整合提升密码(38)

合集下载

七级数学上册 第1章 整合提升密码 (新版)沪科版

七级数学上册 第1章 整合提升密码 (新版)沪科版

专训一:比较有理数大小的方法名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.利用作差法比较1.比较1731和5293的大小.利用作商法比较2.比较-172 016和-344 071的大小.找中间量比较大小3.比较1 0072 016与1 0092 017的大小.利用倒数法比较大小4.比较1111 111和1 11111 111的大小.利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.6.比较-623,-417,-311,-1247的大小.利用数轴比较大小7.已知a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.运用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为________________________________________________________________________.利用分类讨论法比较大小9.比较a 与a3的大小.专训二:有理数中六种易错类型对有理数有关概念理解不清造成错误1.下列说法正确的是( )A .最小的正整数是0B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a2.已知|a|=7,则a=W.误认为|a|=a,忽略对字母a分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()A.负数B.负数或零C.正数或零D.正数4.已知a=8,|a|=|b|,则b的值等于()A.8B.-8C.0D.±8对括号使用不当导致错误5.计算:-7-5.6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.忽略或不清楚运算顺序7.计算:3×42+43÷2.8.计算:-81÷94×49÷(-16).9.计算:(-5)-(-5)×110÷110×(-5).乘法运算中确定符号与加法运算中的符号规律相混淆10.计算:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345.11.计算:-36×⎝ ⎛⎭⎪⎫712-56-1.除法没有分配律12.计算:24÷⎝ ⎛⎭⎪⎫13-18-16.专训三:几种常见的热门考点名师点金:本章主要学习了有理数的定义及其相关概念,有理数的运算,科学记数法与近似数等.本章内容是中考的基本考查内容之一,命题形式多以选择题和简单的计算题为主,注重对基础知识和基本技能的考查.)有理数的定义、分类1.在下列各数中:+6,-8.25,-0.49,-23,-18,负有理数有( )A .1个B .2个C .3个D .4个相反数、倒数、绝对值2.(1)化简下列各式:⎪⎪⎪⎪⎪⎪-12= ;|+(-3)|= ;-⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-35= W.(2)-5的相反数是 ;-13的绝对值是 ;54的倒数是 W.3.式子|m -3|+5的值随m 的变化而变化,当m = 时,|m -3|+5有最小值,最小值是 W.4.已知a ,b 分别是两个不同的点A ,B 所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.(1)试确定数a ,b ;(2)表示a ,b 两数的点相距多远?(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数.(第4题)有理数的大小比较5.(中考·莱芜)在-12,-13,-2,-1这四个数中,最大的数是( )A .-12 B .-13C .-2D .-16.如图,数轴上A ,B 两点分别对应有理数a ,b ,则下列结论正确的是( )(第6题)A .a <bB .a +b <0C .a -b >0D .ab >0有理数的运算7.下列等式成立的是( ) A .|-2|=2 B .-(-1)=-1C .1÷(-3)=13D .-2×3=68.若四个有理数之和的14是3,其中三个数分别是-10,+8,-6,则第四个数是( )A .+8B .-8C .+20D .+119.计算下列各题:(1)17-23÷(-2)×3;(2)2×(-5)+23-3÷12;(3)10+8÷(-2)2-(-4)×(-3);(4)(-24)÷⎝ ⎛⎭⎪⎫2232+512×⎝ ⎛⎭⎪⎫-16-0.52.非负数性质的应用10.当a 为有理数,下列说法中正确的是( ) A .⎝ ⎛⎭⎪⎫a +12 0162为正数 B .-⎝ ⎛⎭⎪⎫a -12 0162为负数 C .a +⎝ ⎛⎭⎪⎫12 0162为正数D.a2+12 016为正数11.若|a+1|+(b-2)2=0,求(a+b)9+a6的值.科学记数法、近似数的应用12.(2015·成都)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为()A.126×104B.1.26×105C.1.26×106D.1.26×10713.若一个数等于5.8×1021,则这个数的整数位数是()A.20B.21C.22D.2314.把390 000用科学记数法表示为,用科学记数法表示的数5.16×104的原数是,近似数2.236×108精确到的数位是W.15.(2015·资阳)太阳的半径约为696 000千米,用科学记数法表示为千米.数学思想方法的应用a.数形结合思想16.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c.根据图中各点位置,下列式子正确的是( )(第16题)A .(a -1)(b -1)>0B .(b -1)(c -1)>0C .(a +1)(b +1)<0D .(b +1)(c +1)<0b.转化思想17.下列各式可以写成a -b +c 的是( )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )18.计算:⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712.c.分类讨论思想19.比较2a 与-2a 的大小.有理数中的探究与创新20.(2015·德州)一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( )A .8B .9C .13D .1521.(2015·荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m =(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2 015=( )A .(31,50)B .(32,47)C .(33,46)D .(34,42)22.(2015·广东)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 W.23.(2015·绥化)填在下面各正方形(如图)中的四个数之间都有一定的规律,据此规律得出a +b +c = W.(第23题)24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.(第24题)根据此规律求:(1)这样的一个细胞经过第四个30分钟后可分裂成多少个细胞?(2)这样的一个细胞经过3小时后可分裂成多少个细胞?(3)这样的一个细胞经过n(n为正整数)小时后可分裂成多少个细胞?答案专训一1.解:因为5293-1731=5293-5193=193>0,所以5293>1731.点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方法.2.解:因为172 016÷344 071=172 016×4 07134=1 3571 344>1,所以172 016>344 071,所以-172 016<-344 071.点拨:(1)作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时,作商比较往往能起到事半功倍的效果.(2)当这两个数是负数时,可先分别求出它们的绝对值,再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3.解:因为1 0072 016<12,1 0092 017>12,所以1 0072 016<1 0092 017.点拨:对于类似的两数的大小比较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4.解:1111 111的倒数是101111,1 11111 111的倒数是1011 111,因为101111>1011 111,所以1111 111<1 11111 111.点拨:利用倒数法比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小,从而确定这两个数的大小.5.解:每个分数都加1,分别得12 015,115,12 016,116.因为12 016<12 015<116<115,所以-2 0152 016<-2 0142 015<-1516<-1415.点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了. 6.解:因为-623=-1246,-417=-1251,-311=-1244,-1244<-1246<-1247<-1251,所以-311<-623<-1247<-417. 点拨:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.7.解:把a ,-a ,b ,-b 在数轴上表示出来,如图所示,根据数轴可得-a <b <-b<a.(第7题)点拨:本题运用了数轴比较有理数的大小,在数轴上找出这几个数对应的点的大致位置,即可作出判断.8.|a +b|<|a -b|=|a|+|b| 点拨:已知a ,b 异号,不妨取a =2,b =-1或a =-1,b =2.当a =2,b =-1时,|a +b|=|2+(-1)|=1,|a -b|=|2-(-1)|=3,|a|+|b|=|2|+|-1|=3;当a =-1,b =2时,|a +b|=|(-1)+2|=1,|a -b|=|-1-2|=3,|a|+|b|=|-1|+|2|=3.所以|a +b|<|a -b|=|a|+|b|.方法总结:本题运用特殊值法解题,取特殊值时要注意所取的值既要符合题目条件又要考虑可能出现的多种情况,以本题为例,可以分为a 正、b 负和a 负、b 正两种情况.9.解:分三种情况讨论: ①当a >0时,a >a 3;②当a =0时,a =a3;③当a <0时,|a|>|a 3|,则a <a3.专训二1.D 2.±7 3.C4.D 点拨:因为|a|=|b|=8,所以b =±8. 5.解:原式=-7+(-5)=-12.6.解:原式=2+15-14+12=2920.7.解:原式=3×16+64÷2=48+32=80. 8.解:原式=-81×49×49×⎝ ⎛⎭⎪⎫-116=1.点拨:本题易出现“原式=-81÷1÷(-16)=8116”的错误.9.解:原式=(-5)-(-5)×110×10×(-5)=(-5)-25 =-30.10.解:原式=⎝ ⎛⎭⎪⎫-94×⎝ ⎛⎭⎪⎫-195 =17120.点拨:解本题时常常会出现乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆的错误.如:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345=-⎝ ⎛⎭⎪⎫94×195=-17120.11.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36 =45.12.解:原式=24÷⎝ ⎛⎭⎪⎫824-324-424 =24÷124=576.点拨:解本题时往往会出现将乘法分配律运用到除法运算中,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.专训三1.D 2.(1)12;3;-35 (2)5;13;453.3;54.解:(1)因为|a|=5,|b|=2,所以a =±5,b =±2. 由数轴可知a <b <0,所以a =-5,b =-2. (2)相距3.(3)C 点表示的数为-0.5或-234.5.B 6.C 7.A 8.C9.解:(1)原式=17-8÷(-2)×3=17-(-12)=29.(2)原式=-10+8-6=-8.(3)原式=10+8÷4-12=0.(4)原式=(-16)×964+112×⎝ ⎛⎭⎪⎫-16-14=⎝ ⎛⎭⎪⎫-94+⎝ ⎛⎭⎪⎫-1112-14=-4112. 10.D11.解:由题意得a +1=0,b -2=0,所以a =-1,b =2.所以(a +b)9+a 6=[(-1)+2]9+(-1)6=2.12.C 13.C14.3.9×105;51 600;十万位15.6.96×10516.D 17.B18.解:原式=113÷⎝ ⎛⎭⎪⎫-712-⎝⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712 =-167-337 =-7.19.解:当a <0时,2a <-2a ;当a =0时,2a =-2a ;当a >0时,2a >-2a.20.A 点拨:根据从第三个数起,每个数都等于它前面的两个数之和,可得x =1+2=3,y =x +5=3+5=8,故选A .21.B 点拨:第1个正奇数是1,第2个正奇数是3,第3个正奇数是5,…,第n 个正奇数是2n -1,因为2 015=2n -1,所以n =1 008,即2 015是从1开始的第1 008个正奇数.由题意知,第1组有1个正奇数,第2组有3个正奇数,第3组有5个正奇数,…,第i 组有(2i -1)个正奇数,第31组有31×2-1=61(个)正奇数.因为前31组正奇数的总个数为1+3+5+7+…+57+59+61=961,前32组正奇数的总个数为961+63=1 024,所以第1 008个正奇数应在第32组奇数内.又因为1 008-961=47,所以奇数2 015是第32组的第47个正奇数,故选B . 22.1021 点拨:从这组数可以看出,这组数的分子是从1开始,逐次增加1的自然数,分母是分子的2倍加1,即第n 个数是n 2n +1,所以第10个数是102×10+1=1021. 23.110 点拨:根据前三个正方形中的数的规律可知:c 所处的位置上的数是连续的奇数,所以c =9,而a 所处的位置上的数是连续的偶数,所以a =10,而b =ac +1=10×9+1=91,所以a +b +c =10+91+9=110.24.解:(1)一个细胞经过第四个30分钟后可分裂成16个细胞.(2)一个细胞经过3小时后可分裂成64个细胞.(3)一个细胞经过n(n 为正整数)小时后可分裂成22n 个细胞.。

