整合提升密码(109)
提高密码强度的技巧与方法

提高密码强度的技巧与方法在当今数字化时代,网络安全问题日益凸显。
密码作为最基本的安全措施之一,扮演着保护个人和机构信息不被非法获取的重要角色。
然而,许多人在设置密码时往往过于简单或者重复使用相同的密码,给黑客破解和入侵提供了机会。
为了提高密码的强度和安全性,以下是一些技巧和方法供大家参考。
1. 长度优先:密码的长度是决定其安全性的重要因素之一。
一般来说,密码长度越长,破解的难度就越大。
建议密码长度至少为8个字符,最好超过12个字符。
此外,密码中应包含字母、数字和特殊字符的组合,以增加破解的难度。
2. 避免常见密码:避免使用常见密码,如"123456"、"password"等。
这些密码容易被破解,黑客可以通过暴力破解或字典攻击轻易获取到这些密码。
选择一个独特且不易被猜测的密码是至关重要的。
3. 不要使用个人信息:避免使用与个人信息相关的密码,如生日、电话号码、姓名等。
这些信息容易被他人获取,从而使密码的安全性大打折扣。
选择一个与个人信息无关的密码,可以有效提高密码的强度。
4. 多因素认证:多因素认证是一种有效的提高密码安全性的方法。
除了密码外,还可以使用指纹、面部识别、短信验证码等额外的认证方式。
这样即使密码被破解,黑客仍然无法轻易进入您的账户,保护了您的个人信息和资产安全。
5. 定期更换密码:定期更换密码是维持密码安全性的重要措施之一。
建议每三个月更换一次密码,避免使用相同的密码在不同的网站和应用中。
这样即使某个账户的密码被破解,其他账户仍然可以保持相对安全。
6. 使用密码管理器:密码管理器是一种方便且安全的工具,可以帮助您生成和管理复杂的密码。
它可以存储您的各种账户和密码,并自动填充登录信息,避免了使用弱密码或重复密码的问题。
选择一个可靠的密码管理器,可以大大提高密码的安全性。
总结起来,提高密码强度的技巧与方法包括增加密码长度、避免使用常见密码和个人信息、使用多因素认证、定期更换密码以及使用密码管理器等。
七级数学上册 第1章 整合提升密码 (新版)沪科版

专训一:比较有理数大小的方法名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.利用作差法比较1.比较1731和5293的大小.利用作商法比较2.比较-172 016和-344 071的大小.找中间量比较大小3.比较1 0072 016与1 0092 017的大小.利用倒数法比较大小4.比较1111 111和1 11111 111的大小.利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.6.比较-623,-417,-311,-1247的大小.利用数轴比较大小7.已知a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.运用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为________________________________________________________________________.利用分类讨论法比较大小9.比较a 与a3的大小.专训二:有理数中六种易错类型对有理数有关概念理解不清造成错误1.下列说法正确的是( )A .最小的正整数是0B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a2.已知|a|=7,则a=W.误认为|a|=a,忽略对字母a分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()A.负数B.负数或零C.正数或零D.正数4.已知a=8,|a|=|b|,则b的值等于()A.8B.-8C.0D.±8对括号使用不当导致错误5.计算:-7-5.6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.忽略或不清楚运算顺序7.计算:3×42+43÷2.8.计算:-81÷94×49÷(-16).9.计算:(-5)-(-5)×110÷110×(-5).乘法运算中确定符号与加法运算中的符号规律相混淆10.计算:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345.11.计算:-36×⎝ ⎛⎭⎪⎫712-56-1.除法没有分配律12.计算:24÷⎝ ⎛⎭⎪⎫13-18-16.专训三:几种常见的热门考点名师点金:本章主要学习了有理数的定义及其相关概念,有理数的运算,科学记数法与近似数等.本章内容是中考的基本考查内容之一,命题形式多以选择题和简单的计算题为主,注重对基础知识和基本技能的考查.)有理数的定义、分类1.在下列各数中:+6,-8.25,-0.49,-23,-18,负有理数有( )A .1个B .2个C .3个D .4个相反数、倒数、绝对值2.(1)化简下列各式:⎪⎪⎪⎪⎪⎪-12= ;|+(-3)|= ;-⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-35= W.(2)-5的相反数是 ;-13的绝对值是 ;54的倒数是 W.3.式子|m -3|+5的值随m 的变化而变化,当m = 时,|m -3|+5有最小值,最小值是 W.4.已知a ,b 分别是两个不同的点A ,B 所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.(1)试确定数a ,b ;(2)表示a ,b 两数的点相距多远?(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数.(第4题)有理数的大小比较5.(中考·莱芜)在-12,-13,-2,-1这四个数中,最大的数是( )A .-12 B .-13C .-2D .-16.如图,数轴上A ,B 两点分别对应有理数a ,b ,则下列结论正确的是( )(第6题)A .a <bB .a +b <0C .a -b >0D .ab >0有理数的运算7.下列等式成立的是( ) A .|-2|=2 B .-(-1)=-1C .1÷(-3)=13D .-2×3=68.若四个有理数之和的14是3,其中三个数分别是-10,+8,-6,则第四个数是( )A .+8B .-8C .+20D .+119.计算下列各题:(1)17-23÷(-2)×3;(2)2×(-5)+23-3÷12;(3)10+8÷(-2)2-(-4)×(-3);(4)(-24)÷⎝ ⎛⎭⎪⎫2232+512×⎝ ⎛⎭⎪⎫-16-0.52.非负数性质的应用10.当a 为有理数,下列说法中正确的是( ) A .⎝ ⎛⎭⎪⎫a +12 0162为正数 B .-⎝ ⎛⎭⎪⎫a -12 0162为负数 C .a +⎝ ⎛⎭⎪⎫12 0162为正数D.a2+12 016为正数11.若|a+1|+(b-2)2=0,求(a+b)9+a6的值.科学记数法、近似数的应用12.(2015·成都)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为()A.126×104B.1.26×105C.1.26×106D.1.26×10713.若一个数等于5.8×1021,则这个数的整数位数是()A.20B.21C.22D.2314.把390 000用科学记数法表示为,用科学记数法表示的数5.16×104的原数是,近似数2.236×108精确到的数位是W.15.(2015·资阳)太阳的半径约为696 000千米,用科学记数法表示为千米.数学思想方法的应用a.数形结合思想16.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c.根据图中各点位置,下列式子正确的是( )(第16题)A .(a -1)(b -1)>0B .(b -1)(c -1)>0C .(a +1)(b +1)<0D .(b +1)(c +1)<0b.转化思想17.下列各式可以写成a -b +c 的是( )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )18.计算:⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712.c.分类讨论思想19.比较2a 与-2a 的大小.有理数中的探究与创新20.(2015·德州)一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( )A .8B .9C .13D .1521.(2015·荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m =(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2 015=( )A .(31,50)B .(32,47)C .(33,46)D .(34,42)22.(2015·广东)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 W.23.(2015·绥化)填在下面各正方形(如图)中的四个数之间都有一定的规律,据此规律得出a +b +c = W.(第23题)24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.(第24题)根据此规律求:(1)这样的一个细胞经过第四个30分钟后可分裂成多少个细胞?(2)这样的一个细胞经过3小时后可分裂成多少个细胞?(3)这样的一个细胞经过n(n为正整数)小时后可分裂成多少个细胞?答案专训一1.解:因为5293-1731=5293-5193=193>0,所以5293>1731.点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方法.2.解:因为172 016÷344 071=172 016×4 07134=1 3571 344>1,所以172 016>344 071,所以-172 016<-344 071.点拨:(1)作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时,作商比较往往能起到事半功倍的效果.(2)当这两个数是负数时,可先分别求出它们的绝对值,再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3.解:因为1 0072 016<12,1 0092 017>12,所以1 0072 016<1 0092 017.点拨:对于类似的两数的大小比较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4.解:1111 111的倒数是101111,1 11111 111的倒数是1011 111,因为101111>1011 111,所以1111 111<1 11111 111.点拨:利用倒数法比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小,从而确定这两个数的大小.5.解:每个分数都加1,分别得12 015,115,12 016,116.因为12 016<12 015<116<115,所以-2 0152 016<-2 0142 015<-1516<-1415.点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了. 6.解:因为-623=-1246,-417=-1251,-311=-1244,-1244<-1246<-1247<-1251,所以-311<-623<-1247<-417. 点拨:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.7.解:把a ,-a ,b ,-b 在数轴上表示出来,如图所示,根据数轴可得-a <b <-b<a.(第7题)点拨:本题运用了数轴比较有理数的大小,在数轴上找出这几个数对应的点的大致位置,即可作出判断.8.|a +b|<|a -b|=|a|+|b| 点拨:已知a ,b 异号,不妨取a =2,b =-1或a =-1,b =2.当a =2,b =-1时,|a +b|=|2+(-1)|=1,|a -b|=|2-(-1)|=3,|a|+|b|=|2|+|-1|=3;当a =-1,b =2时,|a +b|=|(-1)+2|=1,|a -b|=|-1-2|=3,|a|+|b|=|-1|+|2|=3.