即∑n≥ 1x n 收敛.(?) 反证法.若(X, ρ)不完备,设(Y, d )为(X, ρ)的一个完备化.不妨设(X, ρ)是(Y, d )的子空间,则存在y∈Y \ X.因cl( X ) = Y,故?n∈ +,存在x n∈X,使得d(x n, y) < 1/2n.则ρ(x n, x m) = d(x n, x m) ≤d(x n, y) + d(x m, y) ≤ 1/2n+ 1/2m → 0,因此{x n}是X中的Cauchy列,但不是收敛列.令z n = x n+1-x n,S n = ∑1 ≤j≤n z j;则z n, S n∈X.因|| z n || = || x n+1-x n || = ρ(x n+1, x n) ≤d(x n+1, y) + d(x n+1, y) ≤ 1/2n+1+ 1/2n < 1/2n - 1,故∑n≥ 1 || z n || < +∞.而S n = ∑1 ≤j≤n z j = ∑1 ≤j≤n ( x j+1-x j ) = x n+1-x1;故∑n≥ 1z n 在中不收敛.矛盾.1.4.8 记[a, b]上次数不超过n的多项式全体为n.求证:?f(x)∈C[a, b],存在P0(x)∈ n,使得max a ≤x≤b| f(x) –P0(x) | = min{ max a ≤x≤b| f(x) –P(x) | | P∈ n }.证明:注意到 n是B*空间C[a, b]中的n+1维子空间.{1, x, x2, ..., x n}是 n中的一个向量组,把它看成C[a, b]中的一个有限向量组.根据定理p35, 1.4.23,对任意?f(x)∈C[a, b],存在最佳逼近系数{λ0, λ1, ..., λn},使得|| f(x) –∑0 ≤j≤n λj x j || = min{ || f(x) –∑0 ≤j≤n a j x j || | (a0, a1, ..., a n)∈ n+1}.令P0(x) = ∑0 ≤j≤n λj x j 就得到要证明的结论.1.4.9 在 2中,对?x = (x1, x2)∈ 2,定义范数|| x || = max(| x1 |, | x2 |),并设|| x0–λ e1 ||.e1 = (1, 0),x0 = (0, 1).求a∈ 适合|| x0–a e1 || = minλ∈并问这样的a是否唯一?请对结果作出几何解释.解:g(λ) = || x0–λ e1 || = || (0, 1) –λ(1, 0)|| = || (–λ, 1)|| = max(| λ |, 1) ≥ 1,故g(λ) 当| λ| ≤ 1时取得最小值1.所以a = 0满足要求.显然满足要求的a不是唯一的.从几何上看就是某线段上的点到某定点的距离都是1.1.4.10 求证范数的严格凸性等价于下列条件:|| x + y || = || x || + || y || ( ?x≠θ, y≠θ) ?x = c y ( c > 0).证明:(?) 设范数是严格凸的,若x, y ≠θ满足|| x + y || = || x || + || y ||,事实上,我们总有|| (x/|| x ||) || = || (y/|| y ||) || = 1.因x, y ≠θ,故|| x || + || y || > 0,所以|| x + y || ≠ 0.于是|| x ||/|| x + y || + || y ||/|| x + y || = 1.假若x/|| x || ≠y/|| y ||,由严格凸性,得到|| (|| x ||/|| x + y ||)(x/|| x ||) + (|| y ||/|| x + y ||)(y/|| y ||) || < 1,即|| (( x + y )/|| x + y ||) || < 1,矛盾.因此必然有x/|| x || = y/|| y ||,即x = (|| x ||/|| y ||) y.(?) 设?x, y ≠θ,|| x + y || = || x || + || y ||蕴涵x = c y ( c > 0).下面证明范数是严格凸的.设x≠y,且|| x || = || y || = 1,又设α, β∈(0, 1),且α + β= 1.我们知道|| α x + β y || ≤ || α x || + || β y || = α || x || + β|| y || = α + β= 1.假若|| α x + β y || = 1,根据我们的条件,就得到α x = c (β y),其中c > 0.那么,就有|| α x || = || c (β y) ||,而|| x || = || y || = 1,所以α= c β;故x = y,这就与x≠y相矛盾.所以必然有|| α x + β y || < 1,即范数是严格凸的.1.4.11 设X是线性赋范空间,函数? : X → 1称为凸的,如果不等式( λ x + (1 -λ) y ) ≤λ?( x ) + (1 -λ)?( y ) ( ? 0 ≤λ≤ 1)成立.求证凸函数的局部极小值必然是全空间的最小值.证明:设x0是凸函数?的一个局部极小点.如果存在x∈X,使得?( x ) < ?( x0),则? t ∈(0, 1),( t x + (1 -t ) x0) ≤t ?( x ) + (1 -t )?( x0) < t ?( x0) + (1 -t )?( x0) = ?( x0).而对x0的任意邻域U,都存在t ∈(0, 1),使得t x + (1 -t ) x0∈U.这就与x0是局部极小点相矛盾.因此?x∈X,都有?( x0) ≤?( x ),即x0是?的最小点.1.4.12 设(X, || · ||)是一线性赋范空间,M是X的有限维子空间,{e1, e2, ..., e n}是M的一组基,给定g∈X,引进函数F : n → 1.对?c = (c1, c2, ..., c n)∈ n,规定F(c) = F(c1, c2, ..., c n) = || ∑1 ≤i≤n c i e i-g ||.(1) 求证F是一个凸函数;(2) 若F的最小值点是c = (c1, c2, ..., c n),求证f = ∑1 ≤i≤n c ie i给出g在M中的最佳逼近元.