二项式定理(基础+复习+习题+练习)

合集下载

二项式定理 练习题 求展开式系数的常见类型

二项式定理 练习题 求展开式系数的常见类型

二项式定理1.在()103x -的展开式中,6x 的系数为 .2.10()x -的展开式中64x y 项的系数是 .3.92)21(xx -展开式中9x 的系数是 . 4.8)1(xx -展开式中5x 的系数为 。

5.843)1()2(xx x x ++-的展开式中整理后的常数项等于 . 6.在65)1()1(x x ---的展开式中,含3x 的项的系数是 .7.在x (1+x )6的展开式中,含x 3项的系数为 .8.()()811x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。

10.54)1()1(-+x x 的展开式中,4x 的系数为 .11.在62)1(x x -+的展开式中5x 的系数为 .12.5)212(++xx 的展开式中整理后的常数项为 .13.求(x 2+3x -4)4的展开式中x 的系数.14.(x 2+x +y )5的展开式中,x 5y 2的系数为 .15.若 32()nx x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 .16.已知(124x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________.18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________.19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________.20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.。

《二项式定理》知识点总结+典型例题+练习(含答案)

《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 .【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e 1⎰=nx x )(3-2x 66e111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( ) (A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dx π=-⎰8822108)1(x a x a x a a kx ++++=-K 1238a a a a +++⋅⋅⋅+=0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰,令得:,即 再令得:,即 所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r ??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r??54﹣r=1×6×25=150,19、设,则 . 【答案】【解析】, 所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则( )(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯K 01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =45672533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A1 B .或1 C .2或 D . 【答案】B.【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式,∴或,故选B . 24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数. 试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-。

高中数学二项式定理基础练习题

高中数学二项式定理基础练习题

高中数学二项式定理基础练习题1.在展开式(x-3)^10中,x^6的系数为9C10.2.若(x-1)^n展开式的第4项为含x^3的项,则n等于8.3.在展开式(x^2-2x)^9中,x^9的系数是-252.4.在展开式(1/3x - 1)^12中,常数项为-2205/2.5.若(x^3 + 1/x)^n的展开式中的常数项为84,则n=6.6.已知在展开式(1/x^2 - 1/2x)^n中,第9项为常数项,则n的值为8.展开式中x^5的系数为-1260.7.(1-x)^13的展开式中系数最小的项是第7项。

8.在展开式(1-x^3)(1+x)^10中,x^5的系数为-297.9.若(x+3y)^n展开式的系数和等于(7a+b)^10展开式中的二项式系数之和,则n的值为15.10.在展开式(1/3x - 1)^4中,常数项为1/81.11.在二项式展开式(a-b)^10中,系数最小项是C^10_5.12.设(1+x)+(1+x)^2+(1+x)^3+…+(1+x)^n=a+a1x+a2x^2+…+anx^n,当a+a1+a2+…+an=254时,求n的值为6.13.在二项式展开式(1-2x)^6中,所有项的系数之和为0.14.(1-x)^10的展开式中,中间项是第6项,为C^10_5 *x^5.其余各项的系数和为0,因为展开式中x的次数总和为10,而每个二项式都有一个正次幂和一个负次幂,相加后系数和为0.展开式中系数最大的项是第1项,为1.15.已知(1-2x+3x^2)^7=a+a1x+a2x^2+…+a13x^13+a14x^14,则a1+a2+…+a14=0,因为展开式中x的次数总和为14,而每个二项式都有一个正次幂和一个负次幂,相加后系数和为0.a1+a3+a5+…+a13=C^7_1 * (-2)^1 + C^7_3 * (-2)^3 +C^7_5 * (-2)^5 + C^7_7 * (-2)^7 = -1120.a1+a2+…+a14=C^7_0 * 1 + C^7_1 * (-2) + C^7_2 * 3 + …+ C^7_14 * (-2)^7 = -2187.。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