提高密码强度的技巧和建议

提高密码强度的技巧和建议

提高密码强度的技巧和建议随着互联网的普及,我们越来越多地依赖于密码来保护我们的个人信息和在线账户。

然而,许多人在创建密码时往往忽视了密码的强度和安全性。

简单、容易猜测的密码很容易被黑客破解,给我们的信息和资产带来威胁。

因此,提高密码强度是保护我们的隐私和安全的必要措施。

下面,我将为大家分享一些提高密码强度的技巧和建议。

1. 长度与复杂度密码的长度和复杂度是提高密码强度的关键。

强密码应该包含至少8个字符,并且要使用不同类型的字符,如大小写字母、数字和特殊字符。

选择具有多个字符间隔的密码,可以增加破解难度。

2. 避免常见密码避免使用常见的密码是确保密码安全性的一部分。

黑客有可能使用常见密码的猜测攻击策略,例如“123456”、“password”等。

选择一个不常见且与自身无关的密码会更加安全。

3. 定期更改密码定期更改密码是保护个人隐私和安全的重要步骤。

建议每个月或每个季度更改一次密码,以确保账户持续得到保护。

同时,避免在多个平台上使用相同的密码,一旦一个平台被攻破,其他平台的密码也会暴露。

4. 使用密码管理工具密码管理工具可以帮助我们创建和存储复杂的密码,并将其加密保存在我们的设备中。

这样,我们就不再需要记住多个复杂的密码,只需要记住一个主密码即可。

一些常见的密码管理工具包括LastPass、Dashlane和1Password等。

5. 多因素认证多因素认证是提高账户安全性的有效措施。

除了密码之外,多因素认证还需要使用其他一种或多种登录方式,例如指纹识别、面部识别或验证码,以确保只有授权用户才能访问账户。

6. 提防社交工程社交工程是黑客获取密码的一种常见手段。

黑客可能通过钓鱼邮件、虚假网站或电话等方式,诱导用户泄露账户信息。

因此,我们要保持警惕,不要轻易相信来自不明来源的信息,并注意验证网站的真实性。

7. 安全更新和补丁保持系统、应用程序和安全软件的更新是维护密码安全的必要步骤。

及时安装更新和补丁可以修复已知的安全漏洞,提高系统的防御能力。

最新北师大版八年级下册数学整合提升密码 (3)

最新北师大版八年级下册数学整合提升密码 (3)

