高中数学 1.1.1变化率问题教案 新人教A版选修2-2
高中数学选修2-2人教A教案导学案1.1.1变化率问题教案

§1.1.1变化率问题教学目标1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?hto1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念: 1.上述问题中的变化率可用式子 1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)3. 则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212思考:观察函数f (x )的图象 平均变化率=∆∆x f1212)()(x x x f x f --表示什么?直线AB 的斜率三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。
高中数学选修2-2教学设计10:1.1.1 变化率问题教案

1.1.1 变化率问题教学目标 1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.教学导入知识点一函数的平均变化率假设如图是一座山的剖面示意图,并建立如图所示平面直角坐标系.A是出发点,H是山顶.爬山路线用函数y=f(x)表示.自变量x表示某旅游者的水平位置,函数值y=f(x)表示此时旅游者所在的高度.设点A的坐标为(x1,y1),点B的坐标为(x2,y2).思考1若旅游者从点A爬到点B,自变量x和函数值y的改变量分别是多少?[答案]自变量x的改变量为x2-x1,记作Δx,函数值的改变量为y2-y1,记作Δy.思考2怎样用数量刻画弯曲山路的陡峭程度?[答案]对山路AB来说,用ΔyΔx=y2-y1x2-x1可近似地刻画其陡峭程度.梳理(1):ΔyΔx=f(x2)-f(x1)x2-x1.(2) 函数y=f(x)从x1到x2的平均变化率定义式实质:函数值的增量与自变量的增量之比.(3)作用:刻画函数值在区间[x1,x2]上变化的快慢.(4)几何意义:已知P1(x1,f(x1)),P2(x2,f(x2))是函数y=f(x)的图象上两点,则平均变化率表示割线P1P2的斜率Δy Δx =f (x 2)-f (x 1)x 2-x 1. 知识点二 瞬时速度思考1 物体的路程s 与时间t 的关系是s (t )=5t 2.试求物体在[1,1+Δt ]这段时间内的平均速度.[答案] Δs =5(1+Δt )2-5=10Δt +5(Δt )2,v =Δs Δt=10+5Δt . 思考2 当Δt 趋近于0时,思考1中的平均速度趋近于多少?怎样理解这一速度?[答案] 当Δt 趋近于0时,Δs Δt趋近于10,这时的平均速度即为当t =1时的瞬时速度. 梳理 瞬时速度(1)物体在某一时刻的速度称为瞬时速度.(2)一般地,设物体的运动规律是s =s (t ),则物体在t 0到t 0+Δt 这段时间内的平均速度为Δs Δt=s (t 0+Δt )-s (t 0)Δt .如果Δt 无限趋近于0时,Δs Δt无限趋近于某个常数v ,我们就说当Δt 趋近于0时,Δs Δt的极限是v ,这时v 就是物体在时刻t =t 0时的瞬时速度,即瞬时速度v =lim Δt →0 Δs Δt = lim Δt →0 s (t 0+Δt )-s (t 0)Δt . 题型探究类型一 函数的平均变化率 命题角度1 求函数的平均变化率例1 求函数y =f (x )=x 2在x =1,2,3附近的平均变化率,取Δx 都为13,哪一点附近的平均变化率最大?解 在x =1附近的平均变化率为k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx=2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx=4+Δx ;在x =3附近的平均变化率为k 3=f (3+Δx )-f (3)Δx =(3+Δx )2-32Δx=6+Δx .当Δx =13时,k 1=2+13=73, k 2=4+13=133,k 3=6+13=193. 由于k 1<k 2<k 3,所以在x =3附近的平均变化率最大.反思与感悟 求平均变化率的主要步骤(1)先计算函数值的改变量Δy =f (x 2)-f (x 1).(2)再计算自变量的改变量Δx =x 2-x 1.(3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1. 跟踪训练1 (1)已知函数y =f (x )=x 2+2x -5的图象上的一点A (-1,-6)及邻近一点B (-1+Δx ,-6+Δy ),则Δy Δx=________. (2)如图所示是函数y =f (x )的图象,则函数f (x )在区间[-1,1]上的平均变化率为________;函数f (x )在区间[0,2]上的平均变化率为________.