(完整版)⼆项式定理(习题含答案)⼆项式定理⼀、求展开式中特定项 1、在的展开式中,的幂指数是整数的共有() A .项 B .项 C .项 D .项【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为.(⽤数字作答)【答案】10【解】由题意得,令,可得展⽰式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、⼆项式的展开式中的常数项为.【答案】112【解析】由⼆项式通项可得,(r=0,1,,8),显然当时,,故⼆项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第⼀项取时,,此时的展开式中常数为;当第⼀项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是.【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+?==30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π=-+()622x ??+ ?332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ??=-+=+=-+= ??的展开式的通项为,所以所求常数项为.⼆、求特定项系数或系数和7、的展开式中项的系数是()A .B .C .D .【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是.【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是.【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为.【答案】135【解析】根据题意,,则中,由⼆项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于()A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在⼆项式的展开式中,只有第5项的⼆项式系数最⼤,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-??3633565566(1)22(1)2T C C --=-??+-?332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -?-3x 6(1)(2)x x -?-3x 336)(2x C -226)(x -x C -?)(3x 552-2636-=-C C dx xn 16e 1=nx x )(3-2x 66e111ln |6e n dx x x=?==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ?=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=?=1)2nx =n【答案】,.【解析】由⼆项式定理展开通项公式,由题意得,当且仅当时,取最⼤值,∴,第4项为. 13、如果,那么的值等于()(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代⼊⼆项式,得,令,代⼊⼆项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代⼊⼆项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于.【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-?=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1 a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-(sin cos )k x x dx π=-?8822108)1(x a x a x a a kx ++++=-K 1238a a a a ++++=0(sin cos )(cos sin )k x x dx x x ππ=-=--?,令得:,即再令得:,即所以18、设(5x ﹣)n 的展开式的各项系数和为M ,⼆项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x ⽆关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由⼆项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=(5x )4﹣r ?(﹣1)r ?=(﹣1)r ?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为(﹣1)r54﹣r=1×6×25=150,19、设,则.【答案】【解析】,所以令,得到,所以三、求参数问题20、若的展开式中第四项为常数项,则()A .B .C .D .【答案】B【解析】根据⼆项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、⼆项式的展开式中的系数为15,则()(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -?=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -?=+?+? ++?K 01a =12380a a a a ++++=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =456725333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】⼆项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数() A1 B .或1 C .2或 D .【答案】B.【解析】由题意得的⼀次性与⼆次项系数之和为14,其⼆项展开通项公式,∴或,故选B . 24、设,当时,等于()A .5B .6C .7D .8 【答案】C .【解析】令,则可得,故选C .四、其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利⽤⼆项式表⽰,使其底数⽤8的倍数表⽰,利⽤⼆项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+20162013﹣20162012+…+2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+?=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=?=53-23(1)(1)(1)(1)n x x x x ++++++++2012n n a a x a x a x =++++012254n a a a a ++++=n 1x =2 312(21)22222225418721n nn n n +-++++==-=?+=?=-。

二项式定理练习题

二项式定理练习题

二项式定理练习题1、求(2x+y)8展开式的第四项,及该项的系数和二项式系数2、(x-2y)8的展开式中,第四项是_________3、10)2(yx+的第七项的系数是_____________4、(2x-3y)10的第四项的系数是__________5、(x-y)n的二项展开式中,第m项的二项式系数是________6、已知(2a-3b)n的展开式中第三项与第九项的二项式系数相等,求n的值。

7、求(x2-2)6的展开式的中间项,并写出该项的系数和二项式系数。

8、(x+y)8的展开式中二项式系数最大的项是第___项。

9、(x+y)n的展开式中第六项的二项式系数最大,则n=______ 10、(x+1)10的展开式中系数最大的项是___________11、(3x-y)6展开式中所有项的二项式系数之和是_____________.12、(x-y)8的展开式中所有项的系数之和是______________13、1010810610410210CCCCC++++=__________14、(x+1)9的展开式中偶次项的系数之和是_____________15、nxx2)1(-的展开式中,如果第四项与第六项的系数相等,求展开式中常数项。

16、nxx)1(23+的展开式的第六项的系数最大,求展开式中的常数项。

17、若(ax-1)5的展开式中x3的系数是80,则实数a的值是__________18、(1+x)n的展开式中,奇数项的系数之和是256,求展开式的第三项。

19、若nxx)13(-的展开式中各项系数之和是64,求展开式的常数项。

20、求(2x-3)5的展开式中x3 的系数。

(完整版)二项式定理练习题

(完整版)二项式定理练习题

二项式定理练习题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在()103x -的展开式中,6x 的系数为( )A .610C 27-B .410C 27 C .610C 9-D .410C 92. 已知a 4b ,0b a =>+, ()n b a +的展开式按a 的降幂排列,其中第n 项与第n+1项相等,那么正整数n 等于( )A .4B .9C .10D .113.已知(n a a )132+的展开式的第三项与第二项的系数的比为11∶2,则n 是 ( )A .10B .11C .12D .13 4.5310被8除的余数是 ( ) A .1 B .2 C .3D .7 5. (1。

05)6的计算结果精确到0.01的近似值是( ) A .1.23 B .1。

24C .1。

33D .1.346.二项式n4x 1x 2⎪⎭⎫ ⎝⎛+ (n ∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是( ) A .1B .2C .3D .47.设(3x 31+x 21)n 展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2项的系数是( )A .21B .1C .2D .38.在62)1(x x -+的展开式中5x 的系数为( )A .4B .5C .6D .79.nx x)(5131+展开式中所有奇数项系数之和等于1024,则所有项的系数中最大的值是( ) A .330 B .462 C .680 D .790 10.54)1()1(-+x x 的展开式中,4x 的系数为( )A .-40B .10C .40D .4511.二项式(1+sinx)n的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为25,则x 在[0,2π]内的值为( )A .6π或3πB .6π或65πC .3π或32πD .3π或65π12.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列 a n =3n -5的 ( )A .第2项B .第11项C .第20项D .第24项二、填空题:本大题满分16分,每小题4分,各题只要求直接写出结果.13.92)21(xx -展开式中9x 的系数是 。