证明:(1) 设c = (c1, c2, ..., c n), d = (d1, d2, ..., d n)∈ n, λ∈[0, 1],则F(λ c + ( 1 -λ) d ) = || ∑1 ≤i≤n ( λ c i + ( 1 -λ) d i ) e i-g || = || λ∑1 ≤i≤n c i e i + ( 1 -λ) ∑1 ≤i≤n d i e i- (λ g+ ( 1 -λ)g )|| = || λ(∑1 ≤i≤n c i e i -g) + ( 1 -λ) ( ∑1 ≤i≤n d i e i-g )||≤λ|| ∑1 ≤i≤n c i e i -g || + ( 1 -λ) || ∑1 ≤i≤n d i e i-g ||= λ F(c)+ ( 1 -λ)F(d),故F是一个凸函数.(2) 因为{e1, e2, ..., e n}是M的一组基,故M中的每个元h都可表示为h = ∑1 ≤i≤n d i e i,其中d = (d1, d2, ..., d n)∈ n.因为F(c) ≤F(d),故|| f-g || = F(c) ≤F(d) = || h-g ||.那么f就是g在M中的最佳逼近元.1.4.13 设X是B*空间,X0是X的线性子空间,假定?c∈(0, 1)使得?y∈X,有inf { || y–x || | x ∈X0 } ≤c || y ||.求证:X0在X中稠密.证明:设y∈X,?ε > 0,x1∈X0,s.t. || y–x1 || < c || y || + ε /4.x2∈X0,s.t. || (y–x1) –x2 || < c || y–x1 || + ε /8.x3∈X0,s.t. || (y–x1 –x2 ) –x3 || < c || y–x1 –x2 || + ε /16.如此下去,可得到一个X0中的点列{ x n },满足|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2(?n∈ +).那么,我们可以用数学归纳法证明|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).当n = 1时,|| y–x1 || < c || y || + ε /4.结论成立.当n = 2时,|| (y–x1) –x2 || < c || y–x1 || + ε /8< c (c || y || + ε /4) + ε /8 < c 2 || y || + ε (1/4 + 1/8),结论成立.当n≥ 3时,若|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1)成立,则|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2< c (c n || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n+ 11/2j + 1)),因此结论也成立.由数学归纳法原理,?n∈ +,|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).因为c∈(0, 1),故存在N∈ +,使得c N || y || < ε /2.令x = ∑1 ≤j≤N x j,则x∈X0.且|| y–x || < ε /2 + ε (∑1 ≤j≤N 1/2j + 1) < ε.所以,X0在X中稠密.[张峰同学的证明] 反证法.若不然,则cl(X0)是X的真闭线性子空间.用Riesz引理,存在y∈X,使得|| y || = 1,且inf { || y–x || | x ∈ cl(X0)} > c.故对此y∈X,有inf { || y–x || | x ∈X0 } > c || y ||,矛盾.1.4.14 设C0表示以0为极限的实数全体,并在C0中赋以范数|| x || = max n≥1| ξn |,( ?x = (ξ1, ξ2, ..., ξn, ...)∈C0 ).又设M = {x = (ξ1, ξ2, ..., ξn, ...)∈C0 | ∑n ≥1 ξn/2n = 0}.(1) 求证:M是C0的闭线性子空间.(2) 设x0= (2, 0, 0, ...),求证:inf z ∈M || x0–z || = 1,但?y∈M,有|| x0–y || > 1.证明:(1) 显然M ≠?,容易直接验证M是C0的线性子空间.若x k = (ξ1(k), ξ2(k), ..., ξn(k), ...)为M中的点列,且x k→x = (ξ1, ξ2, ..., ξn, ...)∈C0.则?ε > 0,存在N∈ +,使得?k > N,|| x k -x || < ε.此时,?n∈ +,有|ξn -ξn(k)| ≤ max n≥1| ξn -ξn(k) | = || x k -x || < ε.| ∑n ≥1 ξn/2n | = | ∑n ≥1 ξn/2n-∑n ≥1 ξn(k)/2n | = | ∑n ≥1 (ξn -ξn(k))/2n |≤∑n ≥1 |ξn -ξn(k)|/2n≤∑n ≥1 ε/2n = ε.所以,∑n ≥1 ξn/2n = 0,即x = (ξ1, ξ2, ..., ξn, ...)∈M.所以M是C0的闭线性子空间.(2) x0= (2, 0, 0, ...),?z = (ξ1, ξ2, ..., ξn, ...)∈M,|| x0–z || = max{| 2 -ξ1 |, | ξ2 |, | ξ3 |, ... }.如果| 2 -ξ1 | > 1,则|| x0–z || > 1.如果| 2 -ξ1 | ≤ 1,则| ξ1 | ≥ 1,我们断言{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.否则,假若它们都不超1,因为ξn → 0 (n→∞),故它们不能全为1.由∑n ≥1 ξn/2n = 0知| ξ1 |/2 = | ∑n ≥2 ξn/2n | ≤∑n ≥2 | ξn | /2n < ∑n ≥2 1/2n = 1/2,这样得到| ξ1 | < 1,矛盾.