统计学中的基本概念和重要公式
统计学 笔记

以下是统计学中的一些基本概念和知识,供参考:
统计学基本概念
总体与样本:总体是研究对象全体的集合,样本是从总体中抽取的一部分元素的集合。
变量:用来描述数据的名称或符号。
数值变量与分类变量:数值变量是可度量的数据,如身高、体重等;分类变量是定性数据,如性别、血型等。
参数与统计量:参数是描述总体特征的指标,如总体均值、总体方差等;统计量是从样本中计算出来的指标,如样本均值、样本方差等。
描述性统计
频数分布表:将数据分为若干个组,统计每个组内的数据个数。
直方图:用直条矩形面积代表各组频数,矩形的面积总和代表频数的总和。
平均数:描述数据集中趋势的指标,计算方法有算术平均数、几何平均数、调和平均数等。
标准差:描述数据离散程度的指标,表示数据分布的宽窄程度。
概率与概率分布
概率:描述随机事件发生的可能性大小的数值。
概率分布:描述随机变量取值的概率规律的函数。
常见的概率分布有二项分布、泊松分布、正态分布等。
参数估计与假设检验
点估计:用单一的数值估计未知参数的值。
区间估计:用一定的置信水平估计未知参数的范围。
假设检验:根据样本数据对未知参数进行检验,判断假设是否成立。
常见的假设检验方法有t检验、卡方检验、F检验等。
相关分析与回归分析
相关分析:描述两个变量之间的线性关系的强度和方向。
回归分析:基于自变量和因变量之间的相关关系建立数学模型,用于预测因变量的值。
常见的回归分析方法有线性回归、逻辑回归等。
统计学基础:均值与方差

统计学基础:均值与方差统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有广泛的应用。
在统计学中,均值和方差是两个重要的概念,它们用于描述数据的集中趋势和离散程度。
本文将介绍均值和方差的概念、计算方法以及它们在实际问题中的应用。
一、均值均值是一组数据的平均值,它是描述数据集中趋势的一个重要指标。
均值的计算方法是将所有数据相加,然后除以数据的个数。
假设有n个数据,分别为x1、x2、...、xn,那么均值的计算公式为:均值 = (x1 + x2 + ... + xn) / n均值可以用来表示数据的中心位置,它是数据集中的一个典型值。
例如,某班级的学生考试成绩为80、85、90、95、100,那么这些成绩的均值为(80+85+90+95+100)/5=90,可以认为90是这个班级的平均水平。
均值的计算方法简单直观,但它对极端值比较敏感。
如果数据中存在极端值,那么均值可能会被拉向极端值的方向。
因此,在某些情况下,均值可能不是一个很好的描述数据集中趋势的指标。
二、方差方差是一组数据的离散程度的度量,它描述了数据与均值之间的差异程度。
方差的计算方法是将每个数据与均值的差的平方相加,然后除以数据的个数。
假设有n个数据,分别为x1、x2、...、xn,均值为μ,那么方差的计算公式为:方差 = ((x1-μ)^2 + (x2-μ)^2 + ... + (xn-μ)^2) / n方差可以用来衡量数据的离散程度,它越大表示数据的离散程度越大,反之亦然。
例如,某班级的学生考试成绩为80、85、90、95、100,这些成绩的均值为90,那么方差的计算为((80-90)^2 + (85-90)^2 + (90-90)^2 + (95-90)^2 + (100-90)^2) / 5 = 50,可以认为这个班级的成绩离散程度较大。
方差的计算方法中,将差的平方相加的目的是为了消除正负差值的抵消效应。
方差的单位是数据的单位的平方,因此在比较不同数据集的方差时,需要注意它们的单位是否一致。
《统计学》名词解释及公式

第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。
本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。
本章各节的主要内容和学习要点如下表所示。
二、主要术语1. 统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2. 描述统计:研究数据收集、处理和描述的统计学分支。
3. 推断统计:研究如何利用样本数据来推断总体特征的统计学分支。
4. 分类数据:只能归于某一类别的非数字型数据。
5. 顺序数据:只能归于某一有序类别的非数字型数据。
6. 数值型数据:按数字尺度测量的观察值。
7. 观测数据:通过调查或观测而收集到的数据。
8. 实验数据:在实验中控制实验对象而收集到的数据。
9. 截面数据:在相同或近似相同的时间点上收集的数据。
10. 时间序列数据:在不同时间上收集到的数据。
11. 抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征的数据收集方法。
12. 普查:为特定目的而专门组织的全面调查。
13. 总体:包含所研究的全部个体(数据)的集合。
14. 样本:从总体中抽取的一部分元素的集合。