专训1.因式分解的七种常见应用名师点金:因式分解是整式的恒等变换的一种重要变形,它与整式的乘法是两个互逆的过程,是代数恒等变形的重要手段,在有理数计算、式子的化简求值、几何等方面起着重要作用.用于简便计算1.利用简便方法计算:23×2.718+59×2.718+18×2.718.2.计算:2 0162-4 034×2 016+2 0172.用于化简求值3.已知x-2y=3,x2-2xy+4y2=11.求下列各式的值:(1)xy;(2)x2y-2xy2.用于判断整除4.随便写出一个十位数字与个位数字不相等的两位数,把它的十位数字与个位数字对调得到另一个两位数,并用较大的两位数减去较小的两位数,所得的差一定能被9整除吗?为什么?用于判断三角形的形状5.已知a,b,c是△ABC的三边长,且满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状.用于比较大小6.已知A=a+2,B=a2+a-7,其中a>2,试比较A与B的大小.用于解方程(组)7.已知大正方形的周长比小正方形的周长多96 cm,大正方形的面积比小正方形的面积多960 cm2.请你求这两个正方形的边长.用于探究规律8.观察下列各式:12+(1×2)2+22=9=32,22+(2×3)2+32=49=72,32+(3×4)2+42=169=132,….你发现了什么规律?请用含有字母n(n为正整数)的等式表示出来,并说明理由.专训2.因式分解的六种常见方法名师点金:因式分解的常用方法有:(1)提公因式法;(2)公式法;(3)提公因式法与公式法的综合运用.在对一个多项式因式分解时,首先应考虑提公因式法,然后考虑公式法.对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等.提公因式法题型1公因式是单项式的因式分解1.若多项式-12x2y3+16x3y2+4x2y2的一个因式是-4x2y2,则另一个因式是() A.3y+4x-1 B.3y-4x-1C.3y-4x+1 D.3y-4x2.(2015·广州)分解因式:2mx-6my=__________.3.把下列各式分解因式:(1)2x2-xy;(2)-4m4n+16m3n-28m2n.题型2公因式是多项式的因式分解4.把下列各式分解因式:(1)a(b-c)+c-b;(2)15b(2a-b)2+25(b-2a)2.公式法题型1直接用公式法5.把下列各式分解因式:(1)-16+x4y4;(2)(x2+y2)2-4x2y2;(3)(x2+6x)2+18(x2+6x)+81.题型2先提再套法6.把下列各式分解因式:(1)(x-1)+b2(1-x);(2)-3x7+24x5-48x3.题型3先局部再整体法7.分解因式:(x+3)(x+4)+(x2-9).题型4先展开再分解法8.把下列各式分解因式:(1)x(x+4)+4;(2)4x(y-x)-y2.分组分解法9.把下列各式分解因式:(1)m 2-mn +mx -nx ;(2)4-x 2+2xy -y 2.拆、添项法10.分解因式:x 4+14.整体法题型1 “提”整体11.分解因式:a(x +y -z)-b(z -x -y)-c(x -z +y).题型2 “当”整体12.分解因式:(x +y)2-4(x +y -1).题型3“拆”整体13.分解因式:ab(c2+d2)+cd(a2+b2).题型4“凑”整体14.分解因式:x2-y2-4x+6y-5.换元法15.分解因式:(1)(a2+2a-2)(a2+2a+4)+9;(2)(b2-b+1)(b2-b+3)+1.专训3.全章热门考点整合应用名师点金:本章的主要内容是利用提公因式法和公式法分解因式,在各类考试中,既有单独考查因式分解的,也有利用因式分解的知识进行化简求值的,题型有选择题和填空题,也有探索与创新题,命题难易度以基础和中档题为主.本章主要考点可概括为:一个概念,两个方法,三个应用,三个技巧,一种思想.一个概念——因式分解1.下列由左边到右边的变形,属于因式分解的是() A .(a +5)(a -5)=a 2-25B .mx +my +2=m(x +y)+2C .x 2-9=(x +3)(x -3)D .2x 2+1=2x 2⎝ ⎛⎭⎪⎫1+12x 2两个方法方法1 提公因式法2.求下列代数式的值:(1)x 2y -xy 2,其中x -y =1,xy =2 018;(2)8x 3(x -3)+12x 2(3-x),其中x =32;(3)a 2b +2a 2b 2+ab 2,其中a +b =23,ab =2.方法2 公式法3.把下列各式因式分解:(1)16x 2-25y 2;(2)x 2-4xy +4y 2;(3)(a +2b)2-(2a -b)2;(4)(m 2+4m)2+8(m 2+4m)+16;(5)81x 4-y 4.三个应用应用1 应用因式分解计算4.计算:(1)2.1×31.4+62×3.14+0.17×314.(2)⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-132×⎝ ⎛⎭⎪⎫1-142×…×⎝ ⎛⎭⎪⎫1-11002; (3)-101×190+1012+952.应用2 应用因式分解解整除问题5.对于任意自然数n ,(n +7)2-(n -5)2是否能被24整除?应用3 应用因式分解解几何问题6.已知△ABC 的三边长a ,b ,c 满足a 2-b 2=ac -bc ,试判断△ABC 的形状.7.若一个三角形的三边长分别为a ,b ,c ,且满足a 2+2b 2+c 2-2ab -2bc =0,试判断该三角形的形状,并说明理由.三个技巧技巧1 分组后用提公因式法8.因式分解:(1)a 2-ab +ac -bc ; (2)x 3+6x 2-x -6.技巧2 拆、添项后用公式法9.因式分解:(1)x 2-y 2-2x -4y -3; (2)x 4+4.技巧3 换元法10.因式分解:(m 2-2m -1)(m 2-2m +3)+4.一种思想——整体思想11.已知a +b =1,ab =316,求代数式a 3b -2a 2b 2+ab 3的值.答案专训11.解:23×2.718+59×2.718+18×2.718=(23+59+18)×2.718=100×2.718=271.8.2.解:2 0162-4 034×2 016+2 0172=2 0162-2×2 016×2 017+2 0172=(2 016-2 017)2=1.3.解:(1)∵x -2y =3,∴x 2-4xy +4y 2=9,∴(x 2-2xy +4y 2)-(x 2-4xy +4y 2)=11-9,即2xy =2,∴xy =1.(2)x 2y -2xy 2=xy(x -2y)=1×3=3.4.解:所得的差一定能被9整除.理由如下:设该两位数个位上的数字是b ,十位上的数字是a ,且a>b ,则这个两位数是10a +b ,将十位数字与个位数字对调后的数是10b +a ,则这两个两位数中,较大的数减较小的数的差是(10a +b)-(10b +a)=9a -9b =9(a -b),所以所得的差一定能被9整除.5.解:∵a 2+b 2+c 2-ab -bc -ac =0,∴2a 2+2b 2+2c 2-2ab -2bc -2ac =0.即a 2-2ab +b 2+b 2-2bc +c 2+a 2-2ac +c 2=0.∴(a -b)2+(b -c)2+(a -c)2=0.又∵(a -b)2≥0,(b -c)2≥0,(a -c)2≥0,∴a -b =0,b -c =0,a -c =0,即a =b =c ,∴△ABC 为等边三角形.6.解:B -A =a 2+a -7-a -2=a 2-9=(a +3)(a -3).因为a >2,所以a +3>0,从而当2<a <3时,a -3<0,所以A >B ;当a =3时,a -3=0,所以A =B ;当a >3时,a -3>0,所以A <B.点拨:根据a 的取值范围分类讨论是正确解此题的关键.7.解:设大正方形和小正方形的边长分别为x cm ,y cm ,根据题意,得⎩⎨⎧4x -4y =96,①x 2-y 2=960,②由①得x -y =24,③由②得(x +y)(x -y)=960,④把③代入④得x +y =40,⑤由③⑤得方程组⎩⎨⎧x -y =24,x +y =40,解得⎩⎨⎧x =32,y =8. 答:大正方形的边长为32 cm ,小正方形的边长为8 cm .点拨:根据目前我们所学的知识,还无法解方程组⎩⎨⎧4x -4y =96,x 2-y 2=960,但是我们可以利用因式分解,把这个问题转化为解关于x ,y 的二元一次方程组的问题.8.解:规律:n 2+[n(n +1)]2+(n +1)2=[n(n +1)+1]2.