二项式定理训练题(含答案)

二项式定理训练题(含答案)

⼆项式定理训练题(含答案)⼆项式定理训练题⼀、单选题(共4题;共8分)1.若⼆项式的展开式中各项的系数和为243,则该展开式中含x项的系数为()A. 1B. 5C. 10D. 202.已知⼆项式的展开式中第2项与第3项的⼆项式系数之⽐是2︰5,则的系数为()A. 14B.C. 240D.3.若,则的值为()A. B. C. D.4.在(x2﹣x﹣2)5的展开式中,x3的系数为()A. ﹣40B. 160C. 120D. 200⼆、填空题(共13题;共15分)5.⼆项式的展开式中常数项为________.6.展开式中常数项为________.7.的展开式中,x3的系数为________.8.已知的展开式中各项系数和为2,则其展开式中常数项是________.9.的⼆项展开式中,含项的系数为________.10.若,则的展开式的第4项的系数为________.(⽤数字作答)11.⼆项式的展开式的各项系数之和为________,的系数为________.12.已知的展开式中的系数为108,则实数________.13.的展开式中,的系数是20,则________.14.展开式中的系数是15,则展开式的常数项为________,展开式中有理项的⼆项式系数和为________.15.在的展开式中,的系数是________.16.的展开式中的系数为________.17.在的展开式中,的系数为15,则实数________.三、解答题(共3题;共25分)18.已知展开式中各项系数和⽐它的⼆项式系数和⼤992,其中.(Ⅰ)求的值;(Ⅱ)求其展开式中的有理项.19.设.(1)求;(2)求及关于的表达式.20.已知⼆项式的⼆项展开式中所有奇数项的⼆项式系数之和为128.(1)求的展开式中的常数项;(2)在(1+x)+(1+x)2+(1+x)3+(1+x)4+…+(1+x) 的展开式中,求项的系数.(结果⽤数字作答)答案解析部分⼀、单选题1.【答案】C【解析】【解答】由令得,解得,⼆项式展开式的通项公式为,令,解得,故展开式中含x项的系数为.故答案为:C.【分析】令,结合展开式中各项的系数和为234列⽅程,求得n的值,再利⽤⼆项式展开式的通项公式,即可求得含x项的系数.2.【答案】C【解析】【解答】⼆项展开式的第项的通项公式为由展开式中第2项与第3项的⼆项式系数之⽐是2︰5,可得:.解得:.所以令,解得:,所以的系数为故答案为:C【分析】由⼆项展开式的通项公式为及展开式中第2项与第3项的⼆项式系数之⽐是2︰5可得:,令展开式通项中x的指数为3,即可求得,问题得解.3.【答案】C【解析】【解答】展开式的通项为:,故,,根据对称性知:.故答案为:C.【分析】计算,根据⼆项式系数的对称性即可得到答案.4.【答案】C【解析】【解答】∵(x2﹣x﹣2)5=(x+1)5(x﹣2)5,∴x3的系数为.故答案为:C.【分析】先把(x2﹣x﹣2)5变形为(x+1)5(x﹣2)5,再利⽤⼆项式定理中的通项公式求出结果.⼆、填空题5.【答案】60【解析】【解答】⼆项式的展开式的通项公式为,令,解得,所以该⼆项式展开式中常数项为,故答案为:60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:二项式定理
考纲要求:
1.能用计数原理证明二项式定理
2.会用二项式定理解决与二项展开式有关的简单问题. 教材复习
1.二项式定理及其特例:
()101()()n n n r n r r n n
n n n n a b C a C a b C a b C b n N -*+=+++++∈,
()21(1)1n r r
n n n x C x C x x +=++
++
+
2.二项展开式的通项公式:r
r n r n
r b a C T -+=1210(n r ,,, = 3.常数项、有理项和系数最大的项:
求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性.
4.二项式系数表(杨辉三角)
()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式
系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和.
5.二项式系数的性质:
()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r
n C 可以看成以r 为自变量
的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)
6.()1对称性.
与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=).直线2
n
r =
是图象的对称轴. ()2增减性与最大值:
当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n
C
-,12n n
C
+取得最大值
()3各二项式系数和:∵1(1)1n r r n n n x C x C x x +=++
++
+,
令1x =,则012
2n r
n
n n n n n C C C C C =+++
++
+
7.在使用通项公式1r n r r
r n
T C a b -+=时,要注意: ()1通项公式是表示第1r +项,而不是第r 项.()2展开式中第1r +项的二项式系数r n C 与
第1r +项的系数不同.()3通项公式中含有1,,,,r a b n r T +五个元素,只要知道其中的四个元素,就可以求出第五个元素.在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题,这类问题一般是利用通项公式,把问题归纳为解方程(或方程组).这里必须注意n 是正整数,r 是非负整数且r ≤n . ()4证明组合恒等式常用赋值法.()5要正确理解二项式定理,准确地写出二项式的展开式.()6要注意区分项的系数与项的二项式系数. ()7二项式展开式系数可用通项公式及组合知识.
()8用二项式定理进行近似运算,关键是恰当地舍取不影响精度的项,一般地:当α
很小时,有()()21
1112
n
n n n ααα±≈±+
-. 典例分析:
考点一 二项展开式定理及通项公式的应用
问题
1.()1(2013江西)5
2
32x x ⎛⎫- ⎪⎝⎭
展开式中常数项为.A 80.B 80-.C 40 .D 40-
()2求()10
2x +展开式中系数最大的项
()3求(
)
100
32
3+x 展开所得x 的多项式中,系数为有理数的项数
考点二 “生成法”的应用
问题2.()1求()
6
2123x x +-展开式中5
x 的系数(要求用两种方法解答).
()2(2012安徽)2521
(2)(
1)x x
+-的展开式的常数项是.A 3- .B 2- .C 2 .D 3
考点三 “赋值法”的应用
问题3.()1已知()443322104
32x a x a x a x a a x ++++=+,
则()()2
2
02413a a a a a ++-+=
()2(07安徽文)已知52345012345(1)x a a x a x a x a x a x -=+++++,
则024135()()a a a a a a ++++的值等于 .
()3(06浙江)若多项式21091001910(1)(1)(1)x x a a x a x a x +=+++⋅⋅⋅++++,则9a =
.A 9 .B 10 .C 9- .D 10-
()4(05天津)设*n N ∈,则12321666n n n n n n C C C C -+++⋅⋅⋅+=
()5(2012浙江)若将函数5()f x x =表示为()()2
012()11f x a a x a x =+++++… ()5
51a x ++, 其中12,,a a ,…,5a 为实数,则3a =
考点四 二项式展开式在其它方面的应用
问题3.()1求51.997的近似值(精确到0.001)