故{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.因此也有|| x0–z || > 1.综上所述,但?y∈M,有|| x0–y || > 1.由此,立即知道inf z ∈M || x0–z || ≥ 1.下面证明inf z ∈M || x0–z || ≤ 1.n∈ +,令z n= (1 - 1/2n, -1, -1, ..., -1, 0, 0, ...).( z n从第2个坐标开始有连续的n个-1,后面全部是0 ),则(1 - 1/2n)/2 - 1/4 - 1/8 - ... - 1/2n + 1 = 0,因此z n∈M.此时,|| x0–z n || = max{| 1 + 1/2n|, | 1/4|, | 1/8|, ... } = 1 + 1/2n.故inf z ∈M || x0–z || ≥ inf n || x0–z n || = inf n (1 + 1/2n ) = 1.所以,inf z ∈M || x0–z || = 1.1.4.15 设X是B*空间,M是X的有限维真子空间,求证:?y∈X,|| y|| = 1,使得|| y–x || ≥ 1 ( ?x ∈M ).证明:取定z∈X \ M,令Y = span{z} + M.记S = { y∈Y | || y || = 1 }.则M是Y的真闭子空间,而S是Y中的单位球面.由Riesz引理,?n∈ +,存在y n∈S,使得d( y n, M ) ≥ 1 - 1/n.因为Y也是有限维的,故其中的单位球面为自列紧集.存在{y n}的收敛子列.不妨设y n(k) →y∈S.则d( y n(k), M ) ≥ 1 - 1/n(k),故有d( y, M ) ≥ 1.即|| y–x || ≥ 1 ( ?x ∈M ).1.4.16 若f是定义在区间[0, 1]上的复值函数,定义ωδ( f ) = sup{| f (x) –f (y) | | ?x, y∈[0, 1], | x–y | ≤δ}.如果0< α≤ 1对应的Lipschitz空间Lipα,由满足|| f || = | f(0) | + supδ > 0{δ–αωδ( f )} < +∞的一切f组成,并且以|| f ||为模.又设lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0}.求证Lipα是B空间,而且lipα是Lipα的闭子空间.证明:(1) 显然,C1[0, 1]?Lipα,因此Lipα不空.对区间[0, 1]上的复值函数f, g,?λ∈ ,我们有ωδ( f + g ) = sup{| f (x) + g (x) – f (y) –g (y) | | ?x, y∈[0, 1], | x–y | ≤δ}≤ sup{| f (x) – f (y) | + | g (x) –g (y) | | ?x, y∈[0, 1], | x–y | ≤δ}≤ωδ( f ) + ωδ( g ).ωδ( λ f ) = sup{|λ f (x) –λ f (y) | | ?x, y∈[0, 1], | x–y | ≤δ}= | λ| sup{| f (x) –f (y) | | ?x, y∈[0, 1], | x–y | ≤δ}= | λ| ·ωδ( f ).若f, g∈Lipα,λ∈ ,则|| f + g || = | f(0) + g(0) | + supδ > 0{δ–αωδ( f + g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–α(ωδ( f ) + ωδ( g )) }= | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) + δ–αωδ( g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) }+ supδ > 0{ δ–αωδ( g ) }= || f || + || g || < +∞.|| λ f || = | λ f(0) | + supδ > 0{δ–αωδ( λ f )}= | λ| · | f(0) | + | λ| · supδ > 0{δ–αωδ( f )}= | λ| · || f || < +∞.因此,f + g, λ f∈Lipα,且上述两个不等式表明|| · ||有齐次性和三角不等式.显然,|| f || ≥ 0.当|| f || = 0时,| f(0) | + supδ > 0{δ–αωδ( f )} = 0,意味着f(0) = 0,且ωδ( f ) = 0(?δ> 0).而ωδ( f ) = 0(?δ> 0)则意味着f为常值.所以,f = 0.即|| · ||有正定性.综上所述,Lipα是B*空间.(2) 我们首先证明集合Lipα?C[0, 1].f∈Lipα,?x, y∈[0, 1],x ≠y,记δ = | x -y |.则| f (x) –f (y) | ≤ωδ( f ).而δ–αωδ( f ) ≤ supδ > 0{δ–αωδ( f n-f m) } ≤ || f ||,所以,| f (x) – f (y) | ≤ || f || δα= || f || · | x -y |α,故f∈C[0, 1].我们再证明,?f∈Lipα,|| f ||C≤ || f ||,其中|| ·||C是C[0, 1]范数.事实上,?x∈[0, 1],| f (x) | ≤ | f (0) | + | f (x) – f (0) |,故|| f ||C = max x∈[0, 1] | f (x) | ≤ | f (0) | + max x∈[0, 1] | f (x) –f (0) |≤ | f (0) | + sup x∈(0, 1] | f (x) –f (0) |/| x |α≤ | f (0) | + sup x∈(0, 1] { δ–αωδ( f ) } ≤ || f ||.这说明,如果{ f n }是Lipα中的基本列,则它也必是C[0, 1]中的基本列.而C[0, 1]是完备的,故存在f∈C[0, 1],使得{ f n }一致收敛于f.