理由如下:n 2+[n(n +1)]2+(n +1)2=[n(n +1)]2+2n 2+2n +1=[n(n +1)]2+2n(n +1)+1=[n(n +1)+1]2.专训21.B 2.2m(x -3y)3.解:(1)原式=x(2x -y).(2)原式=-4m 2n(m 2-4m +7).点拨:如果一个多项式第一项含有“-”号,一般要将“-”号一并提出,但要注意括号里面的各项要改变符号.4.解:(1)原式=a(b -c)-(b -c)=(b -c)(a -1).(2)原式=15b(2a -b)2+25(2a -b)2=5(2a -b)2(3b +5).点拨:将多项式中的某些项变形时,要注意符号的变化.5.解:(1)原式=x 4y 4-16=(x 2y 2+4)(x 2y 2-4)=(x 2y 2+4)(xy +2)(xy -2).(2)原式=(x 2+y 2+2xy)(x 2+y 2-2xy)=(x +y)2(x -y)2.(3)原式=(x 2+6x +9)2=[(x +3)2]2=(x +3)4.点拨:因式分解必须分解到不能再分解为止,如第(2)题不能分解到(x 2+y 2+2xy)(x 2+y 2-2xy)就结束了.6.解:(1)原式=(x -1)-b 2(x -1)=(x -1)(1-b 2)=(x -1)(1+b)(1-b).(2)原式=-3x 3(x 4-8x 2+16)=-3x 3(x 2-4)2=-3x 3(x +2)2(x -2)2.7.解:原式=(x +3)(x +4)+(x +3)·(x -3)=(x +3)[(x +4)+(x -3)]=(x +3)(2x +1).点拨:解此题时,表面上看不能分解因式,但通过局部分解后,发现有公因式可以提取,从而将原多项式因式分解.8.解:(1)原式=x 2+4x +4=(x +2)2.(2)原式=4xy -4x 2-y 2=-(4x 2-4xy +y 2)=-(2x -y)2.点拨:通过观察发现此题不能直接分解因式,但运用整式乘法法则展开后,便可以运用公式法因式分解.9.解:(1)原式=(m 2-mn)+(mx -nx)=m(m -n)+x(m -n)=(m -n)(m +x).(2)原式=4-(x 2-2xy +y 2)=22-(x -y)2=(2+x -y)(2-x +y).10.解:原式=x 4+x 2+14-x 2=⎝ ⎛⎭⎪⎫x 2+122-x 2 =⎝ ⎛⎭⎪⎫x 2+x +12(x 2-x +12). 点拨:此题直接分解因式很困难,考虑到添加辅助项使其符合公式特征,因此将原式添上x 2与-x 2两项后,便可通过分组使其符合平方差公式的结构特征,从而将原多项式进行因式分解.11.解:原式=a(x +y -z)+b(x +y -z)-c(x +y -z)=(x +y -z)(a +b -c).12.解:原式=(x +y)2-4(x +y)+4=(x +y -2)2.点拨:本题把x +y 这一整体“当”作完全平方公式中的字母a.13.解:原式=abc 2+abd 2+cda 2+cdb 2=(abc 2+cda 2)+(abd 2+cdb 2)=ac(bc +ad)+bd(ad +bc)=(bc +ad)(ac +bd).点拨:本题“拆”开原式中的两个整体,重新分组,可谓“柳暗花明”,出现转机.14.解:原式=(x 2-4x +4)-(y 2-6y +9)=(x -2)2-(y -3)2=(x +y -5)(x -y +1).点拨:这里巧妙地把-5拆成4-9.“凑”成(x 2-4x +4)和(y 2-6y +9)两个整体,从而运用公式法分解因式.15.解:(1)设a 2+2a =m ,则原式=(m -2)(m +4)+9=m 2+4m -2m -8+9=m 2+2m +1=(m +1)2=(a 2+2a +1)2=(a +1)4.(2)设b 2-b =n ,则原式=(n +1)(n +3)+1=n 2+3n +n +3+1=n 2+4n +4=(n +2)2=(b 2-b +2)2.专训31.C2.解:(1)x 2y -xy 2=xy(x -y).把x -y =1,xy =2 018代入上式,原式=xy(x -y)=2 018.(2)8x 3(x -3)+12x 2(3-x)=8x 3(x -3)-12x 2(x -3)=4x 2(x -3)(2x -3).当x =32时,原式=4×⎝ ⎛⎭⎪⎫322×⎝ ⎛⎭⎪⎫32-3×⎝ ⎛⎭⎪⎫2×32-3=0. (3)a 2b +2a 2b 2+ab 2=ab(a +2ab +b)=ab[(a +b)+2ab].把a +b =23,ab =2代入上式,原式=2×⎝ ⎛⎭⎪⎫23+2×2=913. 3.解:(1)原式=(4x +5y)(4x -5y).(2)原式=(x -2y)2.(3)原式=[(a +2b)+(2a -b)]·[(a +2b)-(2a -b)]=(3a +b)(3b -a).(4)原式=[(m 2+4m)+4]2=[(m +2)2]2=(m +2)4.(5)原式=(9x 2-y 2)(9x 2+y 2)=(3x +y)(3x -y)(9x 2+y 2).4.解:(1)原式=2.1×31.4+6.2×31.4+1.7×31.4=31.4×(2.1+6.2+1.7)=31.4×10=314.(2)原式=⎝ ⎛⎭⎪⎫1+12×⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1+13×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1+14×⎝ ⎛⎭⎪⎫1-14×…×⎝ ⎛⎭⎪⎫1+1100×⎝ ⎛⎭⎪⎫1-1100 =32×12×43×23×54×34×…×101100×99100=12×101100=101200.(3)原式=1012-2×101×95+952=(101-95)2=36.5.解:(n +7)2-(n -5)2=[(n +7)+(n -5)][(n +7)-(n -5)]=(n +7+n -5)(n +7-n +5)=(2n +2)×12=24(n +1).因为24(n +1)中含有24这个因数,所以(n +7)2-(n -5)2能被24整除.6.解:因为a 2-b 2=ac -bc ,所以(a -b)(a +b)=c(a -b).所以(a -b)(a +b)-c(a -b)=0.所以(a -b)(a +b -c)=0.因为a ,b ,c 是△ABC 的三边长,所以a +b -c ≠0.所以a -b =0.所以a =b.所以△ABC 为等腰三角形.7.解:此三角形是等边三角形.理由如下:∵a 2+2b 2+c 2-2ab -2bc =0,∴a 2-2ab +b 2+b 2-2bc +c 2=0.即(a -b)2+(b -c)2=0.∴a -b =0且b -c =0.∴a =b 且b =c.∴a =b =c.∴此三角形是等边三角形.8.思路导引:(1)按公因式分组,第一、二项有公因式a ,第三、四项有公因式c ,各自提取公因式后均剩下(a -b);(2)按系数特点分组,由系数特点知第一、三项为一组,第二、四项为一组.解:(1)原式=a(a-b)+c(a-b)=(a-b)(a+c).(2)原式=(x3-x)+(6x2-6)=x(x2-1)+6(x2-1)=(x2-1)(x+6)=(x+1)(x-1)(x +6).9.解:(1)原式=x2-y2-2x-4y-4+1=(x2-2x+1)-(y2+4y+4)=(x-1)2-(y +2)2=[(x-1)+(y+2)]·[(x-1)-(y+2)]=(x+y+1)(x-y-3).(2)原式=x4+4x2-4x2+4=(x4+4x2+4)-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).点拨:拆项和添项是在因式分解难以进行的情况下的一种辅助方法,通过适当的“拆项”或“添项”后再分组,以达到最终因式分解的目的.10.解:令m2-2m=y,则原式=(y-1)(y+3)+4=y2+2y-3+4=y2+2y+1=(y+1)2.将y=m2-2m代入上式,则原式=(m2-2m+1)2=(m-1)4.11.解:a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2=ab[(a+b)2-4ab].因为a+b=1,ab=316,所以原式=316×⎝⎛⎭⎪⎫12-4×316=364.点拨:恒等变形的最后一步应用(a-b)2=a2-2ab+b2=a2+2ab+b2-4ab=(a+b)2-4ab,这一变形的目的是使所求的式子里含a+b这样的项.。