()2已知*n N ∈,求证:231222++++…512n -+能被31整除.
问题4.求证:()1322n n n ->+⋅(n N +∈且2n >).
课后作业:
1.()7
232x y z --展开式中含432x y z 项的系数是
2.()6
2x y z +-展开式中z y x 23的系数是
3.若()
2009
12x -=2012a a x a x +++…20092009a x +()x R ∈,则
3
1223222a a a +++ (20092009)
2a + 的值为 .A 2 .B 0 .C 1-
.D 2-
4.今天是星期日,不算今天,再过902天后的第一天是星期几?
5.1465n n +⨯+(*n N ∈)被20除后的余数是
6.设5432()5101051f x x x x x x =-+-++ ()x R ∈,则()f x 的反函数1()f x -
.A 1+ .B 1+ .C 1- .D 1-
7.设()()()()9
2
201212122x x a a x a x ++=+++++()11
112a x ⋅⋅⋅++,则012a a a ++
11a +⋅⋅⋅+的值为 .A 2-
.B 1- .C 1 .D 2
8.若1122113333(1)3(1)512,n n n n n n n
n C C C -----+-⋅⋅⋅+-⋅+-=则n = .A 7 .B 8 .C 9 .D 10
9.(07届西工大附中模拟文)设n 为满足0122450n
n
n n n C C C nC +++⋅⋅⋅+<的最大自然数, 则n =_____
走向高考:
10.(05湖北) 5)21
2(++x
x 的展开式中整理后的常数项为
11.(05全国Ⅱ)()
10
x 的展开式中64
x y 项的系数是
.A 840
.B 840- .C 210 .D 210-
12.(07江西)已知
n
展开式中,各项系数的和与其各项二项式系数的和之比
为64,则n 等于 .A 4 .B 5
.C 6
.D 7
13.(07陕西文)()5
12x +的展开式中2x 项的系数..
是 (用数字作答)
14.(2012湖北)设a Z ∈,且013a ≤<,若201251a +能被13整除,则a = .A 0 .B 1 .C 11 .D 12
15.(2013新课标全国) 已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a .A 4-
.B 3- .C 2- .D 1-
16. (2013陕西)
设函数61,0()0x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨⎪≥⎩ , 则当0x > 时,()f f x ⎡⎤⎣⎦
表达式的展开式中常数项为 .A 20- .B 2 .C 15- .D 15
17.(2011安徽)设()x a a x a x a x 2122101221-1=+++
,则1011a a +=。

相关文档
最新文档