小升初数学图形专题训练

合集下载

小升初数学图形问题难题精选

小升初数学图形问题难题精选

小升初数学图形问题难题精选1、【四边形】【1】在一本数学书的插图中,有100个平行四边形,80个长方形,40个菱形。

这本书的插图中正方形最多有_____个。

【答案】40个2、【最值】【剪拼】—个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的长方形纸条?【答案】123、【剪拼】【2】图中由24个正方形组成,请通过P点画一条直线,把这个图形分割成面积相等的两部分。

【答案】5、【面积】【2】求出图中梯形ABCD的面积。

其中BC=10厘米。

【答案】50平方厘米6、【面积】【3】用4个相同的等腰直角三角形相互交叠拼成下图,阴影正方形的面积是平方厘米。

【答案】18平方厘米图中的阴影部分面积是正方形面积的。

3×3÷2×4=18(㎝2)7、【周长】【面积】【1】判断:在周长都为8厘米的正方形和长方形中,面积较大的是正方形。

【答案】√8、【周长面积】【2】由5个正方形组成的十字架图形的面积是180,求它的周长是多少?【答案】729、【面积】【1】等腰梯形的对角线互相垂直,一条对角线的长是9厘米,求梯形的面积。

【答案】40.5平方厘米10、【面积】【差不变】【2】如图,有边长分别是16分米和24分米的两个正方形,一条直线把这两个相连的正方形分成四部分。

甲三角形的面积比乙三角形的面积多多少平方分米?【答案】9611、【面积】【格点多边形】【2】、在边长等于5厘米的正方形内有一个平行四边形,这个平行四边形面积是多少?【答案】14平方厘米12、【面积】【格点多边形】【2】如图,计算这个格点多边形的面积.(每一格为单位1)【答案】6.513、【等高模型】【2】如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.【答案】14【等高模型】【2】As shown below, the area of the parallelogram ABCD is 54 cm2, E, F trisect CA and BA, the area of the shadow is _________.【答案】6cm215、【等高模型】【3】如图:正方形ABCD的边长为12厘米,P是AB边上的任意一点,M、N、I、H分别是BC、AD上的三等分点(即BM=MN=NC),E、F、G是边CD上的四等分点,图中阴影部分面积是多少平方厘米。

小升初数学思维拓展几何图形专项训练专题2-巧算周长

小升初数学思维拓展几何图形专项训练专题2-巧算周长

专题2-巧算周长小升初数学思维拓展几何图形专项训练(知识梳理+典题精讲+专项训练)1、方法:有些图形通过将线段平移或翻转,可转化成标准的长方形、正方形,从而便于计算他们的周长.对于这些图形,这是一个巧方法.【典例一】巧算周长.【分析】把各不规则部分的横线段和竖线段进行平移,可得到所求周长恰好是边长为5米,4米的长方形的周长.【解答】解:仔细观察可看出,左上方的阶梯的水平方向的线段向上平移,垂直方向的线段向右平移.则平移后,正好围成一个长5米,宽4米的长方形,所以周长是:(4+5)×2=9×=18(米).答:这个图形的周长是18米.【点评】此题主要考查学生对矩形两组对边对应相等的性质的掌握情况,做这类题时还需注意利用平移的思想.【典例二】小杰有两张长方形的卡片,每张长24厘米.其中一张被分成了相等的三部分,另一张被分成了相等的四部分(如图1).小杰用这两张卡片拼成了一个图形(如图2).小杰摆出的这个图形的总长度是多少厘米?【分析】根据题干分析,平均分成三部分,每部分的长度是2438÷=厘米,平均分成4部分,平均每部分的长度是-=厘米,据此可得,拼成的这个图形2446÷=厘米,所以平均分成3部分和平均分成4部分中的一段的差是862的周长的就等于长24226+=厘米,据此即可解答.【解答】解:2438÷=(厘米),2446÷=(厘米),862-=(厘米),所以拼成的图形的总长度是:24226+=(厘米).答:图形的总长度是26厘米.【点评】观察图形,明确拼成的图形的长度比24厘米多出了2厘米的长度,是解决本题的关键.【典例三】请同学们求解《九章算术》中的一道古代问题:“今有木长二丈,围之三尺,葛生其下,缠木七周,上与木齐.问葛长几何?”白话译文:如图,有圆柱形木棍直立地面,高20尺,圆柱底面周长3尺,葛藤生于圆柱底部A 点,等距离缠绕圆柱7周,恰好长到圆柱上底面B 点,求葛藤的长度是多少尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7321⨯=(尺),由勾股定理得222202184129+==(尺).因此葛藤长29尺;答:葛藤长29尺.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.一.选择题(共8小题)1.如图是一个楼梯的侧面,现要在台阶上铺一块地毯,地毯的长度可以用()来计算。