所以|a +b|<|a -b|=|a|+|b|.方法总结:本题运用特殊值法解题,取特殊值时要注意所取的值既要符合题目条件又要考虑可能出现的多种情况,以本题为例,可以分为a 正、b 负和a 负、b 正两种情况.9.解:分三种情况讨论: ①当a >0时,a >a 3;②当a =0时,a =a3;③当a <0时,|a|>|a 3|,则a <a3.专训二1.D 2.±7 3.C4.D 点拨:因为|a|=|b|=8,所以b =±8. 5.解:原式=-7+(-5)=-12.6.解:原式=2+15-14+12=2920.7.解:原式=3×16+64÷2=48+32=80. 8.解:原式=-81×49×49×⎝ ⎛⎭⎪⎫-116=1.点拨:本题易出现“原式=-81÷1÷(-16)=8116”的错误.9.解:原式=(-5)-(-5)×110×10×(-5)=(-5)-25 =-30.10.解:原式=⎝ ⎛⎭⎪⎫-94×⎝ ⎛⎭⎪⎫-195 =17120.点拨:解本题时常常会出现乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆的错误.如:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345=-⎝ ⎛⎭⎪⎫94×195=-17120.11.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36 =45.12.解:原式=24÷⎝ ⎛⎭⎪⎫824-324-424 =24÷124=576.点拨:解本题时往往会出现将乘法分配律运用到除法运算中,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.专训三1.D 2.(1)12;3;-35 (2)5;13;453.3;54.解:(1)因为|a|=5,|b|=2,所以a =±5,b =±2. 由数轴可知a <b <0,所以a =-5,b =-2. (2)相距3.(3)C 点表示的数为-0.5或-234.5.B 6.C 7.A 8.C9.解:(1)原式=17-8÷(-2)×3=17-(-12)=29.(2)原式=-10+8-6=-8.(3)原式=10+8÷4-12=0.(4)原式=(-16)×964+112×⎝ ⎛⎭⎪⎫-16-14=⎝ ⎛⎭⎪⎫-94+⎝ ⎛⎭⎪⎫-1112-14=-4112. 10.D11.解:由题意得a +1=0,b -2=0,所以a =-1,b =2.所以(a +b)9+a 6=[(-1)+2]9+(-1)6=2.12.C 13.C14.3.9×105;51 600;十万位15.6.96×10516.D 17.B18.解:原式=113÷⎝ ⎛⎭⎪⎫-712-⎝⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712 =-167-337 =-7.19.解:当a <0时,2a <-2a ;当a =0时,2a =-2a ;当a >0时,2a >-2a.20.A 点拨:根据从第三个数起,每个数都等于它前面的两个数之和,可得x =1+2=3,y =x +5=3+5=8,故选A .21.B 点拨:第1个正奇数是1,第2个正奇数是3,第3个正奇数是5,…,第n 个正奇数是2n -1,因为2 015=2n -1,所以n =1 008,即2 015是从1开始的第1 008个正奇数.由题意知,第1组有1个正奇数,第2组有3个正奇数,第3组有5个正奇数,…,第i 组有(2i -1)个正奇数,第31组有31×2-1=61(个)正奇数.因为前31组正奇数的总个数为1+3+5+7+…+57+59+61=961,前32组正奇数的总个数为961+63=1 024,所以第1 008个正奇数应在第32组奇数内.又因为1 008-961=47,所以奇数2 015是第32组的第47个正奇数,故选B . 22.1021 点拨:从这组数可以看出,这组数的分子是从1开始,逐次增加1的自然数,分母是分子的2倍加1,即第n 个数是n 2n +1,所以第10个数是102×10+1=1021. 23.110 点拨:根据前三个正方形中的数的规律可知:c 所处的位置上的数是连续的奇数,所以c =9,而a 所处的位置上的数是连续的偶数,所以a =10,而b =ac +1=10×9+1=91,所以a +b +c =10+91+9=110.24.解:(1)一个细胞经过第四个30分钟后可分裂成16个细胞.(2)一个细胞经过3小时后可分裂成64个细胞.(3)一个细胞经过n(n 为正整数)小时后可分裂成22n 个细胞.。
沪科版七年级数学上册整合提升密码

专训一:求代数式值的技巧名师点金:用数值代替代数式里的字母,按照代数式里的运算符号,计算出的结果就是代数式的值.如果要求值的式子比较简单,可以直接代入求值;如果要求值的式子比较复杂,可考虑先将式子化简,然后代入求值;有时我们还需根据题目的特点,选择特殊的方法求式子的值,如整体代入求值等.直接代入求值1.(2015·大连)若a=49,b=109,则ab-9a的值为W.2.当a=3,b=2或a=-2,b=-1或a=4,b=-3时,(1)求a2+2ab+b2,(a+b)2的值.(2)从中你发现怎样的规律?先化简再代入求值3.已知A=1-x2,B=x2-4x-3,C=5x2+4,求多项式A-2[A-B-2(B-C)]的值,其中x=-1.特征条件代入求值4.已知|x-2|+(y+1)2=0,求-2(2x-3y2)+5(x-y2)-1的值.整体代入求值5.已知2x-3y=5,求6x-9y-5的值.6.已知当x=2时,多项式ax3-bx+1的值是-17,那么当x=-1时,多项式12ax-3bx3-5的值是多少?整体加减求值7.已知x2-xy=-3,2xy-y2=-8,求代数式2x2+4xy-3y2的值.8.已知m2-mn=21,mn-n2=-12.求下列代数式的值:(1)m2-n2;(2)m2-2mn+n2.取特殊值代入求值9.已知(x+1)3=ax3+bx2+cx+d,求a+b+c的值.专训二:与数有关的排列规律名师点金:1.数(式)中的排列规律,关键是找出前面几个数(式)与自身序号数的关系,从而找出一般规律,进而解决问题.2.数阵中的排列规律的探究一般都是先找一个具有代表性的数(设为某个字母)作为切入点,然后找出其他数与该数的关系,并用字母表达式写出来,从而解决相关问题.数式的排列规律1.(2015·淄博)从1开始得到如下的一列数:1,2,4,8,16,22,24,28,…其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为()A.21B.22C.23D.992.(2015·包头)观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .62633.下列各图形中的三个数之间均具有相同的规律,根据此规律,图形中M 与m 、n 的关系是( )(第3题)A .M =mnB .M =n (m +1)C .M =mn +1D .M =m (n +1)数阵中的排列规律类型1长方形排列4.如图是某月的日历.(第4题)(1)带阴影的长方形框中的9个数之和与其正中间的数有什么关系?(2)不改变长方形框的大小,如果将带阴影的长方形框移至其他几个位置试一试,你还能得出上述结论吗?你知道为什么吗?(3)这个结论对于任何一个月的日历都成立吗?类型2十字排列5.将连续的奇数1,3,5,7,9,…按如图所示的规律排列.(第5题)(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.类型3斜排列6.如图所示是2016年6月份的日历.(第6题)(1)平行四边形框中的5个数的和与其中间的数有什么关系?(2)(1)题中的关系对任意这样的平行四边形框都适用吗?设中间这个数为a,请将这5个数的和用含有a的式子表示出来.专训三:图形中的排列规律名师点金:图形中的排列规律都与它所处位置的序号有关,所以解题的切入点是:先设法列出关于序号的式子,再用关于序号的式子表示图形的变化规律.图形变化规律探究1.从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()(第1题)2.一组“穿心箭”按如下规律排列,照此规律,画出第2 016支“穿心箭”是W.(第2题)图形个数规律探究类型1三角形个数规律探究3.(2015·山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……依此规律,第n个图案有个三角形(用含n 的代数式表示).(第3题)类型2四边形中个数规律探究4.(2014·重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有2个,第2个图形中面积为1的正方形有5个,第3个图形中面积为1的正方形有9个,…,按此规律,则第6个图形中面积为1的正方形的个数为()(第4题)A.20B.27C.35D.405.(2014·金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图所示方式进行拼接.(第5题)(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的有90人,则需要这样的餐桌多少张?类型3点阵图形中个数规律探究6.观察如图的点阵图形和与之相对应的等式,探究其中的规律:①4×0+1=4×1-3;②4×1+1=4×2-3;③4×2+1=4×3-3;④;⑤W.…(第6题)(1)请你在④和⑤后面的横线上分别写出相对应的等式;(2)通过猜想,写出与第n(n为正整数)个图形相对应的等式.专训四:整体思想在整式加减中的应用名师点金:整式化简时,经常把个别多项式作为一个整体(当作单项式)进行合并;整式的化简求值时,当题目中含字母的部分可以看成一个整体时,一般用整体代入法,整体代入的思想是把联系紧密的几个量作为一个整体来看的数学思想,运用这种方法,有时可使复杂问题简单化.应用整体思想合并同类项1.化简:4(x+y+z)-3(x-y-z)+2(x-y-z)-7(x+y+z)-(x-y-z).应用整体思想去括号2.计算:3x2y-[2x2z-(2xyz-x2z+4x2y)].直接整体代入3.设M=2a-3b,N=-2a-3b,则M+N=()A.4a-6bB.4aC.-6bD.4a+6b4.当x=-4时,代数式-x3-4x2-2与x3+5x2+3x-4的和是()A.0B.4C.-4D.-25.已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-12时,求3A-2B+2的值.添括号后再整体代入6.(中考·威海)若m -n =-1,则(m -n )2-2m +2n 的值是( )A .3B .2C .1D .-1 7.已知3x 2-4x +6的值为9,则x 2-43x +6的值为( )A .7B .18C .12D .98.已知-2a +3b 2=-7,则代数式9b 2-6a +4的值是 W. 9.已知a +b =7,ab =10,则式子(5ab +4a +7b )-(4ab -3a )的值为 W.10.已知14x+5-21x2=-2,求式子6x2-4x+5的值.11.当x=2时,多项式ax3-bx+5的值是4,求当x=-2时,多项式ax3-bx+5的值.特殊值法代入12.已知(2x+3)4=a0x4+a1x3+a2x2+a3x+a4,求:(1)a0+a1+a2+a3+a4的值;(2)a0-a1+a2-a3+a4的值;(3)a0+a2+a4的值.专训五:整式加减常见的热门考点名师点金:本章的主要内容有整式的定义及其相关概念,整式的运算等,学好这些内容为后面学习整式乘法打好基础.而在中考命题中,对这些内容的考查常与其他知识相结合,主要以填空、选择题的形式出现.整式的概念1.下列说法正确的是( )A .整式就是多项式B .π是单项式C .x 4+2x 3是七次二项式D .3x -15是单项式2.若5a 3b n 与-52a mb 2是同类项,则mn 的值为( )A .3B .4C .5D .63.-13πx 2y 的系数是 ,次数是 W.整式的加减运算4.下列正确的是()A.7ab-7ba=0B.-5x3+2x3=-3C.3x+4y=7xyD.4x2y-4xy2=05.当a=-2,b=-1时,代数式1-|b-a|的值是()A.0B.-2C.2D.46.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()(第6题)A.4m cmB.4n cmC.2(m+n)cmD.4(m-n)cm7.