[答案](1)Δx (2)12 34[解析](1)Δy Δx =f (-1+Δx )-f (-1)Δx=(-1+Δx )2+2(-1+Δx )-5-(-6)Δx=Δx .(2)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12. 由函数f (x )的图象知,f (x )=⎩⎨⎧ x +32,-1≤x ≤1,x +1,1<x ≤3.所以函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34. 命题角度2 平均变化率的几何意义例2 过曲线y =f (x )=x 2-x 上的两点P (1,0)和Q (1+Δx ,Δy )作曲线的割线,已知割线PQ 的斜率为2,求Δx 的值.解 割线PQ 的斜率即为函数f (x )从1到1+Δx 的平均变化率Δy Δx. ∵Δy =f (1+Δx )-f (1)=(1+Δx )2-(1+Δx )-(12-1)=Δx +(Δx )2,∴割线PQ 的斜率k =Δy Δx=1+Δx . 又∵割线PQ 的斜率为2,∴1+Δx =2,∴Δx =1.反思与感悟 函数y =f (x )从x 1到x 2的平均变化率的实质是函数y =f (x )图象上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))连线P 1P 2的斜率,即12p p k =Δy Δx =f (x 2)-f (x 1)x 2-x 1. 跟踪训练2 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图所示,则在[0,t 0]这个时间段内,甲、乙两人的平均速度v 甲,v 乙的关系是( )A .v 甲>v 乙B .v 甲<v 乙C .v 甲=v 乙D .大小关系不确定[答案]B[解析]设直线AC ,BC 的斜率分别为k AC ,k BC ,由平均变化率的几何意义知,s 1(t )在[0,t 0]上的平均变化率v 甲=k AC ,s 2(t )在[0,t 0]上的平均变化率v 乙=k BC .因为k AC <k BC ,所以v 甲<v 乙. 类型二 求瞬时速度例3 某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 2+t +1表示,求物体在t =1 s 时的瞬时速度.解 ∵Δs Δt =s (1+Δt )-s (1)Δt=(1+Δt )2+(1+Δt )+1-(12+1+1)Δt=3+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0(3+Δt )=3. ∴物体在t =1处的瞬时变化率为3.即物体在t =1 s 时的瞬时速度为3 m/s.引申探究1.若例3中的条件不变,试求物体的初速度.解 求物体的初速度,即求物体在t =0时的瞬时速度.∵Δs Δt =s (0+Δt )-s (0)Δt=(0+Δt )2+(0+Δt )+1-1Δt=1+Δt ,∴lim Δt →0(1+Δt )=1. ∴物体在t =0时的瞬时变化率为1,即物体的初速度为1 m/s.2.若例3中的条件不变,试问物体在哪一时刻的瞬时速度为9 m/s.解 设物体在t 0时刻的瞬时速度为9 m/s.又Δs Δt =s (t 0+Δt )-s (t 0)Δt=(2t 0+1)+Δt . lim Δt →0 Δs Δt =lim Δt →0(2t 0+1+Δt )=2t 0+1. 则2t 0+1=9,∴t 0=4.则物体在4 s 时的瞬时速度为9 m/s.反思与感悟 (1)不能将物体的瞬时速度转化为函数的瞬时变化率是导致无从下手解答本类题的常见错误.(2)求运动物体瞬时速度的三个步骤①求时间改变量Δt 和位移改变量Δs =s (t 0+Δt )-s (t 0);②求平均速度v =Δs Δt; ③求瞬时速度,当Δt 无限趋近于0时,Δs Δt无限趋近于的常数v 即为瞬时速度,即v =lim Δt →0 Δs Δt . 跟踪训练3 一质点M 按运动方程s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值.解 质点M 在t =2时的瞬时速度即为函数在t =2处的瞬时变化率.∵质点M 在t =2附近的平均变化率为Δs Δt =s (2+Δt )-s (2)Δt =a (2+Δt )2-4a Δt=4a +a Δt , ∴lim Δt →0 Δs Δt=4a =8,即a =2. 当堂检测1.设函数y =f (x )=x 2-1,当自变量x 由1变为1.1时,函数的平均变化率为( )A .2.1B .1.1C .2D .0[答案]A[解析]Δy Δx =f (1.1)-f (1)1.1-1=0.210.1=2.1. 2.