小升初数学图形题专题训练

小升初数学图形题专题训练

小升初数学图形题专题训练小升初数学图形题专题训练一、计算公式。

㈠周长计算公式:长=周长2-宽⒈ 长方形的周长=(长+宽)2宽=周长2-长⒉ 正方形的周长=边长4边长=周长4c=dd=c⒊ 圆的周长:c=2rr=c2⒋ 正方体的棱长总和=棱长12正方体的棱长=正方体的棱长总和12长=棱长总和4-宽-高⒌ 长方体的棱长总和=(长+宽+高)4 宽=棱长总和4-长-高高=棱长总和4-长-宽㈡面积计算公式:长=长方形的面积宽⒈ 长方形的面积=长宽宽=长方形的面积长⒉ 正方形的面积=边长边长底=平行四边形的面积高⒊ 平行四边形的面积=底高高=平行四边形的面积底底=三角形的面积2高⒋ 三角形的面积=底高2高=三角形的面积2底高=梯形的面积2(上底+下底)⒌ 梯形的面积=(上底+下底)高2上底=梯形的面积2高-下底⒍ 圆的面积:⑴ 已知半径(r)求面积(S),用公式S=r2⑵ 已知直径(d)求面积(S),先用公式r=d2求半径,再用公式S=r2求面积。

⑶ 已知周长(C)求面积(S),先用公式r=c2求半径,再用公式S=r2求面积。

⒎ 长方体的表面积=(长宽+长高+宽高)2⒏ 正方体的表面积=棱长棱长6正方体一个面的面积=正方体的表面积6高=圆柱体的侧面积底面周长⒐ 圆柱体的侧面积=底面周长高底面周长=圆柱体的侧面积高⒑ 圆柱体的表面积=侧面积+底面积2=2r(r+h)(三)体积计算公式:长宽高高=长方体的体积底面积⒈长方体的体积=底面积高横截面的面积长底面积=长方体的体积高⒉ 正方体的体积=棱长棱长棱长高=圆柱体的体积底面积⒊ 圆柱体的体积=底面积高底面积=圆柱体的体积高高=圆锥体的体积3底面积⒋ 圆锥体的体积=底面积高1/3底面积=圆锥体的体积3高(四)注意:⒈ 周长相等的长方形、正方形和圆,圆的面积最大,其次是正方形,最小的是长方形。

⒉ 周长和面积不能比较,表面积和体积不能比较。

⒊ 正方体拼成长方体,拼一次要减少2个面;把长方体(或正方体)截成正方体(或长方体),截一次要增加2个面。

2024学年人教版六年级下册数学小升初专题训练:图形的拼组

2024学年人教版六年级下册数学小升初专题训练:图形的拼组

2024学年人教版六年级下册数学小升初专题训练:图形的拼组一、单选题1.把一个棱长8厘米的正方体切成棱长2厘米的小正方体,可以得到()个。

A.64B.48C.32D.162.若在边长20 厘米的正立方体表面上挖一个边长为10 厘米的正方体洞,问其表面积增加多少平方厘米?()A.100B.400C.500D.6003.下面()个正方体正好可以拼成一个较大的大正方体.A.8B.64C.27D.1254.将一根半径为5厘米的圆木锯成3段,表面积增加()平方厘米.A.3.14×52×3B.3.14×52×6C.3.14×52×4D.3.14×5×2×65.用3个棱长2厘米的小正方体拼成一个大长方体,拼成长方体的表面积是()平方厘米.A.28B.56C.64D.726.将一个圆柱体削制成一个圆锥体,削去部分的体积是圆柱体积的()A.13B.23C.2倍D.不能确定二、判断题7.两个等底等高的三角形都能拼成一个平行四边形。

()8.把一个圆柱转化成一个近似的长方体,它的体积和表面积都没有改变。

()9.剪一个面积为942cm2的圆,至少要11cm2的正方形纸.10.如图,长方体的长是3厘米,宽和高均为2厘米,将它挖掉一个棱长1厘米的小正方体后,体积为11立方厘米,表面积为34平方厘米.()11.把两个完全一样的正方体拼成一个长方体,体积和表面积都不变。