整合提升密码(87)

整合提升密码(87)

专训一:分式求值的方法名师点金:分式的求值既突出了式子的化简计算,又考查了数学方法的运用,在计算中若能根据特点,灵活选用方法,往往会收到意想不到的效果.常见的分式求值方法有:设参数求值、活用公式求值、整体代入法求值、巧变形法求值等.直接代入法求值1.(2015·鄂州改编)先化简,再求值:⎝ ⎛⎭⎪⎫2a +1+a +2a2-1÷a a -1,其中a =5.活用公式求值2.已知x 2-5x +1=0,求x 4+1x4的值.3.已知x +y =12,xy =9,求x2+3xy +y2x2y +xy2的值.整体代入法求值4.已知xy+z+yz+x+zx+y=1,且x+y+z≠0,求x2y+z+y2x+z+z2x+y的值.巧变形法求值5.已知实数x满足4x2-4x+1=0,求2x+12x的值.设参数求值6.已知x2=y3=z4≠0,求x2-y2+2z2xy+yz+xz的值.专训二:六种常见的高频考点名师点金:本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现.分式方程是中考的必考内容之一,一般着重考查解分式方程,并要求会用增根的意义解题,考题常以解答题的形式出现,有时也会出现在选择题和填空题中.分式的概念及分式有、无意义的条件1.在式子2x ,13(x +y),x π-3,5a -x ,x +3(x +1)(x -2)中,分式有( ) A .2个 B .3个 C .4个 D .5个2.若分式2x -5有意义,则x 的取值范围是( ) A .x ≠5 B .x ≠-5C .x >5D .x >-53.若分式x2-13x -3的值为0,则( ) A .x =-1 B .x =1 C .x =±1 D .x =04.如果一个分式含有两个字母a ,b ,但不论a ,b 为何值,分式始终有意义,这样的分式可以是________(只填一个符合条件的分式即可).5.若当x =1时,分式x +ax -b 的值为0;当x =3时,分式x +a x -b无意义,则a +b 的值等于________.分式的基本性质6.若将分式2aa +b 中,a ,b 的值同时扩大到原来的5倍,则此分式的值( ) A .是原来的10倍 B .是原来的5倍C .是原来的15 D .不变 7.约分:(1)a2-4a2-4a +4; (2)x -1x2-2x +1.8.通分:(1)8-3m2n ,35mn2; (2)a -1a2+2a +1,4a2-1.分式的有关运算9.下列运算中,正确的个数是( ) ①m4n3·n4m2=m n ; ②x -y x +y ÷(y -x)·1x -y =-1x2-y2;③m a -n b =m -n a -b ; ④a -2a2-4+1a +2=2a -2.A .0B .1C .2D .310.计算a +1a2-2a +1÷⎝ ⎛⎭⎪⎫1+2a -1的结果是( ) A .1a -1 B .1a +1C .1a2-1D .1a2+111.(2015·临沂)计算:a a +2-4a2+2a =__________.12.化简:⎝ ⎛⎭⎪⎫1-1m +1(m +1)=________.13.计算下列各题.(1)4a a2-1+1+a 1-a -1-a 1+a ;(2)m m +3-69-m2÷2m -3.14.先化简x2+2x x -1·⎝ ⎛⎭⎪⎫1-1x ,然后请自选一个你喜欢的x 的值代入原式的值.整数指数幂15.下列计算正确的是( )A .x 2·x -3=2xB .x 2÷x 6=1x4 C .(-x-3)2=x 6D .⎝ ⎛⎭⎪⎫-13-2=1916.下列说法正确的是( ) A .⎝ ⎛⎭⎪⎫-12-2与22互为相反数 B .⎝ ⎛⎭⎪⎫-12-2与-22互为相反数 C .⎝ ⎛⎭⎪⎫-12-2与2-2互为相反数 D .⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-12-2-220的值为1 17.计算(π-3)0+(-2)-3=________.18.在电子显微镜下测得一个圆球体细胞的直径是5×10-5 cm ,则由2×105个这样的细胞排成的细胞链的长是________ cm .可化为一元一次方程的分式方程及其应用19.分式方程x x -1=23x -3的解是( ) A .x =-16 B .x =23 C .x =13 D .x =5620.若关于x 的方程x +2x -1=1+ax -2的解为x =3,则a 等于( )A .1B .32C .0D .-1221.(2015·菏泽)解分式方程:2x2-4+xx -2=1.22.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务,这是记者与驻军工程指挥官的一段对话:(第22题)通过这段对话,请你求出该地驻军原来每天加固的米数.数学思想方法的应用a 数形结合思想23.如图,点A ,B 在数轴上,它们所表示的数分别是-4,2x +23x -5,且点A ,B 到原点的距离相等,求x 的值.(第23题) b 整体思想24.已知实数a满足a2+4a-8=0,求1a+1-a+3a2-1·a2-2a+1a2+6a+9的值.c 消元思想25.已知2x-3y+z=0,3x-2y-6z=0,且z≠0,求的值.答案专训一1.解:原式=[2a+1+a+2(a+1)(a-1)]·a-1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1.当a =5时,原式=35+1=12.2.解:由x 2-5x +1=0得x ≠0,∴x +1x =5. ∴x 4+1x4=⎝ ⎛⎭⎪⎫x2+1x22-2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +1x 2-22-2=527.点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.3.解:x2+3xy +y2x2y +xy2=x2+2xy +y2+xy xy (x +y )=(x +y )2+xyxy (x +y ) 因为x +y =12,xy =9,所以原式=122+99×12=1712. 4.解:因为x +y +z ≠0,所以给已知等式的两边同时乘(x +y +z),得x (x +y +z )y +z +y (x +y +z )z +x+z (x +y +z )x +y=x +y +z ,即x2y +z +x (y +z )y +z +y2z +x +y (z +x )z +x +z2x +y +z (x +y )x +y =x +y +z.所以x2y +z +y2z +x +z2x +y +x +y +z =x +y +z.所以x2y +z +y2z +x +z2x +y =0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.5.解:∵4x 2-4x +1=0,∴(2x -1)2=0,∴2x =1.∴原式=1+11=2.6.解:设x 2=y 3=z4=k ≠0,则x =2k ,y =3k ,z =4k.所以x2-y2+2z2xy +yz +xz=(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k226k2=2726. 专训二1.B 2.A 3.A4.ba2+1(答案不唯一) 5.2 6.D7.解:(1)原式=(a +2)(a -2)(a -2)2=a +2a -2.(2)原式=x -1(x -1)2=1x -1. 8.解:(1)最简公分母是15m 2n 2.∴8-3m2n =-40n 15m2n2,35mn2=9m 15m2n2. (2)最简公分母是(a +1)2(a -1). ∴a -1a2+2a +1=(a -1)2(a +1)2(a -1), 4a2-1=4(a +1)(a +1)2(a -1). 9.B 10.A 11.a -2a 12.m 13.解:(1)原式=4a(a +1)(a -1)-(a +1)2(a -1)(a +1)-(a -1)(1-a )(a +1)(a -1)=4a -(a +1)2+(a -1)2a2-1=0.(2)原式=m m +3-6(3-m )(3+m )·m -32 =m m +3+3m +3=1.14.解:原式=x (x +2)x -1·x -1x =x +2.由题知x 不能取0,1,x 不妨取5,当x =5时,原式=x +2=7.15.B 16.B 17.78 18.10 19.B 20.B21.解:方程两边同时乘x 2-4,得2+x(x +2)=x 2-4,解得x =-3. 经检验,x =-3是原方程的解. 22.解:设原来每天加固x 米,根据题意得600x+4 800-6002x=9,解得x =300.检验:当x =300时,2x ≠0(或分母不等于0),∴x =300是原方程的解,故该地驻军原来每天加固300米.点拨:解决与对话有关的实际问题,应根据对话的内容确定相等关系,根据相等关系列出方程.23.解:由题意得2x +23x -5=4.去分母,得2x +2=4(3x -5).解得x =2.2,经检验,x =2.2是原方程的根.所以x 的值是2.2.点拨:本题运用了数形结合思想,通过观察数轴上A ,B 两点的位置情况并结合已知条件“点A ,B 到原点的距离相等”可知,A ,B 两点所表示的数互为相反数,于是可建立方程求出x 的值.24.解:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3)=4(a +1)(a +3)=4a2+4a +3.由a 2+4a -8=0得a 2+4a =8,故原式=411.点拨:本题根据已知条件求出a 的值很困难,因此考虑将已知条件变形后整体代入化简后的式子.25.解:由2x -3y +z =0,3x -2y -6z =0,z ≠0,得到⎩⎪⎨⎪⎧2x -3y =-z ,3x -2y =6z.解得⎩⎪⎨⎪⎧x =4z ,y =3z.所以,原式=16z2+9z2+z232z2+9z2-z2=.点拨:本题将z 看成已知数,解方程组求出x 与y ,然后代入原式消去x ,y 这两个未知数,从而简便求值,体现了消元思想.。