如图,函数y =f (x )在[x 1,x 2],[x 2,x 3],[x 3,x 4]这几个区间上,平均变化率最大的一个区间是________.[答案][x 3,x 4][解析]由平均变化率的定义可知,函数y =f (x )在区间[x 1,x 2],[x 2,x 3],[x 3,x 4]上平均变化率分别为f (x 2)-f (x 1)x 2-x 1,f (x 3)-f (x 2)x 3-x 2,f (x 4)-f (x 3)x 4-x 3,结合图象可以发现函数y =f (x )的平均变化率最大的一个区间是[x 3,x 4].3.一物体的运动方程为s (t )=7t 2-13t +8,则t 0=________时该物体的瞬时速度为1.[答案]1[解析]lim Δt →0 s (t 0+Δt )-s (t 0)Δt=lim Δt →0 7(t 0+Δt )2-13(t 0+Δt )+8-(7t 20-13t 0+8)Δt=lim Δt →0(14t 0-13+7Δt ) =14t 0-13=1,得t 0=1.。
人教A版选修2-2 第一章 第一节 1.1.1变化率问题 教案

§1.1.1变化率问题教学目标:1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率;教学难点:平均变化率的概念.教学过程设计(一)、情景引入,激发兴趣。
【教师引入】:“生活中存在大量变化快慢的量,如我国国内生产总值在不同年内的增长、某一股票在某一时间内的价格、去年上海商品房在不同月内的价格(幻灯片展示)。
如何从数学的角度解释量的变化快慢问题呢?这节课我们一起学习与变化率有关的问题。
板书课题《变化率问题》【教师过渡】:“为解决这一问题,我们先研究一些生活中的具体实例”(二)、探究新知,揭示概念实例一:气温的变化问题现有南京市某年3月18日-4月20日每天气温最高温度统计图:(注:3月18日为第一天)1、你从图中获得了哪些信息?2 、在“4月18日到20日”,该地市民普遍感觉“气温骤增”,而在“3月18日到4月18日”却没有这样的感觉,这是什么原因呢?3、怎样从数学的角度描述“气温变化的快慢程度”呢?师生讨论,教师板书总结:分析:这一问题中,存在两个变量“时间”和“气温”,当时间从1到32,气温从3.5o C 增加到18.6o C ,气温平均变化当时间从32到34,气温从18.6o C 增加到33.4o C ,气温平均变化因为7.4>0.5, 所以,从32日到34日,气温变化的更快一些。
【教师过渡】:“18.6 3.50.5321-≈- 表示时间从“3月18日到4月18日”时,气温的平均变化率。
提出问题:先说一说“平均”的含义,再说一说你对 “气温平均变化率”的理解。
实例二:气球的平均膨胀率问题。
【提出问题】:回忆吹气球的过程,随着气球内空气容量的增加,气球半径增长的快慢相同吗? 学生思考回答。
假设每次吹入气球内的空气容量是相等的,如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢?思考:1、 这一问题与“气温的变化问题”有哪些相同的地方?你打算怎样做呢?2、如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢?先独立思考,再在小组内交流你的想法。
人教版高中选修2-2数学1.1变化率与导数教案(4)

§1.1.2 导数的概念教学目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数.教学重点:瞬时速度、瞬时变化率的概念、导数的概念.教学难点:导数的概念.教学过程:一、创设情景(一)平均变化率(二)探究探究: 计算运动员在49650≤≤t 这段时间里的平均速度,(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程: 如图是函数105.69.4)(2++-=t t t h 的图像,结合图形可知,)0(4965(h h =, 所以)/(004965)0()4965(m s h h v =--= 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s , 但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.二、新课讲授1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:思考: 当t ∆趋近于0时,平均速度v 有什么样的变化趋势?结论: 当t ∆趋近于0时,即无论t 从小于2的一边,还是从大于2的一边趋近于2时,平均速度v 都趋近于一个确定的值13.1-.从物理的角度看,时间t ∆间隔无限变小时,平均速度v 就无限趋近于史的瞬时速度.