化简:(1)5x-(2x-3y);(2)-3a+[2b-(a+b)].8.先化简,再求值:(1)43a-⎝⎛⎭⎪⎪⎫2a-23a2-⎝⎛⎭⎪⎪⎫-23a+13a2,其中a=-14;(2)2(2x-3y)-(3x+2y+1),其中x=2,y=-1 2 .9.有这样一道题目:计算13x2-⎝⎛⎭⎪⎪⎫3x2+3xy-35y2+(83x2+3xy+25y2)的值,其中x=-12,y=2.甲同学把“x=-12”错抄成了“x=12”,他的计算结果也是正确的,你知道这是怎么回事吗?整式的应用10.可以表示“比a的平方的3倍大2的数”的是()A.a2+2B.3a2+2C.(3a+2)2D.3a(a+2)211.某养殖场2015年底的生猪出栏价格是每千克a元,受市场影响,2016年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()A.(1-15%)(1+20%)a元B.20%(1-15%)a元C.(1+15%)(1-20%)a元D.15%(1+20%)a元12.大客车上原有(4a-2b)人,中途下车一半人,又上车若干人,这时车上共有(8a-5b)人,那么上车乘客是人.(用含a,b的代数式表示)13.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有人.(用含m的代数式表示)14.若一个长方形的长是a+b,它的宽比长短a-b(a>b),则这个长方形的周长是W.15.某服装厂有三个加工车间,9月份的生产情况是:第一车间加工服装x 套,第二车间加工的服装套数比第一车间的3倍少8套,第三车间加工的服装套数是第一车间的一半,你能求出9月份三个车间共加工多少套服装吗?当x=600时,三个车间共加工多少套服装?数学思想方法的应用类型1整体思想16.若a2+2a=1,则2a2+4a-1=W.17.已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为W.18.已知2x2-5x+4=5,求式子(15x2-18x+4)-(-3x2+19x-32)-8x的值.类型2数形结合思想19.已知有理数a,b,c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是()(第19题)A.a+cB.c-aC.-a-cD.a+2b-c20.观察图中正方形四个顶点所标数的规律,可知2 016应标在()(第20题)A.第503个正方形的左下角B.第503个正方形的右下角C.第504个正方形的左上角D.第504个正方形的右下角21.若单项式-3x a-b y5与单项式2xy5a+b的和仍是单项式,则a+b=W.类型3转化思想22.已知A=-3x2-2mx+3x+1,B=2x2+2mx-1,且2A+3B的值与x无关,求m的值.探究规律23.观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,…,这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为W.24.用黑、白两种正六边形地面瓷砖按如图所示规律拼成若干个图案,则第n个图案中有白色地面瓷砖块.(第24题)25.用如图(a)所示的三种不同花色的地砖铺成如图(b)的地面图案.(1)用①+②+③+④+⑤+⑥+⑦+⑧+⑨的方法计算地面面积,请列出整式并化简.(2)你有更简便的计算方法吗?请你列出式子.(3)你认为由(1)(2)两种方法得到的两个式子有什么关系?为什么?(第25题)答案专训一1.4 9002.解:(1)当a=3,b=2时,a2+2ab+b2=32+2×3×2+22=25,(a+b)2=(3+2)2=25;当a=-2,b=-1时,a2+2ab+b2=(-2)2+2×(-2)×(-1)+(-1)2=9,(a+b)2=[(-2)+(-1)]2=9;当a=4,b=-3时,a2+2ab+b2=42+2×4×(-3)+(-3)2=1,(a+b)2=(4-3)2=1.(2)a2+2ab+b2=(a+b)2.3.解:原式=A-2A+2B+4(B-C)=A-2A+2B+4B-4C=-A+6B -4C.因为A=1-x2,B=x2-4x-3,C=5x2+4,所以原式=x2-1+6x2-24x-18-4(5x2+4)=-13x2-24x-35.当x=-1时,原式=-13×(-1)2-24×(-1)-35=-13+24-35=-24.4.解:由条件|x-2|+(y+1)2=0,得x-2=0且y+1=0,所以x=2,y =-1.原式=-4x+6y2+5x-5y2-1=x+y2-1.当x=2,y=-1时,原式=2+(-1)2-1=2.5.解:6x-9y-5=3(2x-3y)-5=3×5-5=10. 6.解:因为当x=2时,多项式ax3-bx+1的值是-17,所以8a-2b+1=-17.所以8a-2b=-18.当x=-1时,12ax-3bx3-5=-12a+3b-5=(-12a+3b)-5=-32 (8a-2b)-5=-32×(-18)-5=22.7.解:由x2-xy=-3,得2x2-2xy=-6①;由2xy-y2=-8,得6xy -3y2=-24②.①+②,得(2x2-2xy)+(6xy-3y2)=(-6)+(-24)=-30,即2x2+4xy -3y2=-30.8.解:(1)因为m2-mn=21,mn-n2=-12,所以m2-n2=(m2-mn)+(mn-n2)=21-12=9.(2)因为m2-mn=21,mn-n2=-12,所以m2-2mn+n2=(m2-mn)-(mn-n2)=21-(-12)=21+12=33.9.解:令x=0,得(0+1)3=d,所以d=1.再令x=1,得(1+1)3=a+b +c+d,所以a+b+c+d=8.所以a+b+c=8-1=7.专训二1.A点拨:由题意知这列数为1,2,4,8,16,22,24,28,36,42,44,48,56,62,64,68,76,82,84,88,96,…,故小于100的个数为21.2.C点拨:观察数据,发现第n个数为n22n-1,再将n=6代入计算即可求解.3.D4.解:(1)带阴影的长方形框中的9个数之和是其正中间的数的9倍.(2)带阴影的长方形框中的9个数之和仍是其正中间数的9倍,理由如下:设带阴影的长方形框的正中间的数为x,则其余8个数分别为x-8,x-7,x-6,x-1,x+1,x+6,x+7,x+8,带阴影的长方形框中的9个数之和为(x -8)+(x-7)+(x-6)+(x-1)+x+(x+1)+(x+6)+(x+7)+(x+8)=9x,所以带阴影的长方形框中的9个数之和是其正中间的数的9倍.(3)这个结论对于任何一个月的日历都成立.5.解:(1)十字框中的五个数的平均数与15相等.(2)这五个数的和能等于315.设正中间的数为x,则上面的数为x-10,下面的数为x+10,左边的数为x-2,右边的数为x+2.令x+(x-10)+(x+10)+(x-2)+(x+2)=315.解得x=63.这五个数分别是53、61、63、65、73.6.解:(1)平行四边形框中的5个数的和是平行四边形框中间的数的5倍;(2)适用.因为中间的数为a,所以其余4个数分别为a-12,a-6,a+6,a+12,它们的和为(a-12)+(a-6)+a+(a+6)+(a+12)=5a.专训三1.B 2.3.(3n+1) 点拨:方法1:因为4=1+3×1,7=1+3×2,10=1+3×3,…,所以第n个图案有1+3×n=3n+1(个)三角形.方法2:因为4=4+0×3,7=4+1×3,10=4+2×3,…,所以第n个图案有4+(n-1)×3=3n+1(个)三角形.4.B5.解:(1)1张长方形餐桌的四周可坐4+2=6(人),2张这样的餐桌拼接起来,四周可坐4×2+2=10(人),3张这样的餐桌拼接起来,四周可坐4×3+2=14(人),…n张这样的餐桌拼接起来,四周可坐(4n+2)人.所以4张这样的餐桌拼接起来,四周可坐4×4+2=18(人),8张这样的餐桌拼接起来,四周可坐4×8+2=34(人).(2)设需要这样的餐桌x张,由题意得4x+2=90,解得x=22.答:需要这样的餐桌22张.6.解:(1)④4×3+1=4×4-3 ⑤4×4+1=4×5-3(2)4(n-1)+1=4n-3(n为正整数).点拨:结合图形观察①、②、③中等式左右两边,发现有规律可循.等式左边都是比式子顺序数少1的数的4倍,再加上1;而等式右边,恰好是式子顺序数的4倍减3,这样④、⑤中的等式可以写出,进而我们可以归纳出第n个图形相对应的等式为4(n-1)+1=4n-3(n为正整数).专训四1.解:原式=-3(x+y+z)-2(x-y-z)=-3x-3y-3z-2x+2y+2z=-5x-y-z.2.解:原式=3x2y-2x2z+(2xyz-x2z+4x2y)=3x2y-2x2z+2xyz-x2z+4x2y=7x2y-3x2z+2xyz.3.C 4.D5.解:(1)3A-2B+2=3(2a2-a)-2(-5a+1)+2=6a2-3a+10a-2+2=6a2+7a.(2)当a=-12时,原式=6a2+7a=6×⎝⎛⎭⎪⎪⎫-122+7×⎝⎛⎭⎪⎪⎫-12=-2.6.A点拨:原式=(m-n)2-2(m-n)=(-1)2-2×(-1)=3. 7.A8.-17 点拨:9b2-6a+4=3(3b2-2a)+4=3×(-7)+4=-17.9.5910.解:因为14x +5-21x 2=-2,所以14x -21x 2=-7,所以3x 2-2x =1.所以6x 2-4x +5=2(3x 2-2x)+5=7.11.解:当x =2时,23×a -2b +5=4,即8a -2b =-1.当x =-2时,ax 3-bx +5=(-2)3×a -(-2)×b +5=-8a +2b +5=-(8a -2b)+5=-(-1)+5=6.点拨:求多项式的值时,有时给出相应字母的值,直接求值;有时不能求出字母的值,就需要观察已知与所求之间的关系,有时可将已知条件和所求式子经过适当变形后,运用整体代入的方法求解.12.解:(1)将x =1代入(2x +3)4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4,得a 0+a 1+a 2+a 3+a 4=(2+3)4=625.(2)将x =-1,代入(2x +3)4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4,得a 0-a 1+a 2-a 3+a 4=(-2+3)4=1.(3)因为(a 0+a 1+a 2+a 3+a 4)+(a 0-a 1+a 2-a 3+a 4)=2(a 0+a 2+a 4), 所以625+1=2(a 0+a 2+a 4),所以a 0+a 2+a 4=313.点拨:直接求各项系数所组成的式子的值是行不通的,通过观察各式的特点,通过适当地赋予x 特殊值可以求出.专训五1.B 2.D 3.-13π;3 4.A 5.A 6.B 点拨:设小长方形的长为a cm ,宽为b cm ,则上面的长方形周长为:2(m -a +n -a) cm ,下面的长方形周长为:2(m -2b +n -2b) cm ,则总周长为[4m +4n -4(a +2b)] cm .因为a +2b =m(由题图可知),所以周长和=4m +4n -4(a +2b)=4n(cm ).7.解:(1)原式=5x -2x +3y =3x +3y.(2)原式=-3a +(2b -a -b)=-3a +b -a =-4a +b.8.解:(1)原式=43a -2a +23a 2+23a -13a 2=13a 2. 当a =-14时,原式=13a 2=13×⎝ ⎛⎭⎪⎪⎫-142=148. (2)原式=4x -6y -3x -2y -1=x -8y -1.当x =2,y =-12时,原式=x -8y -1=2-8×⎝ ⎛⎭⎪⎪⎫-12-1=5. 9.解:原式=13x 2-3x 2-3xy +35y 2+83x 2+3xy +25y 2=⎝ ⎛⎭⎪⎪⎫13-3+83x 2+(-3+3)xy +⎝ ⎛⎭⎪⎪⎫35+25y 2=y 2,由于化简的结果中不含字母x ,故原多项式的值与x 的值无关,因而无论甲把x 的值错抄成什么数,只要y 值没错,结果都是正确的.10.B 11.A12.(6a -4b) 13.(2m +3) 14.2a +6b15.解:x +(3x -8)+12x =x +3x -8+12x =92x -8(套)当x =600时,92x -8=92×600-8=2 692. 答:9月份三个车间共加工⎝ ⎛⎭⎪⎪⎫92x -8套服装,当x =600时,三个车间共加工2 692套服装.16.1 17.618.解:因为2x 2-5x +4=5,所以2x 2-5x =1.所以(15x 2-18x +4)-(-3x 2+19x -32)-8x=18x 2-45x +36=9(2x 2-5x)+36=9×1+36=45.19.A 20.D 21.122.解:2A +3B =2(-3x 2-2mx +3x +1)+3(2x 2+2mx -1)=(2m +6)x -1.因为2A +3B 的值与x 无关,所以2m +6=0,即m =-3.23.(n +2)2-n 2=4(n +1)24.(4n +2)25.解:(1)x +1+x +1+x +1+x +1+x 2=x 2+4x +4.(2)有.因为题图(b )是正方形,边长为x +2,所以面积为(x +2)2.(3)x 2+4x +4=(x +2)2.因为图形的面积不变.初中数学试卷。