而{ f n }作为Lipα中的基本列,有|| f n-f m || = | f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } → 0 (n, m→∞),因此?ε > 0,?N∈ +,使得?n, m > N,有| f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } < ε.因此supδ > 0{δ–αωδ( f n-f m) } < ε.故?δ > 0,ωδ( f n-f m) < εδα.即?x, y∈[0, 1],| x -y | ≤δ,都有| ( f n(x) -f m(x)) - ( f n(y) -f m(y)) | < εδα.令m→∞,得到| ( f n(x) -f(x)) - ( f n(y) -f(y)) | ≤εδα.因此,sup {| ( f n(x) -f(x)) - ( f n(y) -f(y)) | | x, y∈[0, 1],| x -y | ≤δ}≤εδα.即?δ > 0,ωδ( f n-f ) ≤εδα.故supδ > 0{δ–αωδ( f n-f ) } ≤ε.同样地,对不等式| f n(0) -f m(0) | < ε令m→∞,就得到| f n(0) -f(0) | ≤ε.所以,| f n(0) -f(0) | + supδ > 0{δ–αωδ( f n-f ) } ≤ 2ε.这说明f n-f∈Lipα.而f n∈Lipα,故f = ( f -f n ) + f n∈Lipα.而前面的式子也表明|| f -f n || ≤ 2ε.因此|| f n-f || → 0 (n→∞),即{ f n }为Lipα中的收敛列.所以,Lipα是Banach空间.(3) 记lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0 }.f, g∈lipα,?λ∈ ,我们有δ–αωδ( f + g ) ≤δ–α(ωδ( f ) + ωδ( g ) ) = δ–αωδ( f ) + δ–αωδ( g ) → 0 (δ→ 0).δ–αωδ( λ f ) = | λ| ·δ–αωδ( f ) → 0 (δ→ 0).故f + g, λ f∈lipα,因此,lipα是Lipα的线性子空间.设{ f n }是lipα中的序列,且f n→f∈Lipα(n→∞).则{ f n }一致收敛于f.ε > 0,存在N∈ +,使得|| f N →f || < ε /2.故有supδ > 0{δ–αωδ( f N-f ) } < ε /2.因为lim δ→ 0 δ–αωδ( f N) = 0,所以,?? > 0,使得?δ∈(0, ?),有δ–αωδ( f N) < ε /2.此时我们有δ–αωδ( f ) ≤δ–α(ωδ( f N) + ωδ( f -f N))= δ–αωδ( f N) + δ–αωδ( f -f N)< ε /2 + supδ > 0{δ–αωδ( f N-f ) } < ε.所以,lim δ→ 0 δ–αωδ( f ) = 0,即f∈lipα.所以lipα是Lipα的闭子空间.1.4.17 (商空间) 设X是线性赋范空间,X0是X的闭线性子空间,将X中的向量分类,凡是适合x’-x’’∈X0的两个向量x’, x’’归于同一类,称其为等价类,把一个等价类看成一个新的向量,这种向量的全体组成的集合为X/X0表示,并称其为商空间.下列是关于商空间的命题.(1) 设[ y ]∈X/X0,x∈X,求证:x∈[ y ]的充分必要条件是[ y ] = x + X0.证明:设x’, x’’∈X,若它们归于同一类,则记为x’~x’’.我们用[ x ]表示x所在的等价类(大家注意,题目形式已经作了相应的修改).(?) 若x∈[ y ],则x~y.u ∈[ y ],u~y,故u~x,即u –x∈X0.因此u ∈x + X0.所以[ y ] ?x + X0.反过来,?u ∈x + X0,则u~x,故u~y.因此u ∈[ y ].所以x + X0 ? [ y ].所以[ y ] = x + X0.(?) 若[ y ] = x + X0,则y –x∈X0,即y~x.从而x∈[ y ].(2) 在X/X0中定义加法与数乘如下:[ x ] + [ y ] = x + y + X0(?[ x ], [ y ] ∈X/X0 )λ[ x ] = λ x + X0(?[ x ]∈X/X0 , ?λ∈ )其中x和y分别表示属于等价类[ x ]和[ y ]的任一元素.又规定范数|| [ x ] ||0 = inf z∈[ x ] || z || ( ?[ x ]∈X/X0 )求证:(X/X0, || · ||0)是一个B*空间.证明:第(1)部分说明了[ x ] = x + X0.容易看出加法与乘法的定义是合理的.进一步可以证明X/X0 构成数域上的线性空间,且其零元为[ θ] = X0.下面证明|| · ||0是X/X0 上的范数.显然,?[ x ]∈X/X0,|| [ x ] ||0≥ 0.若[ x ] = [ θ] = X0,则|| [ x ] ||0 = 0.若|| [ x ] ||0 = 0,则inf z∈[ x ] || z || = 0.存在z n∈[ x ]使得|| z n || → 0,即z n→θ (n→∞).那么,x-z n∈X0,x-z n→x (n→∞),而X0是闭集,故x∈X0.所以x~θ,即[ x ] = X0.因此|| · ||0有正定性.[ x ]∈X/X0,?λ∈ ,|| λ[ x ]||0 = || [ λ x ] ||0 = inf y∈[ x ] || λ y || = inf y∈[ x ] | λ| · || y ||= | λ| · inf y∈[ x ] || y || = | λ| · ||[ x ]||0.因此|| · ||0有齐次性.