()12.把底角为60°的等腰梯形沿直线任意剪一刀后,剪成一个三角形和一个四边形。

如果三角形的三条边正好相等,那么另一个一定是平行四边形。

()三、填空题13.把5个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是平方厘米,体积是立方厘米。

14.一个高5厘米的圆柱体,沿底面直径将圆柱体锯成两块,其表面积增加40平方厘米,原来这个圆柱体的体积是立方厘米。

15.把两个完全一样的圆柱,拼成一个长30厘米的圆柱,但表面积减少25.12平方厘米,原来每个圆柱的体积是立方厘米。

小升初数学思维拓展几何图形专项训练专题4-等积变形(位移、割补)

小升初数学思维拓展几何图形专项训练专题4-等积变形(位移、割补)

专题4-等积变形(位移、割补)小升初数学思维拓展几何图形专项训练(知识梳理+典题精讲+专项训练)1、等积变形的主要方法:(1)三角形内等底等高的三角形;(2)平行线内等底等高的三角形;(3)公共部分的传递性;(4)极值原理(变与不变)。

【典例一】如图所示:一块长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路.求小路的占地面积?【分析】无论这曲折小路如何再曲折,都可以将曲折小路分成两类,一类是竖的,一类是横的,可以把竖的往左拼,横的往上拼,如下图则小路面积不难算出,竖的部分14×2,横的部分20×2,计算重叠2×2,则小路面积为(20+14)×2-2×2=64(平方米).【解答】解:小路面积为:(20+14)×2-2×2=64(平方米),答:小路的占地面积64平方米.【点评】利用等积变形、平移知识把曲折的小路拉直,就变成规则的图形包括三部分竖的长方形,横的长方形和重叠的小正方形,进而解答.【典例二】如图,五边形ABCDE是一片荒地的示意图,陈家承包后想将其中的小路E M N---改成直路EG,然后在直路EG,然后在直路EG两旁分别种植不同的蔬菜,并使改道前后路两旁的面积,保持不变,请你左图中画出这条直路.(图中体现画法1)【分析】利用尺规作图做//EN MG,如图根据两条平行线之间的垂线段相等和同底等高的三角形的面积相等,可得S ENG S EMN∆=∆,由此作图即可.【解答】解:画法如图所示,连接EN,过点M作//MG EN,交CB于点G,连接EG,EG即为所求直路的位置.【点评】此题利用两条平行线之间的垂线段相等和同底等高的三角形的面积相等的知识作图.【典例三】A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通(连通管的容积忽略不计),仍用该水龙头向A 注水,求(1)2分钟容器A中的水有多高?(2)3分钟时容器A中的水有多高.【分析】已知B容器的底面半径是A容器的2倍,高相等,B容器的容积就是A容器的4倍;因此,单独注满B容器需要4分钟,要把两个容器都注满一共需要145+=(分钟),已知现在两个容器在它们高度一半处用一个细管连通,2分钟后A中的水位是容器高的一半,即1226÷=(厘米)(其余的水流到B容器了);由此可知,用2.5分钟的时间两个容器中的水的高度相等,都是6厘米;以后的时间两个容器中的水位同时上升,用3 2.50.5-=(分钟)分钟注入两个容器的高度加上6厘米即是3分钟后的高度.【解答】解:(1)A 容器的容积是:23.141 3.141 3.14⨯=⨯=(立方厘米),B 容器的容积是:23.142 3.14412.56⨯=⨯=(立方厘米),12.56 3.144÷=,即B 容器的容积是A 容器容积的4倍,因为一水龙头单独向A 注水,一分钟可注满,所以要注满B 容器需要4分钟,因此注满A 、B 两个容器需要145+=(分钟),已知现在两个容器在它们高度一半处用一个细管连通,2分钟后A 中的水位是容器高的一半,即1226÷=(厘米);(2)因为注满A 、B 两个容器需要145+=(分钟),所以52 2.5÷=(分钟)时,A 、B 容器中的水位都是容器高的一半,即6厘米,2.5分钟后两容器中的水位是同时上升的,3分钟后,实际上3 2.50.5-=(分钟)水位是同时上升的,10.5510÷=,112 1.210⨯=(厘米),6 1.27.2+=(厘米);答:2分钟时,容器A 中的高度是6厘米,3分钟时,容器A 中水的高度是7.2厘米.【点评】此题主要考查圆柱的体积(容积)的计算,解答关键是理解现在两个容器在它们高度一半处用一个细管连通,当A 中的水高是容器高的一半时,其余的水流到B 容器了;以后的时间两个容器中的水位同时上升,即注满两容器时间的110乘容器高就是0.5分钟上升的水的高度.一.选择题(共4小题)1.我国古代数学家刘徽利用“出入相补”原理计算平面图形的面积,其原理是:把一个图形分割、移补,而面积保持不变。