最新北师大版七年级下册数学整合提升密码 (5)

最新北师大版七年级下册数学整合提升密码 (5)

专训1变量之间的关系的表示法名师点金:1.变量之间的关系的表示方法共有三种:表格法,关系式法,图象法,它们分别从数、式和形的角度反映了变量之间的关系的本质.2.根据图象读取信息时,要先读懂题意,弄清图象横、纵轴所表示的实际意义,看图象上反映的是哪个变量随哪个变量变化,再将题意和图象结合起来进行分析,注意对图象中特殊的点、线段等的分析.表格法1.地表以下的岩层的温度和它处的深度有以下关系:深度/km 1 2 3 4 5 6 7温度/℃55 90 125 160 195 230 265(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)深度每增加1 km,温度增加多少摄氏度?(3)估计10 km深处的岩层温度是多少摄氏度.关系式法2.已知池中有水600 m3,每时抽出50 m3.(1)写出剩余水的体积Q(m3)与时间t(h)之间的关系式.(2)8 h后,池中还有多少水?(3)几时后,池中还有100 m3的水?3.如图,在长方形MNPQ中,MN=6,PN=4,动点R从点N出发,沿N→P→Q→M运动至点M处停止.设点R运动的路程为x,三角形MNR的面积为y.(1)当x=3时,y=______;当x=12时,y=______;当y=6时,x=________.(2)分别求当0<x<4,4≤x≤10,10<x<14时,y与x的关系式.【导学号:60052024】(第3题)图象法4.某车间的甲、乙两名工人分别同时生产同种零件,他们生产的零件数量y(个)与生产时间t(h)之间的关系如图所示.(1)根据图象填空:①甲、乙中,________先完成40个零件的生产任务;在生产过程中,________因机器故障停止生产________h.②当t=________时,甲、乙生产的零件个数相等.(2)谁在哪一段时间内的生产速度最快?求该段时间内他每时生产零件的个数.(第4题)专训2全章热门考点整合应用名师点金:变量之间的关系是初中数学的重要内容,是学习函数知识的基础,是各类考试常考内容,题型常以填空题、选择题的形式出现.本章考点可概括为:三个关系,一种思想.三个关系关系1表格与变量之间的关系1.2016年1~12月份某地的大米价格如下表所示:月份/月 1 2 3 4 5 6平均价格/(元/千克) 4.6 4.8 4.8 5.0 4.8 4.4月份/月7 8 9 10 11 12平均价格/(元/千克) 4.0 3.8 3.6 3.6 3.8 4.0(1)表中列出的是哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大?(3)该地区哪一段时间大米平均价格在上涨?哪一段时间大米平均价格在下跌?(4)从表中可以得到该地区大米平均价格变化方面的哪些信息?年底的平均价格比年初是降了还是涨了?关系2关系式与变量之间的关系2.小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本以上,从第11本开始按标价的70%卖.乙超市的优惠条件是从第1本开始就按标价的85%卖.(1)当小明要买20本时,到哪个超市购买较省钱?(2)写出甲超市中,收款y甲(元)与购买本数x(本)(x>10)的关系式.(3)小明现有24元钱,最多可买多少本?关系3图象与变量之间的关系3.一辆汽车行驶在某一直路上,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系如图所示,请根据图象回答下列问题:(1)汽车共行驶了多少千米?(2)汽车在行驶途中停留了多长时间?(3)汽车在每段行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回时用了多长时间?(第3题)一种思想——数形结合思想4.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(L)与时间x(min)之间的关系如图所示.根据图象解答下列问题:(1)洗衣机的进水时间是多少?清洗时洗衣机中的水量是多少?(2)已知洗衣机的排水速度为19 L/min.如果排水时间是2 min,求排水结束时洗衣机中剩下的水量.(第4题)答案专训11.解:(1)反映了地表以下的岩层的温度和它处的深度之间的关系,深度是自变量,温度是因变量.(2)深度每增加1 km,温度增加35 ℃.(3)估计10 km深处的岩层温度是370 ℃.2.解:(1)Q=600-50 t(0≤t≤12).(2)当t=8时,Q=600-50×8=200.即8 h后,池中还有水200 m3.(3)当Q=100时,100=600-50 t,解得t=10.即10 h后,池中还有100 m3的水.3.解:(1)9;6;2或12(2)当0<x<4时,y=12×6x=3x;当4≤x≤10时,y=12×6×4=12;当10<x<14时,y=12×6×(14-x)=42-3x.4.解:(1)①甲;甲;2②3或5.5(2)甲在4~7 h内的生产速度最快;因为40-107-4=10(个),所以他在这段时间内每时生产10个零件.专训21.解:(1)表中列出的是该地区大米平均价格与月份两个变量之间的关系,月份是自变量,大米的平均价格是因变量.(2)自变量是9月,10月时,因变量的值最小,平均价格为3.6元/千克,自变量是4月时,因变量的值最大,平均价格为5.0元/千克.(3)从1月至4月,10月至12月大米的平均价格在上涨,从4月至9月大米的平均价格在下跌.(4)大米的平均价格随时间(月份)的变化而变化,价格随市场的需求而变动,年底比年初的平均价格降了.点拨:观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.(4)题从表格中获取的信息不唯一,合理即可.2.解:(1)买20本时,在甲超市购买需用10×1+10×1×70%=17(元), 在乙超市购买需用20×1×85%=17(元), 所以买20本到两家超市购买花的钱一样. (2)y 甲=10×1+(x -10)×1×70%=0.7x +3(x >10).(3)由题意知乙超市收款y 乙(元)与购买本数x (本)间的关系式为y 乙=x ×1×85%=1720x .当y 甲=24时,24=0.7x 甲+3,x 甲=30;当y 乙=24时,24=1720x 乙,x 乙≈28.2,因此在乙超市最多可买28本. 所以拿24元钱最多可以买30本练习本(在甲超市购买). 点拨:注意关系式与方程的综合应用. 3.解:(1)240 km .(2)汽车在行驶途中停留了2-1.5=0.5(h ).(3)AB 段的行驶速度为80÷1.5=1603(km /h );BC 段的行驶速度为0;CD 段的行驶速度为(120-80)÷(3-2)=40(km /h );DE 段的行驶速度为120÷(4.5-3)=80(km /h ).(4)4.5-3=1.5(h ).点拨:根据图象获取信息,应正确把握横轴、纵轴表示的意义,准确地观察图象的变化及图象各部分所表示的实际意义.4.解:(1)洗衣机的进水时间是4 min ,清洗时洗衣机中的水量是40 L . (2)剩余水量为40-2×19=2(L ).。