沪科版数学七年级上册:第四章直线与角整合提升密码

沪科版数学七年级上册:第四章直线与角整合提升密码小等问题时,由于题目中没有给出具体的图形,而根据题意又可能出现多种情况,就应不重不漏地分情况加以讨论,这种思想称为分类讨论思想.需要进行分类讨论的题目,综合性一般较强.)分类思想在线段的计算中的应用1.已知线段AB=12,在AB上有C,D,M,N四点,且AC∶CD∶DB=1∶2∶3,AM=12AC,DN=14DB,求线段MN的长.2.如图,点O为原点,点A对应的数为1,点B对应的数为-3.(1)若点P在数轴上(不与A,B重合),且PA+PB=6,求点P对应的数;(2)若点M在数轴上(不与A,B重合),且MA∶MB=1∶3,求点M对应的数;(3)若点A的速度为5个单位长度/秒,点B的速度为2个单位长度/秒,点O的速度为1个单位长度/秒,A,B,O同时向右运动,几秒后,点O恰为线段AB的中点?(第2题)分类思想在角的计算中的应用3.如图,已知∠AOC=2∠BOC,∠AOC的余角比∠BOC小30°.(1)求∠AOB的度数;(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数.(第3题)4.已知OM和ON分别平分∠AOC和∠BOC.(1)如图,若OC在∠AOB内部,探究∠MON与∠AOB的数量关系;(2)若OC在∠AOB外部,且OC不与OA,OB重合,请你画出图形,并探究∠MON与∠AOB的数量关系.(提示:分三种情况讨论)(第4题)专训三:几种常见的热门考点名师点金:本章知识从大的方面可分为两部分,第一部分是立体几何的初步知识,第二部分是平面图形的认识,这些都是几何学习的基础.本章主要考查立体图形的识别,图形的展开与折叠,直线、射线、线段及角的有关计算.立体图形的平面展开图是中考中常见考点,通常以选择,填空形式呈现.立体图形的识别1.在①球体;②柱体;③圆锥;④棱柱;⑤棱锥中,必是多面体(指由四个或四个以上多边形所围成的立体图形)的是()A.①②③④⑤B.②和③C.④D.④和⑤2.如图所示的立体图形中,是柱体的是________.(填序号)(第2题)图形的展开与折叠3.小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的表面展开图可能是()(第3题)4.如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体(第4题)的容积是(包装材料厚度不计)()A.40×40×70B.70×70×80C.80×80×80D.40×70×80直线、射线、线段5.下列关于作图的语句中正确的是()A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB相交6.如图,已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB的长度之比为()(第6题)A.3∶4B.2∶3C.3∶5D.1∶27.开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为________________________.8.乘火车从A站出发,沿途经过4个车站方可到达B站,那么需要安排________种不同的车票.9.如图,已知AB和CD的公共部分BD=13AB=14CD,线段AB,CD的中点E,F之间的距离是10 cm,求 AB,CD的长.(第9题)角及角的有关计算10.有下列说法:(1)两条射线所组成的图形叫做角;(2)一条射线旋转而成的图形叫做角;(3)两边成一条直线的角是平角;(4)平角是一条直线.其中正确的个数是()A.1 B.2 C.3 D.411.4点10分,时针与分针的夹角为()A.55°B.65°C.70°D.以上结论都不对12.如图所示,两块三角板的直角顶点O重合在一起,且OB恰好平分∠COD,则∠AOD的度数是________度.(第12题)13.若一个角的余角比它的补角的12少20°,则这个角的度数为________.14.如图,O是直线AB上一点,OC,OD是从O点引出的两条射线,OE 平分∠AOC,∠BOC∶∠AOE∶∠AOD=2∶5∶8,求∠BOD的度数.(第14题)数学思想方法的应用a.数形结合思想15.往返于A,B两个城市的客车,中途有三个停靠站.(1)共有多少种不同的票价(任何两站票价均不相同)?(2)要准备多少种车票?b.方程思想16.互为补角的两个角的度数之比是5∶4,这两个角的度数分别是多少.17.如图,C,D,E将线段AB分成2∶3∶4∶5四部分,M,P,Q,N 分别是AC,CD,DE,EB的中点,且MN=21,求线段PQ的长度.(第17题) c.分类讨论思想18.已知同一平面内四点,过其中任意两点画直线,仅能画4条,则这四个点的位置关系是()A.任意三点不在同一条直线上B.四点在同一条直线上C .最多三点在同一条直线上D .三点在同一条直线上,第四点在这条直线外19.已知一条射线OA ,若从点O 再引两条射线OB 和OC ,使∠AOB =80°,∠BOC =40°,若OD 平分∠AOC ,则∠BOD 等于________.d .转化思想20.如图所示,一观测塔的底座部分是四棱柱,现要从下底面A 点修建钢筋扶梯,经过点M ,N 到点D′,再进入顶部的观测室,已知AB =BC =CD ,试确定使扶梯的总长度最小的点M ,N 的位置.(第20题)答案专训一1.解:(1)3;2;1;3;2;1;6 (2)4;3;2;1;4;3;2;1;10 (3)n (n -1)2(4)七年级进行辨论赛的有6个班,类似于一条直线上有6个点,每两个班赛一场,类似于两点之间有一条线段,那么七年级这6个班的辩论赛共要进行6×(6-1)2=15(场). (5)从A 站出发,中间经过5个车站后方可到达B 站,类似于一条直线上有7个点,此时共有线段7×(7-1)2=21(条),即A ,B 两站之间最多有21种不同的票价.因为来往两站的车票起点与终点不同,所以A ,B 两站之间需要安排21×2=42(种)不同的车票.2.解:(1)10;1+2+3+4;16;1+1+2+3+4+5(2)45;56(3)当直线条数为n(n ≥2)时,最多有1+2+3+…+(n -1)=n (n -1)2(个)交点; 把平面最多分成1+1+2+3+…+n =⎣⎢⎡⎦⎥⎤n (n +1)2+1部分.3.解:(1)显然这条射线会和∠BAC的两条边都组成一个角,这样一共就有1+2=3(个)角.(2)再在图①的角的内部增加一条射线,即为图②,显然这条射线会和图①中的三条射线再组成三个角,所以图②中共有1+2+3=6(个)角.(3)在角的内部作三条射线,即在图②中再增加一条射线,同样这条射线会和图②中的四条射线再组成四个角,所以图③中共有1+2+3+4=10(个)角.(4)综上可知,如果在一个角的内部作n条射线,则图中共有1+2+3+…+n+(n+1)=(n+1)(n+2)2(个)角.专训二1.解:因为AB=12,AC∶CD∶DB=1∶2∶3,所以AC=16AB=12×16=2,CD=13AB=12×13=4,DB=12AB=12×12=6.因为AM=12AC,DN=14DB,所以MC=12AC=2×12=1,DN=14DB=6×14=32.①当点N在点D右侧时,如图①,MN=MC+CD+DN=1+4+32=132;(第1题)②当点N在点D左侧时,如图②,MN=MC+CD-DN=1+4-32=72.综上所述,线段MN的长为132或72.点拨:首先要根据题意,画出图形.由于点N的位置不确定,故要考虑分类讨论.2.解:(1)①当点P在A,B之间时,不合题意,舍去;②当点P在A点右边时,点P对应的数为2;③当点P在B点左边时,点P对应的数为-4.(2)①当点M在线段AB上时,点M对应的数为0;②当点M在线段BA的延长线上时,点M对应的数为3;③当点M在线段AB的延长线上时,不合题意,舍去.(3)设运动x秒时,点B运动到点B′,点A运动到点A′,点O运动到点O′,此时O′A′=O′B′,点A′,B′在点O′两侧,则BB′=2x,OO′=x,AA′=5x,所以点B′对应的数为2x-3,点O′对应的数为x,点A′对应的数为5x+1,所以O′A′=5x+1-x=4x+1,O′B′=x-(2x-3)=3-x,所以4x+1=3-x,解得x=0.4.即0.4秒后,点O恰为线段AB的中点.3.解:(1)设∠BOC=x,则∠AOC=2x,由题意得90°-2x+30°=x,解得x=40°.所以∠BOC=40°.因为∠AOC=2∠BOC,所以∠AOB=∠BOC=40°.(2)情况一:当OD在∠AOC内部时,如图①,由(1)易得∠AOC=80°.因为∠AOC=4∠AOD,所以∠AOD=20°,所以∠COD=∠AOC-∠AOD=80°-20°=60°.(第3题)情况二:当OD在∠AOC外部时,如图②,由(1)易得∠AOC=80°.因为∠AOC=4∠AOD,所以∠AOD=20°,所以∠COD=∠AOD+∠AOC=20°+80°=100°.综上所述,∠COD的度数为60°或100°.4.解:(1)因为OM和ON分别平分∠AOC和∠BOC,所以∠MOC=12∠AOC,∠NOC=12∠BOC.所以∠MON=∠MOC+∠NOC=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB.(2)情况一:如图①,因为OM和ON分别平分∠AOC和∠BOC,所以∠MOC =12∠AOC =12(∠AOB +∠BOC),∠NOB =12∠BOC. 所以∠MON =∠MOB +∠NOB =∠MOC -∠BOC +12∠BOC =∠MOC -12∠BOC =12(∠AOB +∠BOC)-12∠BOC =12∠AOB. (第4题)情况二:如图②,因为OM 和ON 分别平分∠AOC 和∠BOC ,所以∠AOM =12∠AOC ,∠NOC =12∠BOC =12(∠AOB +∠AOC)=12∠AOB +12∠AOC. 所以∠MON =∠AOM +∠AON =12∠AOC +(∠NOC -∠AOC)=∠NOC -12∠AOC =12∠AOB +12∠AOC -12∠AOC =12∠AOB. 情况三:如图③,因为OM 和ON 分别平分∠AOC 和∠BOC ,所以∠MOC =12∠AOC ,∠NOC =12∠BOC. 所以∠MON =∠MOC +∠NOC =12∠AOC +12∠BOC =12(∠AOC +∠BOC)=12(360°-∠AOB)=180°-12∠AOB. 综上所述,∠MON 与∠AOB 的数量关系是∠MON =12∠AOB 或∠MON =180°-12∠AOB. 专训三 1.D 2.②③ 3.C 4.D 5.D 6.A7.两点确定一条直线 8.309.解:因为BD =13AB =14CD ,所以CD =43AB. 因为F 是CD 的中点,所以DF =12CD =12×43AB =23AB.因为E是AB的中点,所以EB=12AB,所以ED=EB-DB=12AB-13AB=16AB.所以EF=ED+DF=16AB+23AB=56AB=10 cm,所以AB=12 cm,所以CD=43AB=16 cm.10.A11.B12.13513.40°14.解:设∠BOC=2x°,则∠AOE=5x°,∠AOD=8x°.因为O是直线AB上一点,所以∠AOB=180°,所以∠COE=(180-7x)°.因为OE平分∠AOC,所以∠AOE=∠COE,即5x=180-7x,解得x=15,所以∠AOD=8×15°=120°,所以∠BOD=180°-∠AOD=180°-120°=60°.15.解:(1)根据题意画出示意图,如图所示,线段有AC,AD,AE,AB,CD,CE,CB,DE,DB,EB,共有10条,因此有10种不同的票价.(2)同一路段,往返时起点和终点正好相反,所以要准备20种车票.(第15题)16.解:设这两个角的度数分别为5x°、4x°.由题意得5x+4x=180,9x=180,x=20.5x=100,4x=80.答:这两个角的度数分别为100°和80°.17.解:设AC=2x,则CD=3x,DE=4x,EB=5x,由M,N分别是AC,EB的中点,得MC=x,EN=2.5x.由题意,得MN=MC+CD+DE+EN=x+3x+4x+2.5x=21,即10.5x=21,所以x=2,则PQ=12CD+12DE=3.5x=7.点拨:解答此题的关键是设出未知数,利用线段长度的比及中点建立方程,求出未知数的值,进而求解.体现了方程思想在解题中的应用.18.D19.60°或20°20.解:画出四棱柱的侧面展开图,点M,N的位置如图(2)所示,则M,N的位置在四棱柱的位置如图(1)所示.(第20题)。