[ x ], [ y ]∈X/X0,|| [ x ] + [ y ] ||0 = inf z∈[ x ] + [ y ] || z || = inf u∈[ x ], v∈[ y ] || u + v ||≤ inf u∈[ x ], v∈[ y ] { || u || + || v || } ≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} }≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} } = inf u∈[ x ] { || u || + inf v∈[ y ] || v || }= inf u∈[ x ] || u || + inf v∈[ y ] || v || = || [ x ] ||0 + || [ y ] ||0.因此|| · ||0的三角不等式成立.所以,(X/X0, || · ||0)是一个B*空间.(3) 设[ x ]∈X/X0, 求证对?y∈[ x ]有inf { || y -z || | z∈X0 } = ||[ x ] ||0.证明:|| [ x ] ||0 = inf u∈[ x ] || u || = inf u∈[ y ] || u || = inf { || u || | u∈y + X0 }= inf { || y + v || | v∈X0 } = inf { || y -z || | z∈X0 }.(4) 定义映射? : X →X/X0为? (x) = [ x ] = x + X0(?x∈X ).求证?是线性连续映射.证明:?x, y∈X,?α, β∈ ,( α x + β y ) = [α x + β y ] = [α x ] + [ β y ] = α [ x ] + β[ y ] = α? (x) + β? (y).|| ? (x) -? (y) ||0 = || [ x ] - [ y ] ||0 = || [ x-y ] ||0 = in f z∈[ x-y ] || z || ≤ || x-y ||.所以,?是线性连续映射.(5) ?[ x ]∈X/X0,求证?y∈X,使得? (y) = [ x ],且|| y || ≤ 2|| [ x ] ||0.证明:因为|| [ x ] ||0 = inf z∈[ x ] || z ||,若|| [ x ] ||0 = 0,则由|| · ||0的正定性,知[ x ] = X0,取y = θ即满足要求.若|| [ x ] ||0≠ 0,则inf z∈[ x ] || z || = || [ x ] ||0 < 2 || [ x ] ||0,存在?y∈[ x ],使得|| y || ≤ 2|| [ x ] ||0.此时显然有? (y) = [ x ] = [ y ].(6) 设(X, || · ||)完备,求证(X/X0, || · ||0)也是完备的.证明:设{ [ x ]n }是X/X0中的基本列.为证明它是收敛列,只需证明它存在收敛子列.由基本列性质,可选出子列{ [ x ]n(k)}使得|| [ x ]n(k) - [ x ]n(k+1) ||0 ≤ 1/2k.故∑k ≥ 1 || [ x ]n(k) - [ x ]n(k+1) ||0 收敛.根据(5),?k∈ +,?y k∈[ x ]n(k+1) - [ x ]n(k),使得|| y k || ≤ 2|| [ x ]n(k+1) - [ x ]n(k) ||0.那么,∑k ≥ 1|| y k ||收敛.由X的完备性,s k = ∑ 1 ≤j ≤k y j是X中的收敛列.设其极限为s.由(5)中?的连续性,在X/X0中,?(s k) →?(s) ( k→∞ ).而?(s k) = ?( ∑ 1 ≤j ≤k y j ) = ∑ 1 ≤j ≤k ?( y j )= ∑ 1 ≤j ≤k ( [ x ]n(j+1) - [ x ]n(j)) = [ x ]n(k+1) - [ x ]n(1).故{[ x ]n(k+1) - [ x ]n(1)}收敛,因而{[ x ]n(k)}是收敛列.因此X/X0中的基本列{ [ x ]n }存在收敛子列{[ x ]n(k)},所以,{ [ x ]n }是X/X0中的收敛列.因此,(X/X0, || · ||0)是完备的.(7) 设X = C[0, 1],X0 = { f∈X | f (0) = 0 },求证:X/X0 ? ,其中记号“?”表示等距同构.证明:显然,X0是C[0, 1]中的线性子空间.记X0所确定的等价关系为~,则f~g ? f (0) = g (0).定义Φ : X/X0 → ,Φ([ f ]) = f (0).显然定义是合理的.f, g∈X,?α, β∈ ,Φ(α[ f ] + β[ g ]) = Φ([αf + β g ]) = (αf + β g )(0)= αf (0)+ β g (0) = αΦ([ f ])+ βΦ([ g ]).因此Φ是线性映射.因Φ(X0) = 0,故Φ是单射.而?c∈ ,若记所对应的常值函数为h c∈C[0, 1],则Φ( [ h c] ) = c.故Φ是满射.综上所述,Φ : X/X0 → 是线性同构.f∈X,|| [ f ]||0 = inf g∈[ f ] { || g || } ≥ inf g∈[ f ] { | g (0) | }= inf g∈[ f ] { | f (0) | } = | f (0) | = | Φ([ f ]) |.另一方面,因为常值函数h f (0)∈[ f ],故|| [ f ]||0 = inf g∈[ f ] { || g || } ≤ || h f (0) || = | f (0) | = | Φ([ f ]) |.所以,?f∈X,都有|| [ f ]||0 = | Φ([ f ]) |,因此Φ : X/X0 → 是等距同构.[第4节完] 泛函分析题1_5凸集与不动点p521.5.1 设X是B*空间,E是以θ为内点的真凸子集,P是由E产生的Minkowski 泛函,求证:(1) x∈int(E) ?P(x) < 1;(2) cl(int(E)) = cl(E).证明:(1) (?) 若x∈int(E),存在δ > 0,使得Bδ(x) ?E.注意到x + x/n→x ( n→∞ ),故存在N ∈ +,使得x + x/N ∈Bδ(x) ?E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(?) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ?E.令η = δ(a - 1)/a,?z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ?E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ?E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ? cl(E).下面证明相反的包含关系.若x∈cl(E),则?ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈ +,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ? cl(int(E))所以cl(int(E)) = cl(E).1.5.2 求证在B空间中,列紧集的凸包是列紧集.证明:设A是B空间X中的列紧集,?ε > 0,存在A的有限ε /3网B.设B = {b1, b2, ..., b n},M = max j{ || b j || },取δ > 0,使得n δ M < ε /3.设[0, 1]分划D为0 = t0 < t1 < t2 < ... < t m = 1,使得max 1 ≤j ≤m {| t j–t j–1|} < δ.设?x∈co(A),设x= λ1 a1 + λ2 a2+ ... + λ k a k,其中a j∈A,λ j > 0,∑ j λ j = 1.对每个j ≤k,存在b i( j )∈B使得|| a j-b i( j ) || < ε /3;令y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k),则|| x - y || = || λ1 (a1 -b i(1)) + λ2 (a2 -b i(2))+ ... + λ k (a k-b i(k))||,≤λ1 · || a1 -b i(1) || + λ2 · || a2 -b i(2) || + ... + λ k · || a k-b i(k) ||≤ ( λ1 + λ2 + ... + λ k ) · (ε /2) = ε /3.将y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k)中的那些含有相同b j 的项合并起来,于是,y可表示为y= μ1 b1 + μ2 b2+ ... + μ n b n,其中μj ≥ 0,且∑ j μj = 1.对每个l ≤n,存在t s( l )∈D,使得|| μl-t s( l ) || < δ;令z= t s(1) b1 + t s(2) b2+ ... + t s(n) b n,则|| y - z || = || (μ1 -t s(1))b1 + (μ2 -t s(2))b2+ ... + (μn -t s(n))b n ||≤∑ l | μl-t s( l ) | · max j{ || b j || } ≤n δ M < ε /3;令C = {t s(1) b1 + t s(2) b2+ ... + t s(n) b n | t s(i)∈D,1 ≤i≤n},则C是有限集,且C是co(A)的有限ε网.因空间是完备的,故co(A)是列紧集.1.5.3 设C是B*空间X中的一个紧凸集,映射T : C →C连续,求证T在C上有一个不动点.证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) ?C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.。
泛函分析习题

泛函分析复习资料一、判断题(每小题4分,共20分)1、设X 是线性赋范空间,X 中的单位球是列紧集,则X 必为有限维。
( )2、 距离空间中的列紧集都是可分的。
( )3、 若范数满足平行四边形法则,范数可以诱导内积。
( )4、 任何一个Hilbert 空间都有正交基。
( )5、设X 是线性赋范空间,T 是X X 的有界线性算子,若T 既是单射又是满射,则T 有逆算子。
( )二、选择题(每小题5分,共25分)1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ).A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty TxD.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:( ). A. 0等价于0且,0==≥x x x B.()数复为任意实,αααx x = C. y x y x +≤+ D. y x xy +≤3、下列关于距离空间中的点列的说法哪个是错误的( ).A .收敛点列的极限是唯一的 B. 基本点列是收敛点列C .基本点列是有界点列 D.收敛点列是有界点列4、巴拿赫空间X的子集空间Y为完备的充要条件是(). A.集X是开的 B.集Y是开的C.集X是闭的D.集Y是闭的5、设(1)pl p<<+∞的共轭空间为q l,则有11p q+的值为().A.1- B.12C.1 D.12-三、填空题(每小题5分,共25分)1、距离空间中的每一个收敛点列都是()。
2、任何赋范线性空间的共轭空间是()。
3、1l的共轭空间是()。
4、设X按内积空间<x,y>成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。
5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。
泛函分析试题及答案

泛函分析试题及答案一、选择题1. 在泛函分析中,以下哪个概念描述了一个函数对于输入变量的敏感程度?A. 泛函B. 导数C. 凸函数D. 可测函数答案:B. 导数2. 设X和Y是两个Banach空间,f:X→Y是一个线性算子。