设置强密码的技巧

设置强密码的技巧

设置强密码的技巧
设置强密码是一种保护账户安全的重要措施,以下是一些技巧可以帮助你设置强密码:
使用多个因素:使用大小写字母、数字和特殊字符等不同类型的组合来生成强密码。

这样可以增加密码的复杂度,减少被破解的可能性。

避免重复:不要使用相同的或相似的单词或短语作为密码。

如果有人已经使用了其中一个组合,那么其他人很难猜到你的密码。

保持简单易记:确保你的密码容易记住,但也要注意不要过于简单。

选择一个长而复杂的组合,并定期更换密码以防止黑客利用暴力破解。

定期更新:定期更改你的密码,特别是当有重要活动发生时(例如新的网站或应用程序)。

这可以防止黑客利用旧密码进入你的账户。

使用多平台:如果你在不同的设备上使用同一个账户,确保每个平台的密码都不同。

这样即使一个平台上的密码被破解,黑客也不能访问其他平台的账户。

需要注意的是,虽然这些技巧可以帮助你设置更强的密码,但并不能完全保证账户的安全性。

建议在输入密码时小心谨慎,并注意观察任何可疑的活动迹象。

如果有必要,可以使用双重身份验证功能来进一步提高账户安全性。

山龙系统密码口令

山龙系统密码口令

山龙系统密码口令
(实用版)
目录
1.山龙系统密码口令的背景介绍
2.山龙系统密码口令的构成方式
3.如何设置一个安全的山龙系统密码口令
4.如何破解或找回遗忘的山龙系统密码口令
5.结论
正文
1.山龙系统密码口令的背景介绍
山龙系统是一款广泛应用于各个领域的专业密码管理软件。

用户可以为每个账户设置一个独立的密码口令,以保护账户的安全。

然而,这也给用户带来了记忆和管理的困扰。

因此,了解如何设置和管理山龙系统密码口令至关重要。

2.山龙系统密码口令的构成方式
一个安全的山龙系统密码口令应包含大写字母、小写字母、数字和特殊符号,总长度至少为 8 个字符。

这样的组合可以增加密码的复杂度,提高账户的安全性。

3.如何设置一个安全的山龙系统密码口令
(1)选择一个容易记忆的句子或短语,将其中的单词转换为对应的大写字母、小写字母、数字和特殊符号。

例如,将“我是山龙系统的用户”转换为“WoShiShanLongTongXiDeYongHu”。

(2)在设置密码时,可以添加一些额外的字符,如生日、电话号码等,以增加密码的独特性。

(3)定期更换密码,以降低密码被破解的风险。

4.如何破解或找回遗忘的山龙系统密码口令
(1)如果忘记了密码,可以尝试通过邮箱或手机号码等方式找回。

(2)如果无法找回密码,可以尝试使用一些密码破解工具。

但请注意,使用这类工具存在一定风险,可能导致账户信息泄露。

5.结论
山龙系统密码口令是保护账户安全的重要手段。

用户应学会如何设置一个安全的密码口令,并定期更换,以降低账户被破解的风险。

【整合提优篇】专题05《拓展提高-分数问题021年小升初数学衔接精编讲义(苏科版)(解析版)

【整合提优篇】专题05《拓展提高-分数问题021年小升初数学衔接精编讲义(苏科版)(解析版)