最新北师大版八年级下册数学整合提升密码 (3)

专训1.因式分解的七种常见应用名师点金:因式分解是整式的恒等变换的一种重要变形,它与整式的乘法是两个互逆的过程,是代数恒等变形的重要手段,在有理数计算、式子的化简求值、几何等方面起着重要作用.用于简便计算1.利用简便方法计算:23×2.718+59×2.718+18×2.718.2.计算:2 0162-4 034×2 016+2 0172.用于化简求值3.已知x-2y=3,x2-2xy+4y2=11.求下列各式的值:(1)xy;(2)x2y-2xy2.用于判断整除4.随便写出一个十位数字与个位数字不相等的两位数,把它的十位数字与个位数字对调得到另一个两位数,并用较大的两位数减去较小的两位数,所得的差一定能被9整除吗?为什么?用于判断三角形的形状5.已知a,b,c是△ABC的三边长,且满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状.用于比较大小6.已知A=a+2,B=a2+a-7,其中a>2,试比较A与B的大小.用于解方程(组)7.已知大正方形的周长比小正方形的周长多96 cm,大正方形的面积比小正方形的面积多960 cm2.请你求这两个正方形的边长.用于探究规律8.观察下列各式:12+(1×2)2+22=9=32,22+(2×3)2+32=49=72,32+(3×4)2+42=169=132,….你发现了什么规律?请用含有字母n(n为正整数)的等式表示出来,并说明理由.专训2.因式分解的六种常见方法名师点金:因式分解的常用方法有:(1)提公因式法;(2)公式法;(3)提公因式法与公式法的综合运用.在对一个多项式因式分解时,首先应考虑提公因式法,然后考虑公式法.对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等.提公因式法题型1公因式是单项式的因式分解1.若多项式-12x2y3+16x3y2+4x2y2的一个因式是-4x2y2,则另一个因式是() A.3y+4x-1 B.3y-4x-1C.3y-4x+1 D.3y-4x2.(2015·广州)分解因式:2mx-6my=__________.3.把下列各式分解因式:(1)2x2-xy;(2)-4m4n+16m3n-28m2n.题型2公因式是多项式的因式分解4.把下列各式分解因式:(1)a(b-c)+c-b;(2)15b(2a-b)2+25(b-2a)2.公式法题型1直接用公式法5.把下列各式分解因式:(1)-16+x4y4;(2)(x2+y2)2-4x2y2;(3)(x2+6x)2+18(x2+6x)+81.题型2先提再套法6.把下列各式分解因式:(1)(x-1)+b2(1-x);(2)-3x7+24x5-48x3.题型3先局部再整体法7.分解因式:(x+3)(x+4)+(x2-9).题型4先展开再分解法8.把下列各式分解因式:(1)x(x+4)+4;(2)4x(y-x)-y2.分组分解法9.把下列各式分解因式:(1)m 2-mn +mx -nx ;(2)4-x 2+2xy -y 2.拆、添项法10.分解因式:x 4+14.整体法题型1 “提”整体11.分解因式:a(x +y -z)-b(z -x -y)-c(x -z +y).题型2 “当”整体12.分解因式:(x +y)2-4(x +y -1).题型3“拆”整体13.分解因式:ab(c2+d2)+cd(a2+b2).题型4“凑”整体14.分解因式:x2-y2-4x+6y-5.换元法15.分解因式:(1)(a2+2a-2)(a2+2a+4)+9;(2)(b2-b+1)(b2-b+3)+1.专训3.全章热门考点整合应用名师点金:本章的主要内容是利用提公因式法和公式法分解因式,在各类考试中,既有单独考查因式分解的,也有利用因式分解的知识进行化简求值的,题型有选择题和填空题,也有探索与创新题,命题难易度以基础和中档题为主.本章主要考点可概括为:一个概念,两个方法,三个应用,三个技巧,一种思想.一个概念——因式分解1.下列由左边到右边的变形,属于因式分解的是() A .(a +5)(a -5)=a 2-25B .mx +my +2=m(x +y)+2C .x 2-9=(x +3)(x -3)D .2x 2+1=2x 2⎝ ⎛⎭⎪⎫1+12x 2两个方法方法1 提公因式法2.求下列代数式的值:(1)x 2y -xy 2,其中x -y =1,xy =2 018;(2)8x 3(x -3)+12x 2(3-x),其中x =32;(3)a 2b +2a 2b 2+ab 2,其中a +b =23,ab =2.方法2 公式法3.把下列各式因式分解:(1)16x 2-25y 2;(2)x 2-4xy +4y 2;(3)(a +2b)2-(2a -b)2;(4)(m 2+4m)2+8(m 2+4m)+16;(5)81x 4-y 4.三个应用应用1 应用因式分解计算4.计算:(1)2.1×31.4+62×3.14+0.17×314.(2)⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-132×⎝ ⎛⎭⎪⎫1-142×…×⎝ ⎛⎭⎪⎫1-11002; (3)-101×190+1012+952.应用2 应用因式分解解整除问题5.对于任意自然数n ,(n +7)2-(n -5)2是否能被24整除?应用3 应用因式分解解几何问题6.已知△ABC 的三边长a ,b ,c 满足a 2-b 2=ac -bc ,试判断△ABC 的形状.7.若一个三角形的三边长分别为a ,b ,c ,且满足a 2+2b 2+c 2-2ab -2bc =0,试判断该三角形的形状,并说明理由.三个技巧技巧1 分组后用提公因式法8.因式分解:(1)a 2-ab +ac -bc ; (2)x 3+6x 2-x -6.技巧2 拆、添项后用公式法9.因式分解:(1)x 2-y 2-2x -4y -3; (2)x 4+4.技巧3 换元法10.因式分解:(m 2-2m -1)(m 2-2m +3)+4.一种思想——整体思想11.已知a +b =1,ab =316,求代数式a 3b -2a 2b 2+ab 3的值.答案专训11.解:23×2.718+59×2.718+18×2.718=(23+59+18)×2.718=100×2.718=271.8.2.解:2 0162-4 034×2 016+2 0172=2 0162-2×2 016×2 017+2 0172=(2 016-2 017)2=1.3.解:(1)∵x -2y =3,∴x 2-4xy +4y 2=9,∴(x 2-2xy +4y 2)-(x 2-4xy +4y 2)=11-9,即2xy =2,∴xy =1.(2)x 2y -2xy 2=xy(x -2y)=1×3=3.4.解:所得的差一定能被9整除.理由如下:设该两位数个位上的数字是b ,十位上的数字是a ,且a>b ,则这个两位数是10a +b ,将十位数字与个位数字对调后的数是10b +a ,则这两个两位数中,较大的数减较小的数的差是(10a +b)-(10b +a)=9a -9b =9(a -b),所以所得的差一定能被9整除.5.解:∵a 2+b 2+c 2-ab -bc -ac =0,∴2a 2+2b 2+2c 2-2ab -2bc -2ac =0.即a 2-2ab +b 2+b 2-2bc +c 2+a 2-2ac +c 2=0.∴(a -b)2+(b -c)2+(a -c)2=0.又∵(a -b)2≥0,(b -c)2≥0,(a -c)2≥0,∴a -b =0,b -c =0,a -c =0,即a =b =c ,∴△ABC 为等边三角形.6.解:B -A =a 2+a -7-a -2=a 2-9=(a +3)(a -3).因为a >2,所以a +3>0,从而当2<a <3时,a -3<0,所以A >B ;当a =3时,a -3=0,所以A =B ;当a >3时,a -3>0,所以A <B.点拨:根据a 的取值范围分类讨论是正确解此题的关键.7.解:设大正方形和小正方形的边长分别为x cm ,y cm ,根据题意,得⎩⎨⎧4x -4y =96,①x 2-y 2=960,②由①得x -y =24,③由②得(x +y)(x -y)=960,④把③代入④得x +y =40,⑤由③⑤得方程组⎩⎨⎧x -y =24,x +y =40,解得⎩⎨⎧x =32,y =8. 答:大正方形的边长为32 cm ,小正方形的边长为8 cm .点拨:根据目前我们所学的知识,还无法解方程组⎩⎨⎧4x -4y =96,x 2-y 2=960,但是我们可以利用因式分解,把这个问题转化为解关于x ,y 的二元一次方程组的问题.8.解:规律:n 2+[n(n +1)]2+(n +1)2=[n(n +1)+1]2.理由如下:n 2+[n(n +1)]2+(n +1)2=[n(n +1)]2+2n 2+2n +1=[n(n +1)]2+2n(n +1)+1=[n(n +1)+1]2.专训21.B 2.2m(x -3y)3.解:(1)原式=x(2x -y).(2)原式=-4m 2n(m 2-4m +7).点拨:如果一个多项式第一项含有“-”号,一般要将“-”号一并提出,但要注意括号里面的各项要改变符号.4.解:(1)原式=a(b -c)-(b -c)=(b -c)(a -1).(2)原式=15b(2a -b)2+25(2a -b)2=5(2a -b)2(3b +5).点拨:将多项式中的某些项变形时,要注意符号的变化.5.解:(1)原式=x 4y 4-16=(x 2y 2+4)(x 2y 2-4)=(x 2y 2+4)(xy +2)(xy -2).(2)原式=(x 2+y 2+2xy)(x 2+y 2-2xy)=(x +y)2(x -y)2.(3)原式=(x 2+6x +9)2=[(x +3)2]2=(x +3)4.点拨:因式分解必须分解到不能再分解为止,如第(2)题不能分解到(x 2+y 2+2xy)(x 2+y 2-2xy)就结束了.6.解:(1)原式=(x -1)-b 2(x -1)=(x -1)(1-b 2)=(x -1)(1+b)(1-b).(2)原式=-3x 3(x 4-8x 2+16)=-3x 3(x 2-4)2=-3x 3(x +2)2(x -2)2.7.解:原式=(x +3)(x +4)+(x +3)·(x -3)=(x +3)[(x +4)+(x -3)]=(x +3)(2x +1).点拨:解此题时,表面上看不能分解因式,但通过局部分解后,发现有公因式可以提取,从而将原多项式因式分解.8.解:(1)原式=x 2+4x +4=(x +2)2.(2)原式=4xy -4x 2-y 2=-(4x 2-4xy +y 2)=-(2x -y)2.点拨:通过观察发现此题不能直接分解因式,但运用整式乘法法则展开后,便可以运用公式法因式分解.9.解:(1)原式=(m 2-mn)+(mx -nx)=m(m -n)+x(m -n)=(m -n)(m +x).(2)原式=4-(x 2-2xy +y 2)=22-(x -y)2=(2+x -y)(2-x +y).10.解:原式=x 4+x 2+14-x 2=⎝ ⎛⎭⎪⎫x 2+122-x 2 =⎝ ⎛⎭⎪⎫x 2+x +12(x 2-x +12). 点拨:此题直接分解因式很困难,考虑到添加辅助项使其符合公式特征,因此将原式添上x 2与-x 2两项后,便可通过分组使其符合平方差公式的结构特征,从而将原多项式进行因式分解.11.解:原式=a(x +y -z)+b(x +y -z)-c(x +y -z)=(x +y -z)(a +b -c).12.