15. 样本容量:也称样本量,是构成样本的元素数目。
16. 参数:用来描述总体特征的概括性数字度量。
17. 统计量:用来描述样本特征的概括性数字度量。
18. 变量:说明现象某种特征的概念。
19. 分类变量:说明事物类别的一个名称。
20. 顺序变量:说明事物有序类别的一个名称。
21. 数值型变量:说明事物数字特征的一个名称。
22. 离散型变量:只能取可数值的变量。
23. 连续型变量:可以在一个或多个区间中取任何值的变量。
四、习题答案1. D2. D3. A4. B5. A6. D7. C8. B9. A10.A11.C、12.C13.B14.A15.C16.D17.C18.A19.C20.D21.A22.C23.C24.B25.D26.C27.B28.D29.A30.D31.A32.B33.C34.A35.A36.A37.D38.B39.B40.C41.C42.D43.C44.D45.A46.B47.C48.A49.C50.D51.A52.C53.D54.A55.B第2章数据的图表展示一、学习指导数据的图表展示是应用统计的基本技能。
统计学公式汇总

统计学公式汇总统计学是研究数据收集、分析、解释和预测的一门学科。
在统计学中,有许多重要的公式被广泛应用于数据的处理和分析过程中。
本文将汇总一些常见的统计学公式,并简要介绍其应用场景和使用方法。
1. 均值(Mean)均值是统计学中最常用的概念之一,用于衡量一组数据的集中趋势。
对于一个样本集合,均值可以通过将所有观测值相加,然后除以样本容量来计算。
其数学公式如下:均值= ∑(观测值) / 样本容量2. 方差(Variance)方差是用于衡量一组数据的离散程度的指标。
方差越大,表示数据的离散程度越高;方差越小,表示数据的离散程度越低。
方差的计算公式如下:方差= ∑((观测值-均值)^2) / 样本容量3. 标准差(Standard Deviation)标准差是方差的平方根,用于衡量数据的离散程度,并且具有和原始数据相同的单位。
标准差的计算公式如下:标准差 = 方差的平方根4. 相关系数(Correlation Coefficient)相关系数用于衡量两组变量之间的线性关系强度和方向。
相关系数的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关。
相关系数的计算公式如下:r = Cov(X,Y) / (σX * σY)5. 回归方程(Regression Equation)回归方程用于建立一个或多个自变量与因变量之间的线性关系。
回归方程的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示模型的误差项。
6. 样本容量和置信水平(Sample Size and Confidence Level)在统计学中,样本容量和置信水平是决定实验或调查结果可靠性的重要因素。
样本容量是指从总体中抽取的样本大小,而置信水平是指对总体参数的估计值的信任程度。
统计学主要计算公式

统计学主要计算公式统计学是研究数据收集、整理、分析、解释和呈现的科学。
在统计学中,有许多重要的计算公式被广泛应用于统计分析和推断,以下是一些常见的计算公式:1.平均值:平均值是一组数据的总和除以数据的数量。
公式:平均值=总和/数据数量2.中位数:中位数是一组有序数据中的中间值,将数据从小到大排列,若数据的数量为奇数,则中位数为中间的数值;若数据的数量为偶数,则中位数为中间两个数值的平均值。
3.众数:众数是一组数据中出现最频繁的值。
4.方差:方差是一组数据与其平均值的差的平方的平均值。
公式: 方差= (∑(xi-平均值)^2) / 数据数量5.标准差:标准差是方差的平方根,用于衡量一组数据的离散程度。
公式:标准差=√方差6.相关系数:用于衡量两个变量之间线性相关程度的统计量。
公式: r = Cov(X,Y) / (SD(X) * SD(Y))其中,Cov(X,Y)表示X和Y的协方差,SD(X)和SD(Y)分别表示X和Y的标准差。
7.正态分布概率密度函数:正态分布是统计学中最重要的分布之一,其概率密度函数可以描述随机变量的分布。
公式:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2))其中,μ表示均值,σ表示标准差,e表示自然常数。
8.合并概率公式:用于计算多个事件同时发生的概率。
公式:P(A∩B)=P(A)*P(B,A)其中,P(A)表示A事件发生的概率,P(B,A)表示在A事件发生的条件下B事件发生的概率。
9.条件概率公式:用于计算在已知其中一事件发生的条件下另一事件发生的概率。
公式:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在B事件发生的条件下A事件发生的概率。
10.抽样误差公式:用于计算样本估计值与总体参数之间的误差。
公式:误差=Z*(标准误差)其中,Z表示置信水平对应的标准正态分布的分位数,标准误差表示样本估计的标准差。