2020-2021学年苏教版数学小升初衔接讲义(整合提升篇)专题05 拓展提高—分数问题试卷满分:100分考试时间:100分钟一.选择题(共5小题,满分10分,每小题2分)1.(2分)(2020•泰安)商店以80元一件的价格购进一批衬衫,并以25%的利润率出售,过了一段时间发现还剩下150件,于是打九折出售,又过了一段时间发现一共卖掉了总量的90%,于是将最后几件按进货价出售,最后商店共获利2300元,则商店一共进了多少件衬衫?()A.180件B.200件C.240件D.300件【思路引导】设商店一共进了x件衬衫,则有(x﹣150)件衬衫是按80×(1+25%)=100元出售的,有(1﹣90%)x=0.1x件衬衫是按进货价80元出售的,有(150﹣0.1x)件衬衫是按100×0.9=90元出售的,由“共获利2300元”可得方程(100﹣80)(x﹣150)+(90﹣80)(150﹣0.1x)=2300元,据此列方程求解.【完整解答】设商店一共进了x件衬衫.(100﹣80)(x﹣150)+(90﹣80)(150﹣0.1x)=230020x﹣3000+1500﹣x=230019x=3800x=200答:商店一共进了200件衬衫.故选:B.2.(2分)(2020•鄞州区)疫情期间医生们夜以继日、争分夺秒的工作着,他们是最美的逆行者.张医生在某日的工作和休息时间的比是7:5,他这一天工作的时间是()A.14小时B.10小时C.7小时D.5小时【思路引导】一天是24小时,工作和休息时间的比是7:5,也就是工作的时间占全天时间的,根据一个数乘分数的意义,用乘法解答.【完整解答】24×==14(小时)答:他一天工作的时间是14小时.3.(2分)(2019•长沙)某种皮衣定价是1150元,以8折售出仍可以盈利15%,某顾客再在8折的基础上要求再让利150元,如果真是这样,那么商店是盈利还是亏损?()元.A.亏50 B.盈40 C.亏30 D.盈20【思路引导】先把定价看作单位“1”,8折是指现价是原价的80%,求出定价;再把进价看成单位“1”,它的(1+15%)就是8折后的价格,由此用除法求出进价,然后用8折后的价格减去150元与进价比较,进而求出它们的差即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专训1.证垂直在解题中的应用
名师点金:
证垂直的方法:(1)在同一平面内,垂直于两条平行线中的一条直线;(2)等腰三角形中“三线合一”;(3)勾股定理的逆定理:在几何中,我们常常通过证垂直,再利用垂直的性质来解各相关问题.
利用三边的数量关系说明直角
1.如图,在△中,点D为边上一点,且=10,=6,=8,=17,求的长.
(第1题)
利用转化为三角形法构造直角三角形
2.如图,在四边形中,∠B=90°,=2,=,=5,=4,求S四边形.
(第2题)
利用倍长中线法构造直角三角形
3.如图,在△中,D为边的中点,=5,=6,=13,求证:⊥.
(第3题)
利用化分散为集中法构造直角三角形
4.在△中,=,∠=α,点P为△内一点,将绕点C顺时针旋转α得到,连接.
(1)如图①,当α=60°,=10,=6,=8时,求∠的度数;
(2)如图②,当α=90°时,=3,=1,=2时,求∠的度数.
(第4题)
利用“三线合一”法构造直角三角形
5.如图①,在△中,=,∠=90°,D为的中点,M,N分别为,上的点,且⊥.
(1)求证:+=;
(2)如图②,若M,N分别在,的延长线上,探究,,之间的数量关系.
(第5题)
专训2.全章热门考点整合应用
名师点金:
本章主要学习了勾股定理、勾股定理的逆定理及其应用,勾股定理揭示了直角三角形三边长之间的数量关系.它把直角三角形的“形”的特点转化为三边长的“数”的关系,是数形结合的典范,是直角三角形的重要性质之一,也是今后学习直角三角形的依据之一.本章的考点可概括为:两个定理,两个应用.
两个定理
勾股定理
1.如图,在△中,∠C=90°,点D是上一点,=.若=8,=5,求的长.
(第1题)
勾股定理的逆定理
2.在△中,=a,=b,=c,设c为最长边.当a2+b2=c2时,△是直角三
角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,可以判断△的形状(按角分类).
(1)请你通过画图探究并判断:当△三边长分别为6,8,9时,△为三角形
;当△三边长分别为6,8,11时,△为三角形.
(2)小明同学根据上述探究,有下面的猜想:
“当a2+b2>c2时,△为锐角三角形;当a2+b2<c2时,△为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c在什么范围内取值时,△是锐角三角形、直角三角形、钝角三角形?
两个应用
勾股定理的应用
3.如图,在公路l旁有一块山地正在开发,现需要在C处爆破.已知C与公路上的停靠站A的距离为300 m,与公路上的另一停靠站B的距离为400 m,且⊥.为了安全起见,爆破点C周围半径250 m范围内(包括250 m)不得有人进入.问:在进行爆破时,公路段是否有危险?需要暂时封锁吗?
(第3题)
勾股定理逆定理的应用
4.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙
两艘巡逻艇立即从相距5 n 的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行40 n,乙巡逻艇每小时航行30 n,航向为北偏西37°,问:甲巡逻艇的航向?
(第4题)
答案
1.解:∵2+2=100=2,
∴△为直角三角形,且∠=90°.
在△中,2+2=2,
∴===15.
2.解:连接.在△中,2+2=2,
∴=3,∴2+2=2.
∴△为直角三角形,且∠=90°,
∴S四边形=×2×+×3×4=6+.
(第3题)
3.证明:如图,延长至点E,使=,连接,.
∵D为的中点,
∴=.
又∵=,∠=∠,
∴△≌△,
∴==13.
在△中,=2=12,
∴2+2=122+52=169.
又∵2=132=169,∴2+2=2,
∴△是直角三角形,且∠=90°,即⊥.
点拨:本题运用倍长中线法构造全等三角形证明线段相等,再利用勾股定理的逆定理证明三角形为直角三角形,从而说明两条线段垂直.
4.解:(1)如图①,连接,易知△为等边三角形,易证得△≌△,∴∠=∠,∠=60°,=6,=8,∴2+2=2,∴∠=90°,∴∠=150°,
∴∠=150°.
(第4题)
(2)如图②,连接,易得△为等腰直角三角形,易证得△≌△,∴∠=∠,∠=45°,=1,==2 ,
∴2+2=2,∴∠=90°,∴∠=135°,
∴∠=135°.
5.(1)证明:如图①,连接,∵⊥,
∴∠+∠=90°.
∵∠=90°,=,D为的中点,∴⊥,∠=∠=45°,∴∠+∠=90°.∴∠=∠.
∵⊥,∠=45°,
∴=.在△和△中,
∵∠=∠,∠=∠,=,
∴△≌△,∴=.∴+=+=.
在△中,∠B=45°,∠=90°,∴=.∴+=.
(2)解:-=,如图②,连接,证法同(1).
1.解:设=x,在△中,有2+(+)2=2,
整理,得2=2-(+)2=64-(x+5)2.①
在△中,有2+2=2,
整理,得2=2-2=25-x2.②
由①②两式,得64-(x+5)2=25-x2,解得x=1.4,即的长是1.4.
点拨:勾股定理反映了直角三角形三边长之间的数量关系,利用勾股定理列方程思路清晰、直观易懂.
2.解:(1)锐角;钝角
(2)a2+b2=22+42=20,∵c为最长边,2+4=6,∴4≤c<6.
①由a2+b2>c2,得c2<20,0<c<2 ,∴当4≤c<2 时,这个三角形是锐角三角形;
②由a2+b2=c2,得c2=20,c=2 ,∴当c=2 时,这个三角形是直角三角形;
③由a2+b2<c2,得c2>20,c>2 ,∴当2 <c<6时,这个三角形是钝角三角形.
3.解:如图,过点C作⊥于点D.在△中,因为2+2=2,=400 m,=300 m,
所以2=4002+3002=5002,所以=500 m.
(第3题)
=·=·,
因为

所以500×=400×300,所以=240 m.
因为240<250,所以公路段有危险,需要暂时封锁.
4.解:=40×0.1=4(n ),=30×0.1=3(n ).
因为=5 n,所以2=2+2,所以∠=90°. 因为∠=90°-37°=53°,所以∠=37°,所以甲巡逻艇的航向为北偏东53°.。

相关文档
最新文档