以下哪个条件可以保证f是有界线性算子?A. f是可逆的B. f是连续的C. f是紧致的D. f是自共轭的答案:B. f是连续的3. 在泛函分析中,以下哪个概念描述了一个函数在每个点上的局部模式与全局模式之间的一致性?A. 可微性B. 凸性C. 全纯性D. 一致连续性答案:B. 凸性4. 设X和Y是两个赋范空间,f:X→Y是一个线性算子。
以下哪个条件可以保证f是有界线性算子?A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤C||x||B. 对于每个有界集A ⊂ X,f(A)是有界集C. f是连续的D. f是满射答案:A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤ C||x||二、填空题1. 在Hilbert空间中,内积运算满足线性性和_____________性。
答案:共轭对称性2. 设X是一个有界完备度量空间,那么X是一个____________空间。
答案:Banach空间3. 在泛函分析中,将一个函数的导数定义为其_____________。
答案:弱导数4. 设X是一个线性空间,D是X上的一个有界线性算子。
如果对于所有x和y都有⟨Dx, y⟩ = ⟨x, Dy⟩,那么D被称为______________。
答案:自伴算子三、解答题1. 请简要说明什么是范数,并给出一些范数的例子。
范数是定义在一个线性空间上的一种函数,用于衡量该空间中的向量的大小。
它满足以下三个性质:- 非负性:对于任意向量x,其范数必须大于等于0,即||x|| ≥ 0,并且当且仅当x为零向量时,范数等于0。
- 齐次性:对于任意向量x和任意实数α,有||αx|| = |α| ||x||,其中|α|表示α的绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泛函分析复习题20211.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量空间,p 为何值时,R 是赋范空间。
解:假设R 是度量空间,所以R z y x ∈∀,,,必须有:),(),(),(z y d y x d z x d +≤成立即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤ppp,所以,1≤p假设R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈∀,, 必须有:||||||||||x k kx ⋅=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,假设R 是度量空间,1=p 时,假设R 是赋范空间。
2.假设),(d X 是度量空间,则)1,min(1d d =,ddd +=12也是使X 成为度量空间。
解:由于),(d X 是度量空间,所以X z y x ∈∀,,有: 1〕0),(≥y x d ,因此0)1),,(min(),(1≥=y x d y x d和0),(1),(),(2≥+=y x d y x d y x d且当y x =时0),(=y x d ,于是0)1),,(min(),(1==y x d y x d 和0),(1),(),(2=+=y x d y x d y x d以及假设0)1),,(min(),(1==y x d y x d 或0),(1),(),(2=+=y x d y x d y x d均有0),(=y x d 成立,于是y x =成立 2〕),(),(y x d x y d =,因此),()1),,(min()1),,(min(),(11y x d y x d x y d x y d === 和),(),(1),(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+=3〕),(),(),(z y d y x d z x d +≤,因此 以及设x x x f +=1)(,0)1(1)(2>+='x x f ,所以)(x f 单增, 所以),(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+=综上所述)1,min(1d d =和ddd +=12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。
3.设H 是内积空间,H y y x x n n ∈,,,,则当x x n →,y y n →时,),(),(y x y x n n →,即内积关于两变元连续。
解:H 是内积空间,设||||⋅是由其内积导出的范数,由于x x n →,y y n →,所以0>∀ε,0n ∃使得当0n n >时均有ε<-||||x x n 和ε<-||||y y n同时由于y y n →,故知n y 有界,H x ∈所以||||x 有限。
因此可取因此|),(),(),(),(||),(),(|y x y x y x y x y x y x n n n n n n -+-=- 故0)},(),(lim{=-∞→y x y x n n n ,即),(),(y x y x n n →4.设Y X ,是线性赋范空间,Y X T →:是线性算子,则T 不是连续的,当且仅当X x n ∈∃,使得0→n x ,但∞→||||n Tx解:设T 不是连续的,则T 在X 上的每一点0x 都不是连续的,因此在点00=x 也不是连续的。
则T 在包含X 上0点的任何有界邻域内均无界,取X O S ⊂=)21,0(1,则T 在1S 上无界,因此11S x ∈∃, 使得1||||1>Tx 成立。
取X O S ⊂=)21,0(22,则T 在2S 上无界,因此22S x ∈∃, 使得2||||2>Tx 成立。
类似地过程一直进行,直到 取X O S nn ⊂=)21,0(,则T 在n S 上无界,因此n n S x ∈∃, 使得n Tx n >||||成立。