这些计算公式是统计学中非常重要的工具,用于帮助我们理解和解释数据的特征和关系。
统计学原理重要公式

一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxx加权调和平均数: ∑∑∑∑==fxf x m m x频数也称次数。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。
再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。
而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxxx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。
加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。
比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。
依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。
加权和与所有权重之和的比等于加权算术平均数。
加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xm m x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。
高考统计公式知识点总结

高考统计公式知识点总结统计学是一门研究数据收集、分析和解释的学科,其应用广泛而深入。
在高中阶段,学生们接触到的统计学知识主要集中在一些基本的统计公式上。
这些公式在高考中经常出现,对于顺利完成数学考试至关重要。
下面是对高考统计公式知识点的一些总结,希望对广大考生有所帮助。
1.概率概率是统计学中的一个重要概念,表示某个事件发生的可能性。
常用的概率公式包括:- 事件的概率公式:P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A包含的基本事件数,n(S)表示样本空间中的基本事件数。
- 对立事件的概率公式:P(A') = 1 - P(A),其中A'表示事件A的对立事件。
2.排列组合排列组合是统计学中另一个重要概念,用于计算有关事物的不同排列或组合方式的个数。
常用的排列组合公式包括:- 排列公式:A(n, m) = n! / (n-m)!,表示从n个元素中取出m个元素进行排列的方式总数。
- 组合公式:C(n, m) = n! / (m!(n-m)!),表示从n个元素中取出m个元素进行组合的方式总数。
3.均值和标准差均值和标准差是描述一组数据分布特征的指标。
常用的计算公式包括:- 均值公式:μ = (x1 + x2 + ... + xn)/ n,其中μ表示均值,x表示数据的观测值,n表示数据的总数。
- 标准差公式:σ = √( (x1 - μ)² + ... + (xn - μ)² )/ n,其中σ表示标准差。
4.正态分布正态分布是一种常见的概率分布,其形状呈钟形曲线,对于统计学的许多问题具有重要的应用。
正态分布的概率可以通过标准正态分布表来查找,也可以利用相关的计算公式计算。
在高考中,统计学是数学考试的一个重要组成部分。
掌握以上提到的统计公式,对于正确理解和解答与统计学有关的问题至关重要。
考生可以通过多做一些相关的题目,熟悉这些公式的应用,提升自己的解题能力,在考试中取得好成绩。
概率与统计学公式大全

概率与统计学公式大全概率与统计学是一门关于随机事件发生规律及其数学描述的学科。
在实际问题的分析和决策中,概率与统计学都起着重要的作用。
本文将汇总一些常用的概率与统计学公式,帮助读者更好地理解和应用这门学科。
一、概率公式1. 概率的基本概念:概率是指某个特定事件发生的可能性大小。
用P(A)表示事件A发生的概率,有以下公式:P(A) = N(A) / N(S)其中,N(A)表示事件A包含的基本样本点的个数,N(S)表示全样本空间的基本样本点的个数。
2. 随机变量的概率分布:随机变量是指在某个随机实验中可能取得不同值的变量。
其概率分布可由概率质量函数(离散随机变量)或概率密度函数(连续随机变量)来描述。
离散随机变量的概率质量函数为:P(X = x) = f(x)连续随机变量的概率密度函数为:P(a ≤ X ≤ b) = ∫[a, b] f(x)dx其中,f(x)表示概率质量函数或概率密度函数。
3. 事件的和与积:对于两个事件A和B,其和与积的概率表示如下:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B)其中,P(A ∪ B)表示事件A和B至少其中一个发生的概率,P(A ∩ B)表示事件A和B同时发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A|B)表示在事件B发生的条件下事件A发生的概率。