因此,运动员在2t =时的瞬时速度是13.1/m s -为了表述方便,我们用0(2)(2)lim13.1t h t h t∆→+∆-=-∆ 表示“当2t =,t ∆趋近于0时,平均速度v 趋近于定值13.1-” 小结: 局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值.2.导数的概念从函数)(x f y =在0x x =处的瞬时变化率是:0000()()limlim x x f x x f x f xx ∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y = 即0000()()()lim x f x x f x f x x∆→+∆-'=∆ 说明: (1)导数即为函数)(x f y =在0x x =处的瞬时变化率;(2)0x x x ∆=-,当0x ∆→时,0x x →,所以0000()()()limx f x f x f x x x ∆→-'=-. 三、典例分析例1 (1)求函数23x y =在1=x 处的导数. (2)求函数x x x f +-=2)(在1x =-附近的平均变化率,并求出该点处的导数.分析: 先求)()(00x f x x f y f -∆+=∆=∆,再求x y ∆∆,最后求xy x ∆∆→∆0lim . 解: (1)法一 定义法(略)法二 222211113313(1)|lim lim lim3(1)611x x x x x x y x x x =→→→-⋅-'===+=-- (2)x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 200(1)(1)2(1)lim lim(3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆ 例2 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.解: 在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f 根据导数定义0(2)()f x f x f x x+∆-∆=∆∆ 22(2)7(2)15(27215)3x x x x+∆-+∆+--⨯+==∆-∆ 所以00(2)lim lim (3)3x x f f x x ∆→∆→∆'==∆-=-∆ 同理可得:(6)5f '= 在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在第2h 附近,原油温度大约以3/C h 的速率下降在第6h 附近,原油温度大约以5/C h 的速率上升.注: 一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四、课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为.2.求曲线3)(x x f y ==在1x =时的导数.3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.五、回顾总结1.瞬时速度、瞬时变化率的概念.2.导数的概念.六、布置作业 p10。
人教版数学高二-(人教版)高二数学选修2-2学案 1-1 变化率问题

探究任务一:
问题1:气球膨胀率,求平均膨胀率
吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?
“随着气球内空气容量的增加,气球半径增加的越来越慢”的意思是:随着气球体积的增大,当气球体积_____________时,相应半径的_______越来越小.
________________________________________________________
探究任务二:
例1已知f(x)=2x2+1
(1)求:其从x1到x2的平均变化率;
(2)求:其从x0到x0+Δx的平均变化率,并求x0=1,Δx= 时的平均变化率。
探究任务三:函数y=f(x),从x1到x2的平均变化率 的几何意义是什么?
结论:连接函数图象上对应两点的割线的_________
【达标训练巩固提升】
1. 在 内的平均变化率为()
A.3 B.2 C.1 D.0
2.设函数 ,当自变量 由 改变到 时,函数的改变量 为()
A. B.
C. D.
3.质点运动动规律 ,则在时间 中,相应的平均速度为()
A. B.
C. D.
4.已知 ,从 到 的1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程.体会数学的博大精深以及学习数学的意义;
2.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景.
学习过程:
【学情调查情境导入】
球的体积公式:V球=____________
(2)你认为用平均速度描述运动员的运动状态有什么问题?