因此,X x n ∈∃,使得0→n x ,但∞→||||n Tx其它,如果有X x n ∈,当0→n x ,有∞→||||n Tx由于在Y 上不能找到一点Y y ∈,使得∞=||||Ty ,因此对全部的点Y y ∈,均无法使得∞=||||Ty 成立,因此,在条件0→n x 下,对于全部的点Y y ∈,Ty Tx n →||||均不成立。
所以T 在X 上的0点不是连续的,故T 不是连续的。
5.对于每个有界序列)(n α,定义线性算子ppll T →:,),,(|),,(221121 x x x x αα→求?||||=T解:由于)(n α有界,所以有0>M ,使得||sup n nM α=对于pl x x x ∈=∀),,(21 ,∞<=∑∞=1||||||i pi p px x , 从而p n i p ixε<∑∞+=1||||||||||x M Tx ≤,从而M T ≤||||其它,有)(n α有界序列,设||sup n nM α=,则对0>∀ε,有0n ,使得0||0>->εαM n 可取p nn n l snga x∈=),,,0,0(0)(,所以1||||)(=n xp n i p i i p pn x Tx||||||||01)(αα==∑∞=,因此εα-==M Tx n p n ||||||0)(ε->M T ||||,由于ε的任意性,于是有M T ≥||||成立综上所述有||sup ||||n nM T α==6.我们了解有命题:对于算子序列n T ,假设0||||→-T T n ,则X x ∈∀,0||||→-Tx x T n 。
此命题的逆命题不成立。
试考虑算子序列22:l l T n →,),0,,,,(),,,,,(21121 n n n n x x x x x x x T =+。
解:2)(l x x n ∈=∀,∞<=∑∞=2112)||(||||n nxx ,所以0)||(212→∑∞=n n nx〔∞→0n 〕取x Tx =,),,,0,,0,0(21 ++=-n n n x x x T Tx,我们有0)||(||||2112→=-∑∞+=n k kn xTx x T 〔∞→n 〕其它,对每个固定的n ,我们都可以找到一个元素211),0,1,0,,0,0(l e n n ∈=++,有1||||1=+n e ,但111+++=-n n n n e e T Te ,因此1||||≥-T T n ,n ∀,故0||||→-T T n 不成立。
7.设Y X ,是线性赋范空间,Y X T →:是线性算子,则)(T G 闭,当且仅当X x n ∈∀,使得0→n x ,y Tx y n n →=时,有0=y 。
解:)(T G 闭,即有X x n ∈∀,0→n x ,则Y T y ∈==∃00,使得0=→=y Tx y n n其它,当X x n ∈∀,0→n x ,使得0→=n n Tx y因此对于X x n ∈∀,X x x n ∈→,取X x x z n n ∈-=∀, 有0→-=x x z n n ,于是有0)(→-=-=Tx Tx x x T Tz n n n ,即Tx Tx n →, 所以)(T G 闭8.证明1*0l c =,其中*c f ∈时有序列1)(l n ∈η使得 n n n x x f ∑∞==1)(η,0)(c x x n ∈=∀解:0c 是全部极限为0的序列全体的集合,范数||sup ||||i ix x =,在0c 中取基元集则对021),,,,(c x x x x n ∈=∀ ,有i ni i n e x x ∑=∞→=1lim设*0c f ∈,记 ,2,1),(==i e f i i η,所以有取),0,,,,(21)( n i i i n e e e xθθθ---=,其中i i ηθarg =,则0)(c x n ∈ 且1||||)(=n x,∑∑==-==ni i i ni i n iex f 11)(||)(ηηθ,所以令∞→n ,即得121),,,,(l n ∈= ηηηη, 且||||||||||1f i i≤=∑∞=ηη再证反向不等式。
对021),,,,(c x x x x n ∈=∀ ,对每个121),,,,(l n ∈= ηηηη 定义ii i x x f η∑∞==1)(,则f 是0c上的线性泛函,且有所以*0c f ∈,且||||||||η≤f 。
综合两个不等式得||||||||η=f映射),,,,()),(,),(),((,:21211*0 n n e f e f e f f l c T ηηη=→→使得021),,,,(c x x x x n ∈=∀ ,有ii i x x f η∑∞==1)(成立则T 线性保距同构映射,因此1*0l c =9.设H 是Hilbert 空间,{}n x 是H 中正交集,则以下三条等价; 1〕∑∞=1n nx收敛,2〕H y ∈∀,),(1y xn n∑∞=收敛,3〕21||||∑∞=n n x 收敛解:)2)1⇒,∑∞=1n nx收敛,取∑==mn nm xs 1,则m s 收敛,||||m s 收敛于有限数。
则,H y ∈∀,|||||||||),(||),(||),(|11y s y s y x y xm m mn n mn n⋅≤==∑∑==所以),(1y xn n∑∞=收敛。
)3)2⇒,H y ∈∀,),(1y x n n ∑∞=收敛,即H y ∈∀,标量列),(1y xmn nm ∑==α收敛,取∑==mn nxy 1,此时∑∑∑∑=======mn n n mn nm i im n nm x x xx x 12111||||),(),(α由标量列m α收敛,从而21||||∑∞=n nx收敛。
)1)3⇒假设21||||∑∞=n n x 收敛,则标量列21||||∑==mn n m x α收敛设∑==mn nm xs 1,则mmn n mn n m n n mn n m n n m n n m x x x x x x s α=====∑∑∑∑∑∑======211111212||||),(),(||||||||由标量列m α收敛,得m s 收敛,即∑∞=1n nx收敛。
10.设1||<λ,考虑]1,0[C 上的积分方程)()(sin )(10s y dt t x s x +=⎰λ其中]1,0[C y ∈,证明此方程存在唯一连续解。