二、统计学公式1. 样本均值和总体均值:样本均值的公式为:X = (x₁ + x₂ + ... + xn) / n其中,x₁,x₂,...,xn是样本中的个体值,n是样本的大小。
总体均值的公式为:μ = (x₁ + x₂ + ... + xn) / N其中,x₁,x₂,...,xn是总体中的个体值,N是总体的大小。
2. 样本方差和总体方差:样本方差的公式为:s² = ((x₁ - X)² + (x₂ - X)² + ... + (xn - X)²) / (n - 1)其中,x₁,x₂,...,xn是样本中的个体值,X是样本均值,n是样本的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
37、随机变量 38、离散型随机变量 39、连续型随机变量 40、概率分布 42、概率密度函数 43、概率分布的数学期望和方差 44、二项试验 45、二项分布 46、泊松分布 47、均匀分布 48、指数分布 49、正态分布
50、标准正态分布 51、标准分数(Z分数) 52、统计量 53、总体参数 54、中心极限定理 55、样本均值的分布 56、标准误 57、卡方分布 58、t分布 59、F分布 60、点估计(有效性、无偏性、一致性、充分性)
2
23.二项分布的概率函数p( x) = Cnx p x q n − x , x = 0,1,2,..., n, q = 1 − p 24.二项分布的数学期望和方差E ( X ) = µ = np,Var ( X ) = σ 2 = np(1 − p ) 25.泊松分布p( x) =
µ xe−µ
x! x! n Crx ⋅ C N− xr − 27.超几何分布p ( x) = ,0 ≤ x ≤ r n CN
( X i − µ )2 ∑
n −1
N ( X i − µ )2 ∑
5.标准差: ( )总体标准差:σ = σ 2 1 (2)样本标准差: = S2 S 6.变异系数 σ 标准差 总体:CV = ×100% = × 100% µ 平均数 S 样本:CV = × 100% X
⌢ ⌢ σ(p −p
1 2
)
⌢ ⌢ n1 p1 + n2 p2 ⌢ 总体比率合并估计 : p = n1 + n2
⌢ ⌢ ⌢ ⌢ p1 = p2时σ ( p1 − p2 )的点估计量 : S ( p1 − p2 ) =
⌢ ⌢ 1 1 p (1 − p) + n n 2 1
(n − 1)S 2 ≤ σ 2 ≤ (n − 1)S 2 47.一个总体方差的区间估计 : 2 2 (n − 1)S 2 48.一个总体方差的检验统计量 : χ = 2
84、相关、相关系数 (1)积差相关系数(皮尔逊相关) (2)等级相关(斯皮尔曼等级相关、和谐系数) (3)点二列相关 (4)二列相关 (5)多列相关 5 (6)四分相关 85、因变量 86、自变量 87、简单线性回归 88、回归模型
89、回归方程 90、散点图 91、残差 92、最小二乘估计 93、决定系数 94、复相关系数 95、回归系数 96、标准化回归系数 97、列联表 98、拟合度检验 99、独立性检验
100、期望频数(理论频数) 101、观察频数(实际频数) 102、φ相关系数 103、列联系数
二、重要公式
∑X 1. 样本平均数: = X
n N 3. 四分位差: D = IQR = QU − QL Q 4.方差: ( )总体方差:σ 2 = 1 (2) 样本方差: 2 = S
∑X 2. 总体平均数: = µ
2
L YY =
∑ (Y
n i =1 n i =1
i
−Y
) =∑Y
2 n i =1
i
n ∑ Yi − i =1 , n
X =
∑
Xi n
,Y =
∑Y
i =1
n
i
n
10 .加权平均数
∑W X X = ∑W
i i
i
11 .分组数据样本平均数 12 .分组数据样本方差 13 .排列组合公式 S2
2
χα / 2
χ (1−α / 2)
σ
S12 49.两个总体方差的检验统计量 : F = 2 S2 50.拟合优度检验统计量 : χ 2 = ∑
i =1 k
( f i − ei )2 , df
ei
= k −1
51.独立假设条件下列联表的期望频数 : 第i行之和 × 第j列之和 eij = = n 样本容量 独立性检验统计量 : RTi × CT j
统计学中的基本概念和重要公式
一、基本概念 二、重要公式
一、基本概念 1、描述统计学 2、推断统计学 3、数据的几种尺度和类型 4、条形图 5、直方图 6、茎叶图 7、箱线图 8、累积频数 9、累积百分比 10、众数
11、中数(中位数) 12、百分位数 13、均值(平均数) 简单平均数 加权平均数 调和平均数 几何平均数 14、异众比率 15、范围(全距) 16、四分位差 17、方差(总体、样本)