2024人教版六年级下册数学小升初专题训练 图形计算题(含答案)

2024人教版六年级下册数学小升初专题训练 图形计算题(含答案)

人教版六年级下册数学小升初专题训练:图形计算题1.计算下面图形的表面积和体积。

(单位:厘米)(1)(2)2.计算组合图形的表面积和体积。

3.求出下图的体积。

(单位:cm)4.求出下图的表面积。

(单位:cm)5.求下图的体积。

6.图形计算。

如图:求这块空心砖的体积是多少立方厘米?(单位:厘米)7.求出下面半圆柱的表面积。

8.求阴影部分的面积。

(单位:cm)(1)(2)9.求出下面放在地面上的物体露在外面的面积。

(单位:cm)10.计算下面组合图形的体积。

11.计算下面圆柱的表面积和体积。

(单位:厘米)12.求下面图形的表面积(单位:dm)。

13.计算图中阴影部分的面积。

14.求下面几何体的表面积和体积。

(1)(2)15.求出前两个图形的面积和第三个图形中涂色部分的面积。

16.计算下面图形中阴影部分的周长与面积。

17.求涂色部分的周长和面积。

(单位:厘米)18.求下面各图形的体积。

(单位:分米)19.计算下面图形中涂色部分的面积。

20.计算下面涂色部分的周长。

21.求阴影部分的面积。

22.求出下图中阴影部分的面积。

(单位:米)23.计算涂色部分的面积。

24.如图:求图形中阴影部分的面积(单位:cm)。

25.下图阴影部分的面积是多少平方米?参考答案:1.(1)384平方厘米;512立方厘米(2)654平方厘米;1080立方厘米【分析】(1)正方体的表面积=棱长×棱长×6,正方体的体积=棱长×棱长×棱长,代入数据计算即可;(2)长方体的表面积=(长×宽+长×高+宽×高)×2,长方体的体积=长×宽×高,代入数据计算即可。

【详解】(1)8×8×6=64×6=384(平方厘米)8×8×8=64×8=512(立方厘米)正方体的表面积是384平方厘米,正方体的体积是512立方厘米。

2024人教版六年级下册数学小升初专题训练 图形类应用题(含答案)

2024人教版六年级下册数学小升初专题训练 图形类应用题(含答案)
11.1507.2平方米;2512立方米
【分析】由于蓄水池是没有盖的,所以抹水泥的面积是它的侧面和一个底面,圆柱的侧面积=底面周长×高,圆的面积公式:S=πr2,再根据圆柱的容积(体积)公式:V=Sh,把数据代入公式解答。
【详解】125.6÷3.14÷2
=40÷2
=20(米)
20分米=2米
抹水泥的面积:
(2)如图(2)如果包装后需要装进一个长方体快递盒邮寄,那么快递盒的体积至少要有多少立方厘米?(不算包装纸、盒子厚度)
25.张大伯用篱笆围一块菜地(其中一面是墙),如下图所示。若篱笆全长35米,这块地的面积是多少平方米?
26.博物馆里有一根圆柱体柱子,高3米,粗15.7分米。要工将这根柱子重新粉刷,粉刷1平方要32元,那么粉刷一根柱子大约需要多少钱?
=3.14×100×8
=2512(立方厘米)
答:这个蛋糕的体积是2512立方厘米。
【点睛】解答本题关键是熟悉圆柱体积公式。
7.3.14平方米
【分析】根据圆锥的体积公式:体积=底面积×高× ,代入数据,求出圆锥的体积;圆锥的体积等于高是2米的圆柱的体积,根据圆柱的体积公式:体积=底面积×高;底面积=体积÷高,代入数据,即可解答。
【详解】水的体积:30×20×24
=600×24
=14400(立方厘米)
容器A的底面积:3×102=300(平方厘米)
容器B的底面积:30×20=600(平方厘米)
水深:14400÷(300+600)
=14400÷900
(平方米)
(平方米)
(平方米)
它们的比是:
答:小青的安排不合理,小青应该根据三个大小不同的正方形,分别安排了1人、4人、9人除杂草。
4.79立方厘米

小升初数学《图形的认识》专项试题及答案

小升初数学《图形的认识》专项试题及答案

小升初数学《图形的认识》专项试题一、选择题1.一个物体的形状如下图所示,则此物体从左面看是()。

A.B.C.2.把一根绳子对折三次后,每段是全长的()。

A.13B.14C.183.把一张长方形纸折成如图时,其中∠1和∠2相等,那么∠1=()。

A.90°B.45°C.60°4.下面图形中不可以密铺的是()A.正五边形B.正六边形C.正三角形5.把两个棱长都是2分米的正方体拼成一个长方体,这个长方体的表面积比两个正方体的表面积的和减少了()平方分米。