解:原式=(x +y)2-4(x +y)+4=(x +y -2)2.点拨:本题把x +y 这一整体“当”作完全平方公式中的字母a.13.解:原式=abc 2+abd 2+cda 2+cdb 2=(abc 2+cda 2)+(abd 2+cdb 2)=ac(bc +ad)+bd(ad +bc)=(bc +ad)(ac +bd).点拨:本题“拆”开原式中的两个整体,重新分组,可谓“柳暗花明”,出现转机.14.解:原式=(x 2-4x +4)-(y 2-6y +9)=(x -2)2-(y -3)2=(x +y -5)(x -y +1).点拨:这里巧妙地把-5拆成4-9.“凑”成(x 2-4x +4)和(y 2-6y +9)两个整体,从而运用公式法分解因式.15.解:(1)设a 2+2a =m ,则原式=(m -2)(m +4)+9=m 2+4m -2m -8+9=m 2+2m +1=(m +1)2=(a 2+2a +1)2=(a +1)4.(2)设b 2-b =n ,则原式=(n +1)(n +3)+1=n 2+3n +n +3+1=n 2+4n +4=(n +2)2=(b 2-b +2)2.专训31.C2.解:(1)x 2y -xy 2=xy(x -y).把x -y =1,xy =2 018代入上式,原式=xy(x -y)=2 018.(2)8x 3(x -3)+12x 2(3-x)=8x 3(x -3)-12x 2(x -3)=4x 2(x -3)(2x -3).当x =32时,原式=4×⎝ ⎛⎭⎪⎫322×⎝ ⎛⎭⎪⎫32-3×⎝ ⎛⎭⎪⎫2×32-3=0. (3)a 2b +2a 2b 2+ab 2=ab(a +2ab +b)=ab[(a +b)+2ab].把a +b =23,ab =2代入上式,原式=2×⎝ ⎛⎭⎪⎫23+2×2=913. 3.解:(1)原式=(4x +5y)(4x -5y).(2)原式=(x -2y)2.(3)原式=[(a +2b)+(2a -b)]·[(a +2b)-(2a -b)]=(3a +b)(3b -a).(4)原式=[(m 2+4m)+4]2=[(m +2)2]2=(m +2)4.(5)原式=(9x 2-y 2)(9x 2+y 2)=(3x +y)(3x -y)(9x 2+y 2).4.解:(1)原式=2.1×31.4+6.2×31.4+1.7×31.4=31.4×(2.1+6.2+1.7)=31.4×10=314.(2)原式=⎝ ⎛⎭⎪⎫1+12×⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1+13×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1+14×⎝ ⎛⎭⎪⎫1-14×…×⎝ ⎛⎭⎪⎫1+1100×⎝ ⎛⎭⎪⎫1-1100 =32×12×43×23×54×34×…×101100×99100=12×101100=101200.(3)原式=1012-2×101×95+952=(101-95)2=36.5.解:(n +7)2-(n -5)2=[(n +7)+(n -5)][(n +7)-(n -5)]=(n +7+n -5)(n +7-n +5)=(2n +2)×12=24(n +1).因为24(n +1)中含有24这个因数,所以(n +7)2-(n -5)2能被24整除.6.解:因为a 2-b 2=ac -bc ,所以(a -b)(a +b)=c(a -b).所以(a -b)(a +b)-c(a -b)=0.所以(a -b)(a +b -c)=0.因为a ,b ,c 是△ABC 的三边长,所以a +b -c ≠0.所以a -b =0.所以a =b.所以△ABC 为等腰三角形.7.解:此三角形是等边三角形.理由如下:∵a 2+2b 2+c 2-2ab -2bc =0,∴a 2-2ab +b 2+b 2-2bc +c 2=0.即(a -b)2+(b -c)2=0.∴a -b =0且b -c =0.∴a =b 且b =c.∴a =b =c.∴此三角形是等边三角形.8.思路导引:(1)按公因式分组,第一、二项有公因式a ,第三、四项有公因式c ,各自提取公因式后均剩下(a -b);(2)按系数特点分组,由系数特点知第一、三项为一组,第二、四项为一组.解:(1)原式=a(a-b)+c(a-b)=(a-b)(a+c).(2)原式=(x3-x)+(6x2-6)=x(x2-1)+6(x2-1)=(x2-1)(x+6)=(x+1)(x-1)(x +6).9.解:(1)原式=x2-y2-2x-4y-4+1=(x2-2x+1)-(y2+4y+4)=(x-1)2-(y +2)2=[(x-1)+(y+2)]·[(x-1)-(y+2)]=(x+y+1)(x-y-3).(2)原式=x4+4x2-4x2+4=(x4+4x2+4)-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).点拨:拆项和添项是在因式分解难以进行的情况下的一种辅助方法,通过适当的“拆项”或“添项”后再分组,以达到最终因式分解的目的.10.解:令m2-2m=y,则原式=(y-1)(y+3)+4=y2+2y-3+4=y2+2y+1=(y+1)2.将y=m2-2m代入上式,则原式=(m2-2m+1)2=(m-1)4.11.解:a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2=ab[(a+b)2-4ab].因为a+b=1,ab=316,所以原式=316×⎝⎛⎭⎪⎫12-4×316=364.点拨:恒等变形的最后一步应用(a-b)2=a2-2ab+b2=a2+2ab+b2-4ab=(a+b)2-4ab,这一变形的目的是使所求的式子里含a+b这样的项.。
整合提升密码(87)

专训一:分式求值的方法名师点金:分式的求值既突出了式子的化简计算,又考查了数学方法的运用,在计算中若能根据特点,灵活选用方法,往往会收到意想不到的效果.常见的分式求值方法有:设参数求值、活用公式求值、整体代入法求值、巧变形法求值等.直接代入法求值1.(2015·鄂州改编)先化简,再求值:⎝ ⎛⎭⎪⎫2a +1+a +2a2-1÷a a -1,其中a =5.活用公式求值2.已知x 2-5x +1=0,求x 4+1x4的值.3.已知x +y =12,xy =9,求x2+3xy +y2x2y +xy2的值.整体代入法求值4.已知xy+z+yz+x+zx+y=1,且x+y+z≠0,求x2y+z+y2x+z+z2x+y的值.巧变形法求值5.已知实数x满足4x2-4x+1=0,求2x+12x的值.设参数求值6.已知x2=y3=z4≠0,求x2-y2+2z2xy+yz+xz的值.专训二:六种常见的高频考点名师点金:本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现.分式方程是中考的必考内容之一,一般着重考查解分式方程,并要求会用增根的意义解题,考题常以解答题的形式出现,有时也会出现在选择题和填空题中.分式的概念及分式有、无意义的条件1.在式子2x ,13(x +y),x π-3,5a -x ,x +3(x +1)(x -2)中,分式有( ) A .2个 B .3个 C .4个 D .5个2.若分式2x -5有意义,则x 的取值范围是( ) A .x ≠5 B .x ≠-5C .x >5D .x >-53.若分式x2-13x -3的值为0,则( ) A .x =-1 B .x =1 C .x =±1 D .x =04.如果一个分式含有两个字母a ,b ,但不论a ,b 为何值,分式始终有意义,这样的分式可以是________(只填一个符合条件的分式即可).5.若当x =1时,分式x +ax -b 的值为0;当x =3时,分式x +a x -b无意义,则a +b 的值等于________.分式的基本性质6.若将分式2aa +b 中,a ,b 的值同时扩大到原来的5倍,则此分式的值( ) A .是原来的10倍 B .是原来的5倍C .是原来的15 D .不变 7.约分:(1)a2-4a2-4a +4; (2)x -1x2-2x +1.8.通分:(1)8-3m2n ,35mn2; (2)a -1a2+2a +1,4a2-1.分式的有关运算9.下列运算中,正确的个数是( ) ①m4n3·n4m2=m n ; ②x -y x +y ÷(y -x)·1x -y =-1x2-y2;③m a -n b =m -n a -b ; ④a -2a2-4+1a +2=2a -2.A .0B .1C .2D .310.计算a +1a2-2a +1÷⎝ ⎛⎭⎪⎫1+2a -1的结果是( ) A .1a -1 B .1a +1C .1a2-1D .1a2+111.(2015·临沂)计算:a a +2-4a2+2a =__________.12.化简:⎝ ⎛⎭⎪⎫1-1m +1(m +1)=________.13.计算下列各题.(1)4a a2-1+1+a 1-a -1-a 1+a ;(2)m m +3-69-m2÷2m -3.14.先化简x2+2x x -1·⎝ ⎛⎭⎪⎫1-1x ,然后请自选一个你喜欢的x 的值代入原式的值.整数指数幂15.下列计算正确的是( )A .x 2·x -3=2xB .x 2÷x 6=1x4 C .(-x-3)2=x 6D .⎝ ⎛⎭⎪⎫-13-2=1916.下列说法正确的是( ) A .⎝ ⎛⎭⎪⎫-12-2与22互为相反数 B .⎝ ⎛⎭⎪⎫-12-2与-22互为相反数 C .⎝ ⎛⎭⎪⎫-12-2与2-2互为相反数 D .⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-12-2-220的值为1 17.计算(π-3)0+(-2)-3=________.18.在电子显微镜下测得一个圆球体细胞的直径是5×10-5 cm ,则由2×105个这样的细胞排成的细胞链的长是________ cm .可化为一元一次方程的分式方程及其应用19.分式方程x x -1=23x -3的解是( ) A .x =-16 B .x =23 C .x =13 D .x =5620.若关于x 的方程x +2x -1=1+ax -2的解为x =3,则a 等于( )A .1B .32C .0D .-1221.(2015·菏泽)解分式方程:2x2-4+xx -2=1.22.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务,这是记者与驻军工程指挥官的一段对话:(第22题)通过这段对话,请你求出该地驻军原来每天加固的米数.数学思想方法的应用a 数形结合思想23.如图,点A ,B 在数轴上,它们所表示的数分别是-4,2x +23x -5,且点A ,B 到原点的距离相等,求x 的值.(第23题) b 整体思想24.已知实数a满足a2+4a-8=0,求1a+1-a+3a2-1·a2-2a+1a2+6a+9的值.c 消元思想25.已知2x-3y+z=0,3x-2y-6z=0,且z≠0,求的值.答案专训一1.解:原式=[2a+1+a+2(a+1)(a-1)]·a-1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1.当a =5时,原式=35+1=12.2.解:由x 2-5x +1=0得x ≠0,∴x +1x =5. ∴x 4+1x4=⎝ ⎛⎭⎪⎫x2+1x22-2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +1x 2-22-2=527.点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.3.解:x2+3xy +y2x2y +xy2=x2+2xy +y2+xy xy (x +y )=(x +y )2+xyxy (x +y ) 因为x +y =12,xy =9,所以原式=122+99×12=1712. 4.解:因为x +y +z ≠0,所以给已知等式的两边同时乘(x +y +z),得x (x +y +z )y +z +y (x +y +z )z +x+z (x +y +z )x +y=x +y +z ,即x2y +z +x (y +z )y +z +y2z +x +y (z +x )z +x +z2x +y +z (x +y )x +y =x +y +z.所以x2y +z +y2z +x +z2x +y +x +y +z =x +y +z.所以x2y +z +y2z +x +z2x +y =0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.5.