14.事件补的概率P( A) = 1− P( A) 15.加法公式 P(A ∪ B) = P(A)+ P(B)- P(A∩ B) P(A ∩ B) P(A∩ B) 16.条件概率 P(A | B) = , P(B| A) = P(B) P( A) 17.乘法公式 P(A ∩ B) = P(B) ⋅ P(A | B) = P( A) ⋅ P(B| A) 18.独立事件 P(A∩ B) = P( A)P(B) 19.全概率公式P(B) = ∑ P( Ai ) ⋅ P(B| Ai )
18、标准差(总体、样本) 19、离散系数(变异系数) 20、偏度 21、峰度 22、样本 23、样本点(基本事件) 24、样本空间 25、样本容量 26、随机事件 27、相容事件、互斥事件 28、相关事件、独立事件
29、事件的概率: (1)概率的古典定义 (2)概率的统计定义 (3)主观概率的定义 30、条件概率 31、事件的补、并、交运算 31 32、概率的加法公式 33、概率的乘法公式 34、条件概率公式 35、全概率公式 36、贝叶斯公式
40.总体均值的单侧检验中所需样本容量 :
(Z n=
(µ 0 − µ1 )
α
− Zβ ) σ 2
2 2
, 用Zα 2 代替Zα即为双侧检验的公式
41.独立样本时, 两个总体均值之差的点估计量 : X 1 − X 2 X 1 − X 2的期望值与标准差 : E ( X 1 − X 2 ) = µ1 − µ 2 ,
i =1 n
P( Ai ) ⋅ P(B| Ai ) P( Ai ) ⋅ P(B| Ai ) 20.贝叶斯公式P(Ai | B) = = n P(B) ∑ P( Aj ) ⋅ P(B| A j )
j=1
21.离散型随机变量的数学期望E ( X ) = µ = ∑ xp( x) 22.离散型随机变量的方差Var ( X ) = σ 2 = ∑ ( x − µ ) p ( x)
1
(2)大样本, σ 1 , σ 2未知 X 1 − X 2 ± Zα 2 S ( X 1 − X 2 )
(
)
2 S12 S 2 + n1 n2
σ = σ 时, X 1 − X 2 的标准差σ ( X − X ) =
2 1 2 2
1 2
(
)
σ 12
1 1 + = σ ( + ) n1 n2 n1 n2
Xi − X Xi − µ ,或 Zi = S σ ∑ X i − X Yi − Y 8 .样本协方差 Cov ( X , Y ) = S XY = n −1 S XY L XY r XY = 9 .皮尔逊相关系数 = , S X SY L XX L YY 7 .标准分数 ( Z 分数 ) Z i =
( x − µ )2 −
2σ 2
=
λx e −λ
1 28.正态概率密度函数f ( x) = e 2π σ x−µ 29.标准正态分布变换Z =
σ
30. X的数学期望和标准差 : E( X ) = µ, 有限总体时σ X = 无限总体时σ X = N −n σ N −1 n
σ
n
(
)(
)
L XX =
∑ (X
n i =1
i
− X
) =∑
2 n
i =1
X i2
n ∑ Xi , − i =1 n
n
2
L XY =
∑ (X
n i =1
i
− X Yi − Y =
)(
) ∑
2
i =1
n n ∑ X i ∑ Yi i =1 , X i Y i − i =1 n
61、区间估计(显著性水平、置信度、置信区间) 62、假设检验 63、α错误(第一类错误) 64、β错误(第二类错误) 65、单侧检验 66、双侧检验 67、假设检验中的p值 68、独立样本 69、相关样本 70、因素 71、因素的水平
72、主效应 73、交互作用 74、多重比较 75、简单效应 76、离差平方和 77、自由度 78、均方(平均平方) 79、变异的分解 80、F值 81、临界值 82、零假设(虚无假设、原假设、无差异假设) 83、备择假设(研究假设、替换假设)
χ 2 = ∑∑
i j
(f
ij
− eij )
2
eij
, df = (R − 1)(C − 1)
52.检验K个均值的相等性 第j个处理的样本均值 : X j =
∑X
i =1
nj
ij
nj
, −Xj
第j个处理的样本方差 : S 2 = j
∑ (X
nj i =1
ij
)
2
n j −1
σ
n S , n
,
(3)总体正态, 小样本, 方差已知 X ± Zα 2 (4)总体正态, 小样本, 方差未知 X ± tα 2 34.估计µ时所需的样本容量 : n = ∆2
σ
n S n
,
2 Zα 2σ 2
⌢ ⌢ p (1 − p ) n ⌢ ⌢ 2 Zα 2 ⋅ p (1 − p ) 36. p的区间估计时所需的样本容量n = ∆2 37.大样本总体均值的检验统计量 : ⌢ 35.总体比率P的区间估计p ± Zα 2 X −µ 方差已知 : Z = , σ/ n X −µ 方差未知 : Z = S/ n X −µ 38.小样本总体均值的检验统计量 : t = , df = n − 1 S/ n ⌢ p − p0 39.总体比率检验统计量 : Z = p0 (1 − p0 ) n