A.4 B.8 C.166.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体表面积和原来的表面积相比较,()A.大了B.小了C.不变D.无法确定7.如图中过A点最短的一条线段是()A.AB B.AC C.AD D.AE8.已知∠1+∠2=∠3,∠1+∠2+∠3=180°,则∠3是()A.锐角B.钝角C.直角D.平角9.下列图形中,线段PQ的长表示点P到直线MN的距离是().A.A B.B C.C D.D10.在一条公路上有四条小路通往学校,它们的长度分别是150米、208米、115米、180米.其中有一条小路与公路垂直,这条小路的长度是()A.150米B.208米C.115米D.180米11.如图,∠1=30°,∠3是直角,那么∠2=()。

A.30°B.60°C.120°D.150°12.下面图形中,()可以密铺。

A.B.C.13.将一张圆形的纸片先上下对折,再左右对折,得到的角的度数是( ) A.45ºB.180ºC.90º14.用四个同样的正方体拼成一个长方体(如图所示),表面积减少了32平方厘米,则每个小正方体的棱长为()厘米。

A.1 B.2 C.3 D.415.如图是由5个小正方形连接而成的图形,它需再添加一个小正方形,折叠后才能围成一个正方体,由图中的小正方形分别由四位补画,其中正确的是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练:小升初图形题集锦
1、看图计算。

⑴已知正方形的面积为16平方厘米, ⑵下图中,BO=2DO ,阴影部分的 阴影部分是一个圆,求圆的面积。

面积是4平方厘米,求梯形ABCD
的面积。

A B
2
大是(
A 、20
B 、18
C 、15
D 、12
3、有三个正方体木箱,大小一样,质量相同,甲箱内装了一个大铁球;乙箱内装了大小相同的27个铁球;丙箱内装了64个大小相同的小铁球。

若这三个箱内的铁秋与铁球、铁球与箱壁都贴得很紧,三个箱子总重量( )。

A 、甲最重 B
、乙最重 C 、丙最重 D 、一样重 E 、无法知道
5、看图计算。

⑴如下图,阴影部分的面积是40平方厘米,求环形的面积。

⑵如下图,在中,BD=DC ,AA 1
=41AD , A 1B 1=31A 1B ,B 1C 1=21
B 1
C ;
若 ABC
的面积是1,则1B 1C 1的面积是多少
6、如下图中,DC =3BD ,DE=EA 的面积是12
平方米,那么阴影部分的面积是多少平方米
B
D
B C
D
7、正方形ABCD 的面积是128平方厘米,连接这个正方形4条边的中点,又得到一个正方形EFGH ,像这样重复几次后得到下图,图中阴影部分的面积是多少平方厘米
8、如图三角形ABC 是直角三角形,AB=20厘米,阴影a 的面积比阴影b 的面积大7平方厘米,求出AC 的长度
9、看图计算。

(
(1)、如图,已知BO=2DO ,CO=5AO ,阴 (2)、图中阴影部分面积是50平方
影部分面积和是11平方厘米,求四边形 厘米,求环形的面积是多少平方厘 ABCD 的面积。


A
D
A
10、图形题。

(1)、如右图,在长方形ABCD 中,EFGH 是正方形,已知AE=10cm ,GC=7cm ,则长方形的周长是多厘米
(2)、如图,三角形ABC 面积是厘米,圆的直径AC=6厘米,BD :DC=3:1
11、看图计算。

(1)求阴影部分的面积是多少
A F E
B
C
H
G D
(2)已知BC 长10cm ,直角三角形BCE 的直角边EC 长是8cm ,阴影部分的面积比三角形EFG 的面积大102cm ,求CF 的长。

12、有一个三角形ABC ,现在把它的边长BA 延长一倍,CB 延长两倍,AC 延长三倍,得到三角形DEF ,那么三角形DEF 的面积是三角形ABC 面积的 倍。

B
C
A
D F
E
2cm
B
13、如图,圆的半径是5厘米,求大、小正方形的面积之差。

14、如图,三角形AOC是边长为3厘米的正三角形,求阴影部分的面积。

O B
15、如图,O是半圆的圆心,AC=BC,CD=DB,AB=12厘米,求阴影
A B
16、如图所示的阴影部分由方格纸上3个小方格组成,我们称这
4 在由个小方格组成的方格
样的图案为L形,那么5
纸上可以画出不同位置的L形图案个数是()。

相关文档
最新文档