解:∵4x 2-4x +1=0,∴(2x -1)2=0,∴2x =1.∴原式=1+11=2.6.解:设x 2=y 3=z4=k ≠0,则x =2k ,y =3k ,z =4k.所以x2-y2+2z2xy +yz +xz=(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k226k2=2726. 专训二1.B 2.A 3.A4.ba2+1(答案不唯一) 5.2 6.D7.解:(1)原式=(a +2)(a -2)(a -2)2=a +2a -2.(2)原式=x -1(x -1)2=1x -1. 8.解:(1)最简公分母是15m 2n 2.∴8-3m2n =-40n 15m2n2,35mn2=9m 15m2n2. (2)最简公分母是(a +1)2(a -1). ∴a -1a2+2a +1=(a -1)2(a +1)2(a -1), 4a2-1=4(a +1)(a +1)2(a -1). 9.B 10.A 11.a -2a 12.m 13.解:(1)原式=4a(a +1)(a -1)-(a +1)2(a -1)(a +1)-(a -1)(1-a )(a +1)(a -1)=4a -(a +1)2+(a -1)2a2-1=0.(2)原式=m m +3-6(3-m )(3+m )·m -32 =m m +3+3m +3=1.14.解:原式=x (x +2)x -1·x -1x =x +2.由题知x 不能取0,1,x 不妨取5,当x =5时,原式=x +2=7.15.B 16.B 17.78 18.10 19.B 20.B21.解:方程两边同时乘x 2-4,得2+x(x +2)=x 2-4,解得x =-3. 经检验,x =-3是原方程的解. 22.解:设原来每天加固x 米,根据题意得600x+4 800-6002x=9,解得x =300.检验:当x =300时,2x ≠0(或分母不等于0),∴x =300是原方程的解,故该地驻军原来每天加固300米.点拨:解决与对话有关的实际问题,应根据对话的内容确定相等关系,根据相等关系列出方程.23.解:由题意得2x +23x -5=4.去分母,得2x +2=4(3x -5).解得x =2.2,经检验,x =2.2是原方程的根.所以x 的值是2.2.点拨:本题运用了数形结合思想,通过观察数轴上A ,B 两点的位置情况并结合已知条件“点A ,B 到原点的距离相等”可知,A ,B 两点所表示的数互为相反数,于是可建立方程求出x 的值.24.解:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3)=4(a +1)(a +3)=4a2+4a +3.由a 2+4a -8=0得a 2+4a =8,故原式=411.点拨:本题根据已知条件求出a 的值很困难,因此考虑将已知条件变形后整体代入化简后的式子.25.解:由2x -3y +z =0,3x -2y -6z =0,z ≠0,得到⎩⎪⎨⎪⎧2x -3y =-z ,3x -2y =6z.解得⎩⎪⎨⎪⎧x =4z ,y =3z.所以,原式=16z2+9z2+z232z2+9z2-z2=.点拨:本题将z 看成已知数,解方程组求出x 与y ,然后代入原式消去x ,y 这两个未知数,从而简便求值,体现了消元思想.。
最新北师大版七年级下册数学整合提升密码 (5)

专训1变量之间的关系的表示法名师点金:1.变量之间的关系的表示方法共有三种:表格法,关系式法,图象法,它们分别从数、式和形的角度反映了变量之间的关系的本质.2.根据图象读取信息时,要先读懂题意,弄清图象横、纵轴所表示的实际意义,看图象上反映的是哪个变量随哪个变量变化,再将题意和图象结合起来进行分析,注意对图象中特殊的点、线段等的分析.表格法1.地表以下的岩层的温度和它处的深度有以下关系:深度/km 1 2 3 4 5 6 7温度/℃55 90 125 160 195 230 265(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)深度每增加1 km,温度增加多少摄氏度?(3)估计10 km深处的岩层温度是多少摄氏度.关系式法2.已知池中有水600 m3,每时抽出50 m3.(1)写出剩余水的体积Q(m3)与时间t(h)之间的关系式.(2)8 h后,池中还有多少水?(3)几时后,池中还有100 m3的水?3.如图,在长方形MNPQ中,MN=6,PN=4,动点R从点N出发,沿N→P→Q→M运动至点M处停止.设点R运动的路程为x,三角形MNR的面积为y.(1)当x=3时,y=______;当x=12时,y=______;当y=6时,x=________.(2)分别求当0<x<4,4≤x≤10,10<x<14时,y与x的关系式.【导学号:60052024】(第3题)图象法4.某车间的甲、乙两名工人分别同时生产同种零件,他们生产的零件数量y(个)与生产时间t(h)之间的关系如图所示.(1)根据图象填空:①甲、乙中,________先完成40个零件的生产任务;在生产过程中,________因机器故障停止生产________h.②当t=________时,甲、乙生产的零件个数相等.(2)谁在哪一段时间内的生产速度最快?求该段时间内他每时生产零件的个数.(第4题)专训2全章热门考点整合应用名师点金:变量之间的关系是初中数学的重要内容,是学习函数知识的基础,是各类考试常考内容,题型常以填空题、选择题的形式出现.本章考点可概括为:三个关系,一种思想.三个关系关系1表格与变量之间的关系1.2016年1~12月份某地的大米价格如下表所示:月份/月 1 2 3 4 5 6平均价格/(元/千克) 4.6 4.8 4.8 5.0 4.8 4.4月份/月7 8 9 10 11 12平均价格/(元/千克) 4.0 3.8 3.6 3.6 3.8 4.0(1)表中列出的是哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大?(3)该地区哪一段时间大米平均价格在上涨?哪一段时间大米平均价格在下跌?(4)从表中可以得到该地区大米平均价格变化方面的哪些信息?年底的平均价格比年初是降了还是涨了?关系2关系式与变量之间的关系2.小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本以上,从第11本开始按标价的70%卖.乙超市的优惠条件是从第1本开始就按标价的85%卖.(1)当小明要买20本时,到哪个超市购买较省钱?(2)写出甲超市中,收款y甲(元)与购买本数x(本)(x>10)的关系式.(3)小明现有24元钱,最多可买多少本?关系3图象与变量之间的关系3.一辆汽车行驶在某一直路上,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系如图所示,请根据图象回答下列问题:(1)汽车共行驶了多少千米?(2)汽车在行驶途中停留了多长时间?(3)汽车在每段行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回时用了多长时间?(第3题)一种思想——数形结合思想4.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(L)与时间x(min)之间的关系如图所示.根据图象解答下列问题:(1)洗衣机的进水时间是多少?清洗时洗衣机中的水量是多少?(2)已知洗衣机的排水速度为19 L/min.如果排水时间是2 min,求排水结束时洗衣机中剩下的水量.(第4题)答案专训11.解:(1)反映了地表以下的岩层的温度和它处的深度之间的关系,深度是自变量,温度是因变量.(2)深度每增加1 km,温度增加35 ℃.(3)估计10 km深处的岩层温度是370 ℃.2.解:(1)Q=600-50 t(0≤t≤12).(2)当t=8时,Q=600-50×8=200.即8 h后,池中还有水200 m3.(3)当Q=100时,100=600-50 t,解得t=10.即10 h后,池中还有100 m3的水.3.解:(1)9;6;2或12(2)当0<x<4时,y=12×6x=3x;当4≤x≤10时,y=12×6×4=12;当10<x<14时,y=12×6×(14-x)=42-3x.4.解:(1)①甲;甲;2②3或5.5(2)甲在4~7 h内的生产速度最快;因为40-107-4=10(个),所以他在这段时间内每时生产10个零件.专训21.解:(1)表中列出的是该地区大米平均价格与月份两个变量之间的关系,月份是自变量,大米的平均价格是因变量.(2)自变量是9月,10月时,因变量的值最小,平均价格为3.6元/千克,自变量是4月时,因变量的值最大,平均价格为5.0元/千克.(3)从1月至4月,10月至12月大米的平均价格在上涨,从4月至9月大米的平均价格在下跌.(4)大米的平均价格随时间(月份)的变化而变化,价格随市场的需求而变动,年底比年初的平均价格降了.点拨:观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.(4)题从表格中获取的信息不唯一,合理即可.2.解:(1)买20本时,在甲超市购买需用10×1+10×1×70%=17(元), 在乙超市购买需用20×1×85%=17(元), 所以买20本到两家超市购买花的钱一样. (2)y 甲=10×1+(x -10)×1×70%=0.7x +3(x >10).(3)由题意知乙超市收款y 乙(元)与购买本数x (本)间的关系式为y 乙=x ×1×85%=1720x .当y 甲=24时,24=0.7x 甲+3,x 甲=30;当y 乙=24时,24=1720x 乙,x 乙≈28.2,因此在乙超市最多可买28本. 所以拿24元钱最多可以买30本练习本(在甲超市购买). 点拨:注意关系式与方程的综合应用. 3.解:(1)240 km .(2)汽车在行驶途中停留了2-1.5=0.5(h ).(3)AB 段的行驶速度为80÷1.5=1603(km /h );BC 段的行驶速度为0;CD 段的行驶速度为(120-80)÷(3-2)=40(km /h );DE 段的行驶速度为120÷(4.5-3)=80(km /h ).(4)4.5-3=1.5(h ).点拨:根据图象获取信息,应正确把握横轴、纵轴表示的意义,准确地观察图象的变化及图象各部分所表示的实际意义.4.解:(1)洗衣机的进水时间是4 min ,清洗时洗衣机中的水量是40 L . (2)剩余水量为40-2×19=2(L ).。
山龙系统密码口令

山龙系统密码口令
(实用版)
目录
1.山龙系统密码口令的背景介绍
2.山龙系统密码口令的构成方式
3.如何设置一个安全的山龙系统密码口令
4.如何破解或找回遗忘的山龙系统密码口令
5.结论
正文
1.山龙系统密码口令的背景介绍
山龙系统是一款广泛应用于各个领域的专业密码管理软件。
用户可以为每个账户设置一个独立的密码口令,以保护账户的安全。
然而,这也给用户带来了记忆和管理的困扰。
因此,了解如何设置和管理山龙系统密码口令至关重要。
2.山龙系统密码口令的构成方式
一个安全的山龙系统密码口令应包含大写字母、小写字母、数字和特殊符号,总长度至少为 8 个字符。
这样的组合可以增加密码的复杂度,提高账户的安全性。
3.如何设置一个安全的山龙系统密码口令
(1)选择一个容易记忆的句子或短语,将其中的单词转换为对应的大写字母、小写字母、数字和特殊符号。
例如,将“我是山龙系统的用户”转换为“WoShiShanLongTongXiDeYongHu”。
(2)在设置密码时,可以添加一些额外的字符,如生日、电话号码等,以增加密码的独特性。
(3)定期更换密码,以降低密码被破解的风险。
4.如何破解或找回遗忘的山龙系统密码口令
(1)如果忘记了密码,可以尝试通过邮箱或手机号码等方式找回。
(2)如果无法找回密码,可以尝试使用一些密码破解工具。
但请注意,使用这类工具存在一定风险,可能导致账户信息泄露。
5.结论
山龙系统密码口令是保护账户安全的重要手段。