5、过曲线f(x)=x2上两点P(1,1)和Q(2,4)做曲线的割线,求割线PQ的斜率k。
高中数学 1.11变化率问题导学案 新人教A版选修2-2

1.1.1变化率问题【学习目标】理解平均变化率的概念, 会用平均变化率公式来求某一区间上的平均变化率 【重点难点】在实际背景下,借助函数图像直观的理解平均变化率 一、自主学习要点1 平均变化率函数y =f (x )从x 1到x 2的平均变化率为ΔyΔx= .要点2 求函数y =f (x )在点x 0附近的平均变化率的步骤(1)求函数自变量的改变量Δx =x -x 0; (2)求函数的增量Δy = ;(3)求平均变化率ΔyΔx= .要点3 平均变化率的几何意义表示函数y =f (x )图像上割线P 1P 2的斜率(其中P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),即 .要点4 平均变化率的物理意义看成时间t 的函数s =s (t )在时间段[t 1,t 2]上的平均速度,即 .二、合作,探究,展示,点评 题型一 平均变化率例1 求函数y =x 2在x =1,2,3附近的平均变化率,取Δx 都为13,哪一点附近平均变化率最大?思考题1 求函数f (x )=x 3在区间[x 0,x 0+Δx ]上的平均变化率.题型二 平均速度例2 已知一物体的运动方程为s (t )=t 2+2t +3,求物体在t =1到t =1+Δt 这段时间内的平均速度.思考题2 一质点作直线运动其位移s 与时间t 的关系s (t )=t 2+1,该质点在[2,2+Δt ](Δt >0)上的平均速度不大于5,求Δt 的取值范围.题型三 曲线的割线的斜率例3 过曲线y =f (x )=x 3上两点P (1,1)和Q (1+Δx,1+Δy )作曲线的割线,求出当Δx =0.1时割线的斜率.思考题3 已知曲线y =1x -1上两点A (2,-12)、B (2+Δx ,-12+Δy ),当Δx =1时,割线AB 的斜率为________. 三、知识小结关于平均变化率应注意以下几点:(1)Δx 、Δy 可以是正值也可以是负值,Δy 可以为零,但是Δx 不可以为零.(2)在求函数的平均变化率时,当x 1取定值后,Δx 取不同的数值时,函数的平均变化率不一定相同;当Δx 取定值后,x 1取不同的数值时,函数的平均变化率也不一定相同.(3)平均变化率的几何意义:观察函数f (x )的图像(如左图),我们可以发现x 2-x 1=AC ,f (x 2)-f (x 1)=BC ,所以平均变化率f x 2-f x 1x 2-x 1表示的是直线AB 的斜率.《变化率问题》课时作业 一、选择题1.函数y =x 2+x 在x =1到x =1+Δx 之间的平均变化率为( )A .Δx +2B .2Δx +(Δx )2C .Δx +3D .3Δx +(Δx )22.物体做直线运动所经过的路程s 可表示为时间t 的函数s =s (t )=2t 2+2,则在一小段时间[2,2+Δt ]上的平均速度为( ) A .8+2ΔtB .4+2ΔtC .7+2ΔtD .-8+2Δt 3.设函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,函数的改变量Δy 为( )A .f (x 0+Δx )B .f (x 0)+ΔxC .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)4.已知函数f (x )=2x 2-4的图像上一点(1,2)及邻近一点(1+Δx,2+Δy ),则ΔyΔx等于 ( )A .4B .4xC .4+2ΔxD .4+2(Δx )25.某质点沿直线运动的方程为y =-2t 2+1,则该质点从t =1到t =2时的平均速度为( )A .-4B .-8C .6D .-6 6.已知函数f (x )=-x 2+x ,则f (x )从-1到-0.9的平均变化率为( )A .3B .0.29C .2.09D .2.97.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x中,平均变化率最大的是( ) A .④B .③C .②D .①8.已知y =14x 2和其上一点P (1,14),Q 是曲线上点P 附近的一点,则Q 的坐标为( )A .(1+Δx ,14(Δx )2)B .(Δx ,14(Δx )2)C .(1+Δx ,14(Δx +1)2)D .(Δx ,14(1+Δx )2)二、填空题9.将半径为R 的球加热,若球的半径增加ΔR ,则球的表面积增加量ΔS 等于________.10.一质点的运动方程是s =4-2t 2,则在时间段[1,1+Δt ]上相应的平均速度v 与Δt 满足的关系式为________.11.某物体按照s (t )=3t 2+2t +4的规律作直线运动,则自运动始到4 s 时,物体的平均速度为________. 12.已知函数f (x )=1x,则此函数在[1,1+Δx ]上的平均变化率为________.13.已知圆的面积S 与其半径r 之间的函数关系为S =πr 2,其中r ∈(0,+∞),则当半径r ∈[1,1+Δr ]时,圆面积S 的平均变化率为_______. 三、解答题14.甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?15.婴儿从出生到第24个月的体重变化如图,试分别计算第一年与第二年婴儿体重的平均变化率.16.已知函数f(x)=2x+1,g(x)=-2x,分别计算在下列区间上f(x)及g(x)的平均变化率.(1)[-3,-1];(2)[0,5].17.动点P沿x轴运动,运动方程为x=10t+5t2,式中t表示时间(单位:s),x表示距离(单位:m),求在20≤t≤20+Δt时间段内动点的平均速度,其中(1)Δt=1,(2)Δt=0.1;(3)Δt=0.01.。
高中数学人教(A版)选修2-2导数及其应用1.1 变化率与导数

f ( x0 x ) f ( x0 ) y lim lim f ( x0 ) x 0 x x 0 x
称它为函数y f ( x )在x x0处的导数. ' ' 记作f ( x ( x0 ) y lim lim f ( x0 ) x 0 x x 0 x
2 1
0.62>0.16
所以气球半径增加得越来越慢
P3 思考?
• 当空气容量从V1增加到V2时,气球的平均膨胀
率是多少?
r (V2 ) r (V1 ) V2 V1
气球的平均膨胀率即气球半径的平均变化率 气球半径的平均变化率可以刻画气球半径 变化快慢
• 问题2 高台跳水 • 运动员相对于水面的高度h(单位:米)
瞬时速度
当t 2,t 0时,平均速度v就趋近 于t 2时刻的瞬时速度.表示为:
为方便表示,我们用:
h(2 t ) h(2) lim 13.1, t t 0 表示t 2时刻的瞬时速度.
在t0时刻的瞬时速度呢?
当t t 0时,t趋近于0时,平均速度 v就趋近 于t 0时刻的瞬时速度 .表示为:
函数
微积分(牛顿,莱布尼兹)
• 一、已知物体运动的路程作为时间的函
数,求物体在任意时刻的速度与加速度等; • 二、求曲线的切线; • 三、求已知函数的最大值与最小值; • 四、求长度、面积、体积和重心等。
•
导数是微积分的核心概念之一它是研究 函数增减、变化快慢、最大(小)值等 问题最一般、最有效的工具。
h(t0 t ) h(t0 ) lim t t 0
气球体积为V0时的瞬时膨胀率如何表示?
r (V0 V ) r (V0 ) r lim lim V 0 V V 0 V
高中数学选修2-2第一章第一节《变化率与导数》全套教案

变化率与导数课时分配:第一课变化率1个课时第二课导数的概念1个课时第三课导数的几何意义1个课时1. 1.1 变化率【教学目标】1. 理解平均变化率的概念;了解平均变化率的几何意义;2.通过具体实例,归纳、抽象出平均变化率和瞬时变化率的定义;3.体会数形结合的思想方法;4.让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力.【教学重点】理解平均变化率的概念;了解平均变化率的几何意义【教学难点】通过具体实例,归纳、抽象出平均变化率和瞬时变化率的定义【学前准备】:多媒体,预习例题【教材分析】:平均变化率是导数概念建立的核心,教材通过研究学生熟悉的“气球膨胀率”、“高台跳水”这两个生活实例,归纳出它们的共同特征,总结出一般函数平均变化率概念,使学生理解平均变化率刻画了函数在某一区间上的变化情况,并掌握平均变化率解法的一般步骤。
从知识形成的先后顺序来看,平均变化率是本章内容学习的核心概念,是研究瞬时变化率及其导数概念的基础,在整个导数学习中占有极其重要的地位。
在概念的形成过程中,将进一步渗透从特殊到一般的化归思想,数形结合思想。
4. 说一说求函数“平均变化率”的步骤是什么?5. 这个式子还表示什么?由此你认为平均变化率的几何意义是什么? 讨论得出:210k k <<陡 峭 程 度 (越大) (越小)yAB O1k 2k 12||||k k <(1)、我们研究的是随着体积V 的变化,半径R 变化的快慢,引入函数解析式(2)、观察图象,你发现了什么?(教师操作,Excel 演示)3、当空气容量从V 1增到加V 2时,气球的平均膨胀率是多少?讨论得出: 观察图象,计算运动员在 0≤t≤这段时间内的平均速度,思考:(1). 运动员在这段时间内是静止的吗?(2). 你认为用平速度描述运动员的运动状态有什么问题吗? (3). 如果教练想知道运动员在1秒时的瞬时速度, 你有何建议334()Vr V π=1212)()(r v v v r v --导数的概念【教学目标】(一)知识与技能理解导数的形成过程,掌握函数在某点处的导数的概念.(二)过程与方法通过观看国家运功员跳水视频,引出瞬时速度,进而结合瞬时变化率及极限的思想得出导数的概念.(三)情感、态度与价值观学生通过观看运动员跳水视频,理解瞬时速度及瞬时变化率,从而过渡到导数,培养了学生自主观察、发现新知的能力【教学重点难点】重点:导数的概念难点:导数的概念形成过程【学前准备】:多媒体,预习例题导数的几何意义【教学目标】1.了解平均变化率与割线斜率之间的关系;2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题【教学重点】曲线的切线的概念、切线的斜率、导数的几何意义【教学难点】导数的几何意义图3.1-2我们发现,当点沿着曲线无限接近点P 即Δx →0时,割线趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1变化率问题
教学目标:
1.理解平均变化率的概念; 2.了解平均变化率的几何意义;
3.会求函数在某点处附近的平均变化率
教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景
为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:
一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;
三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率
我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?
⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33
4)(r r V π=
⏹ 如果将半径r 表示为体积V 的函数,那么3
43)(π
V V r = 分析: 3
43)(π
V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为
)/(62.00
1)
0()1(L dm r r ≈--
⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为
)/(16.01
2)
1()2(L dm r r ≈--
可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.
思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?
1
212)
()(V V V r V r --
问题2 高台跳水
在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后
的时间t (单位:s )存在函数关系h (t )= -4.9t 2
+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度
在5.00≤≤t 这段时间里,)/(05.405.0)
0()5.0(s m h h v =--=
; 在21≤≤t 这段时间里,)/(2.812)
1()2(s m h h v -=--=
探究:计算运动员在49
65
0≤≤t 这段时间里的平均速度,并思考以下问题:
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h (t )= -4.9t 2
+6.5t +10的图像,结合图形可知,)0()49
65
(
h h =, 所以)/(0049
65)
0()49
65
(
m s h h v =--=, 虽然运动员在49
65
0≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,
并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念:
1.上述问题中的变化率可用式子 1
212)
()(x x x f x f --表示,
称为函数f (x )从x 1到x 2的平均变
化率
2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用
x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)
3. 则平均变化率为
=
∆∆=∆∆x
f
x y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 思考:观察函数f (x )的图象 平均变化率=
∆∆x
f
1212)()(x x x f x f --表示什么?
直线AB
三.典例分析
例1.已知函数f (x )=x x +-2
的图象上的一点)2,1(--A 及临近一点
)2,1(y x B ∆+-∆+-,则
=∆∆x
y
. 解:)1()1(22
x x y ∆+-+∆+--=∆+-,
∴x x
x x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2
x y =在0x x =附近的平均变化率。
解:2
02
0)(x x x y -∆+=∆,所以x
x x x x y ∆-∆+=∆∆2
020)( x x x
x x x x x ∆+=∆-∆+∆+=02
0202022
所以2
x y =在0x x =附近的平均变化率为x x ∆+02
四.课堂练习
1.质点运动规律为32
+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 .
2.物体按照s (t )=3t 2
+t +4的规律作直线运动,求在4s 附近的平均变化率. 3.过曲线y =f (x )=x 3
上两点P (1,1)和Q (1+Δx ,1+Δy )作曲线的割线,求出当Δx =0.1时割线的斜率. 五.回顾总结
1.平均变化率的概念
2.函数在某点处附近的平均变化率 六.布置作业
253t
∆+。