用户应学会如何设置一个安全的密码口令,并定期更换,以降低账户被破解的风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专训1 事件的认识名师点金:判断一个事件的类型的方法:判断一个事件是不可能事件、必然事件还是随机事件,其标准在于结果是否在试验前预先确定,与这个试验是否进行无关,一般来说,描述已被确定的真理或客观存在的事实的事件是必然事件,描述违背已被确定的真理或客观存在的事实的事件是不可能事件,否则是随机事件.随机事件又分为等可能事件和非等可能事件.确定事件不可能事件1.下列事件中,属于不可能事件的是( )A.某投篮高手投篮一次就进球B.打开电视机,正在播放世界杯足球比赛C.掷一次骰子,向上的一面出现的点数不大于6D.在1个标准大气压下,90 ℃的水会沸腾2.下列事件中,不可能事件有(填序号).①度量三角形的内角和,结果是360°;②随意翻一本书的某页,这页的页码是奇数;③一个袋子里装有红、白、黄三种颜色的小球,从中摸出黑球;④如果=,那么a=b;⑤测量某天的最低气温,结果为-180 ℃.必然事件3.(2015·怀化)下列事件中是必然事件的是( )A.地球绕着太阳转B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视机,正在播放新闻4.下列成语所描述的事件是必然事件的是( )A.瓮中捉鳖B.拔苗助长C.守株待兔D.水中捞月5.指出下列事件中,哪些是必然事件,哪些是不可能事件.这些事件是确定事件吗?①两条平行线被第三条直线所截,同位角相等;②367人中至少有2人的生日相同;③没有水分,种子也会发芽;④某运动员百米赛跑的成绩是5秒;⑤同种电荷相互排斥;⑥通常情况下,高铁比普通列车快;⑦用长度分别为3 ,5 ,8 的三条线段能围成三角形.随机事件6.下列事件是随机事件的是( )A.太阳从东边升起B.长为3 ,5 ,9 的三条线段能围成一个三角形C.明天会下雨D.两直线相交,对顶角相等7.“任意打开一本200页的数学书,正好是第50页”,这是事件(填“随机”或“必然”).8.指出下列随机事件中,哪些是等可能事件,哪些是非等可能事件.①在一个装着3个白球、3个黑球(每个球除颜色外都相同)的袋中摸出一个球,摸出白球与摸出黑球;②掷一枚均匀的骰子,朝上一面的点数分别为1,2,3,4,5,6;③从4张扑克牌中(4张牌的花色分别为红桃、方块、梅花、黑桃)随意抽取一张,这张牌分别是红桃、方块、梅花、黑桃;④掷一枚图钉,钉尖着地与钉尖朝上.专训2 不可预测事件的概率名师点金:不可预测事件的概率一般都通过事件发生的频率去估计.用频率估计概率时,一般观察所计算的各频率数值的变化趋势,即观察当试验次数很大时各数值主要集中在哪个数附近,这个常数就是所求概率的估计值.频率的稳定性1.从某批玉米种子里抽取6次,在同一条件下进行发芽试验,有关数据如下表:抽取种子粒数种子发芽数发芽频率100 85 0.850400 298 0.745800 652 0.8151 000 793 0.7932 000 1 604 0.8025 000 4 005 0.801根据以上数据可以估计:该批玉米种子发芽的概率为.(结果精确到0.1)2.一名运动员在练习投篮时,命中的结果如下表:练习次数30 60 90 150 200 300 400命中次数27 45 78 118 161 239 321命中频率(1)填表;(结果精确到0.001)(2)根据表格求这名运动员投篮命中的频率稳定在哪个常数附近.(结果精确到0.1)利用不可预测事件的概率解决实际问题(数形结合思想) 3.一个木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某试验小组做了棋子下掷试验,试验数据如下表:试验次数20 40 60 80 100 120 140 160 “兵”字面14 38 47 52 66 78 88朝上频数相应频率0.70 0.45 0.63 0.59 0.52 0.56 0.55(1)请将数据表补充完整.(2)在下图中画出“兵”字面朝上的频率分布折线图.(3)如果试验继续进行下去,根据上表的数据,这个试验的频率将稳定在它的概率附近,请你估计这个概率是多少?(4)小明和小丽想利用这一试验进行比赛,为了使比赛结果对双方公平,请你为他们制定比赛的规则.(第3题)专训3 可预测事件的概率名师点金:可预测事件的概率一般都可以利用公式P(A)=来计算,在具体运用时要先计算出所有可能的结果数,再计算出所求事件发生可能出现的结果数.简单事件的概率1.一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色外其他完全相同,则从袋子中随机摸出的一个球是黄球的概率为( )2.小明制作了十张卡片,上面分别标有1~10这十个数,从这十张卡片中随机抽取一张,上面所标数恰好能被4整除的概率是( )利用图形的面积求概率3.(中考·凉山州)如图,有三个同心圆,由里向外的半径依次是2 ,4 ,6 ,将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是.(第3题)(第4题)4.如图,A,B是边长为1的小正方形组成的网格的两个格点,在格点上任意放置点C,恰好能使△的面积为1的概率是.与转盘有关的概率5.如图是芳芳自己设计的可以自由转动的转盘,转盘被等分成12个扇形,上面有12个有理数,求转出的数是:(1)正数的概率;(2)负数的概率;(3)绝对值小于6的数的概率;(4)相反数大于或等于8的数的概率.(第5题)6.如图是一个被等分成6份的转盘,你能否在转盘上涂上颜色,使得自由转动的转盘满足以下条件:(1)转盘停止后,指针落在红色和黄色区域的概率相等;(2)转盘停止后,指针落在蓝色区域的概率大于落在红色区域的概率.请你设计方案满足上述两个条件.(第6题)探究生活中实际问题的概率(列举法)7.小丽准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,2,0这三个数字组成,但具体顺序忘记了,她第一次就拨对电话的概率是( )8.合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则学生B坐在2号座位上的概率是.(第8题)9.如图是小明从自己家到姨妈家再到外公家的乘车方式图.问小明从自己家到姨妈家再到外公家始终乘坐同一种交通工具的概率是多少?(第9题)专训4 全章热门考点整合应用名师点金:本章的主要内容是感受生活中的随机现象,掌握事件的分类及其发生的可能性,并进一步体会不确定事件发生的可能性大小;通过试验感受不确定事件发生的频率的稳定性,理解概率的意义;能求一些简单不确定事件发生的概率.本章内容是以后进一步学习统计与概率的基础.本章考点可概括为:一个判断,两个计算,两个应用.一个判断——事件类型的判断1.下列事件中,哪些是必然发生的?哪些是可能发生的?哪些是不可能发生的?(1)早上的太阳从东方升起;(2)掷一枚六个面分别刻有1~6的数字的均匀正方体骰子,向上一面的点数是4;(3)熟透的苹果自然飞上天;(4)打开电视机,正在播放少儿节目.两个计算用频率估计概率2.口袋里有14个球,除颜色外都相同,其中1个红球,4个黄球,9个绿球.从口袋里随意摸出1球,将摸到红球,黄球,不是红球,不是黄球的可能性按从小到大的顺序排列.简单事件概率的计算3.如图,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区域的概率是多少?(2)求指针指向的数字能被3整除的概率.(第3题)两个应用判断游戏是否公平4.小樱和小贝一起做游戏.在一个不透明的袋子中放有4个红球和3个蓝球(这些球除颜色外均相同),从袋子中随机摸出1个球,摸到红球小樱获胜,摸到蓝球小贝获胜.这个游戏对双方公平吗?为什么?5.在如图的图案中,黑白两色的直角三角形全等.游戏规则是在一定距离处向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.你认为这个游戏公平吗?为什么?(第5题)概率模型的设计6.如图是两个可以自由转动的转盘,转盘被等分成若干个扇形.请你利用这两个转盘设计如下游戏:(第6题)(1)使概率等于;(2)使概率等于1 4;(3)利用一个转盘设计最大概率的游戏.答案1.D 2.①③⑤345.解:必然事件:①②⑤⑥;不可能事件:③④⑦,这些事件都是确定事件.6.C7.随机8.解:等可能事件:①②③;非等可能事件:④.1.0.8 点拨:观察题中表格可以发现,随着试验中抽取种子粒数的不断增加,该批玉米种子的发芽频率逐渐稳定在0.8附近.2.解:(1)表中依次填:0.900,0.750,0.867,0.787,0.805,0.797,0.803.(2)根据表格可以看出,随着练习次数的增加,这名运动员投篮命中的频率稳定在0.8附近.3.解:(1)所填数字为:18;0.55(2)画出折线图如图:(第3题)(3)根据表中数据,频率为0.70,0.45,0.63,0.59,0.52,0.55,0.56,0.55,稳定在0.55左右,故估计概率的大小为0.55.(4)根据(3)可知,“兵”字出现的概率为0.55,小明和小丽想利用这一游戏进行比赛,为了使比赛结果对双方公平,可制定比赛的规则为:出现“兵”小明得4.5分,否则小丽得5.5分,投掷10次,得分高者获胜.点拨:(4)题答案不唯一.1.B2.C点拨:在十张卡片上面所标数中,恰好能被4整除的有标有4,8的卡片,共2张,共有1 0张卡片,则随机抽一张,上面所标数恰能被4整除的概率为2÷10=,故选C.3点拨:题图中整个圆盘的面积为π·62=36π(2),阴影圆环的面积为π·42-π·22=12π(2).所以飞镖落在阴影圆环内的概率P==.(第4题)4点拨:根据三角形的面积公式可知,欲使△的面积为1 ,且顶点C也在网格格点上,那么此三角形的底边、高的值应该分别为2,1或1,2,结合题目所给图形,可以找到全部符合条件的点.如图,图形中有36个格点,其中有8个格点可以使△的面积为1,所以P(△的面积为1)==.此题容易漏解或者选取了不在网格格点上的点作为点C造成错解.5.解:(1)P(正数)==.(2)P(负数)=.(3)P(绝对值小于6)=.(4)P(相反数大于或等于8)==.点拨:依据各类数所占的份数确定概率.6.解:要满足P(指针落在红色区域)=P(指针落在黄色区域),P(指针落在蓝色区域)>P(指针落在红色区域),则只要使转盘中红色区域和黄色区域的份数相同,同时蓝色区域的份数大于红色区域的份数即可,所以应为1份红色区域,1份黄色区域,4份蓝色区域.7.C点拨:此题用到了列举法.因为5,2,0这三个数字排列共有520,502,025,052,205,250六种情况,符合的只有一种,所以第一次就拨对电话的概率是.8点拨:因为学生B,C,D坐到1,2,3号座位上共有6种情况:B,C,D;B,D,C;C,B,D;C,D,B;D,B,C;D,C,B.其中有2种情况(C,B,D;D,B ,C)B坐在2号座位上,所以B坐在2号座位上的概率是=.9.解:小明从自己家到姨妈家再到外公家乘坐交通工具的组合有:(火车、汽车)、(火车、火车)、(火车、飞机)、(汽车、汽车)、(汽车、飞机)、(汽车、火车)、(轮船、汽车)、(轮船、火车)、(轮船、飞机)、(飞机、汽车)、(飞机、火车)、(飞机、飞机),共12种方式,始终乘坐同一种交通工具的情况有3种,所以他始终乘坐同一种交通工具的概率为=.1.解:(1)早上的太阳从东方升起这一事件是必然发生的.(2)如果掷一枚六个面分别刻有1~6的数字的均匀正方体骰子,可能会出现向上一面的点数是4,故该事件是可能发生的.(3)熟透的苹果应自然落下地,而不可能飞上天,故熟透的苹果自然飞上天这一事件是不可能发生的.(4)打开电视机,可能正在播放少儿节目,也可能在播放其他节目,故该事件是可能发生的.2.解:因为袋子中总球数固定,红球个数是1,不是红球的个数是13,黄球的个数是4,不是黄球的个数是10,所以摸到的球是红球的可能性<摸到的球是黄球的可能性<摸到的球不是黄球的可能性<摸到的球不是红球的可能性.方法总结:在一个固定数量物品的整体中,判断事件发生的可能性大小时,某种物品的数量越多,则摸到或选中该种物品的可能性就越大,即可能性大小主要看这个事件中出现这个结果的机会的大小.3.解:(1)P(指针指向奇数)==.(2)P(指针指向的数字能被3整除)==.4.解:不公平.理由如下:因为袋子中放有4个红球和3个蓝球,即7个球,所以P(小樱获胜)=,P(小贝获胜)=.又因为≠,所以游戏对双方不公平.点拨:判断游戏是否公平,关键是看双方在游戏中所关注的事件发生的概率是否相同.5.解:游戏公平.理由:在一定距离处向盘中投镖一次扎在黑、白区域的概率都是,故游戏公平.点拨:若双方获胜的概率相同,则游戏规则对双方公平.6.解:(1)转动题图中的甲转盘,停止后,指针落在红色部分的概率为.(2)转动题图中的甲转盘,停止后,指针落在蓝色部分(或黄色部分)的概率为.(3)转动题图中的乙转盘,停止后,指针落在白色区域的概率为58 .点拨:根据所设计的内容正确找到所有可能出现的结果是解决此类问题的关键.。