1.1正弦定理(第2课时)正弦定理的应用 学案(含答案)

合集下载

下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。

高中数学《1.1.1 正弦定理》复习导学案2 新人教A版必修5

高中数学《1.1.1 正弦定理》复习导学案2 新人教A版必修5

作业 布置 学习 小结 / 教 学 反思
课本 49 页练习 2 的 2,3,4 题
2
2 ,b 3 ,
A 450 ,求角 B .
小结:在 ABC 中,已知 a, b 和 A 时求角 B 的各种情况: (1).角 A 为锐角: ①若 a b sin A ,则一解. ②若 b sin A a b ,则两解. ③若 a b ,则一解 (2).角 A 为直角 a b ,则一解. (3).角 A 为钝角 a b ,则一解. 例 2 在 ABC 中,角 A, B, C 所对的边分别为 a, b, c .已知 A 300 , c 2 3, b 2 ,求
1
ABC 的面积.
达标训练: 1.判断下列各题角 B 的解的个数: 1. a 7, b 14, A 300 .
2. a 30, b 25, A 1500 . 3. a 72, b 50, A 1350 .
4. a 30, b 40, A 260 .
§1.1.2 正弦定理
授课 时间 学习 目标 重点 难理及其拓展. 2.已知两边和其中一边的对角,判断三角形时解的个数. 3.三角形面积公式. 重点:正弦定理的应用. 难点:正弦定理的应用. 自主学习: 正弦定理:_________________________. 正弦定理的变形公式:_________________________. 问题 1.在 ABC 中,已知 a 20, b 28, A 400 ,求 B (精确到 1 )和 c (保留两个有效数
0 问题 3.在 RtABC 中, C 90 ,则 ABC 的面积 S
学习 过程 与方 法
1 ab .对于任意 ABC ,已知 a, b 及 2

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。

2. 让学生掌握正弦定理的数学表达式。

3. 让学生了解正弦定理的应用场景。

教学内容:1. 引入正弦定理的背景和意义。

2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。

3. 解释正弦定理的证明过程。

教学活动:1. 通过实际例子引入正弦定理的概念。

2. 引导学生推导正弦定理的数学表达式。

3. 让学生进行小组讨论,探索正弦定理的应用场景。

练习题:1. 解释正弦定理的概念。

2. 给出一个三角形,让学生计算其各边的比例。

章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。

2. 让学生能够解决实际问题中涉及的三角形问题。

教学内容:1. 介绍正弦定理在三角形中的应用方法。

2. 讲解正弦定理在实际问题中的应用示例。

教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。

2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。

练习题:1. 使用正弦定理计算一个三角形的面积。

2. 给出一个实际问题,让学生应用正弦定理解决问题。

章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。

2. 让学生掌握正弦定理的证明方法。

教学内容:1. 介绍正弦定理的证明过程。

2. 解释正弦定理的证明方法。

教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。

2. 让学生进行小组讨论,理解正弦定理的证明方法。

练习题:1. 解释正弦定理的证明过程。

2. 给出一个三角形,让学生使用正弦定理进行证明。

章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。

2. 让学生能够解决实际问题中涉及的三角形问题。

教学内容:1. 介绍正弦定理在实际问题中的应用方法。

2. 讲解正弦定理在实际问题中的应用示例。

教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。

高中数学苏教版必修5学案:1.1.2 正弦定理(2) Word版含解析

高中数学苏教版必修5学案:1.1.2 正弦定理(2) Word版含解析

第2课时正弦定理(2)1.利用正弦定理判断三角形的形状,计算三角形的面积.(重点) 2.正弦定理与三角恒等变换的综合应用.(难点)3.利用正弦定理解题时,忽略隐含条件而致误.(易错点)[基础·初探]教材整理正弦定理的应用阅读教材P9~P12,完成下列问题.1.正弦定理的深化与变形(1)asin A=bsin B=csin C=________=________.(2)a=________,b=________,c=________.(3)ab=________,ac=________,bc=________.(4)a∶b∶c=________:________:________.【答案】(1)2Ra+b+csin A+sin B+sin C(2)2R sin A2R sin B2R sin C(3)sin Asin Bsin Asin Csin Bsin C(4)sin A sin B sinC2.三角形面积公式S△ABC=________=________=________.【答案】12ab sin C12bc sin A12ac sin B判断(正确的打“√”,错误的打“×”)(1)在有些三角形中,a =sin A ,b =sin B ,c =sin C .( ) (2)在△ABC 中,asin A =b +c sin B +sin C.( )(3)在△ABC 中,a =2,b =1,C =30°,则S △ABC =1.( )【解析】 由正弦定理a sin A =b sin B =c sin C 可知(1),(2)正确;又S △ABC =12×2×1×sin 30°=12,故(3)错误.【答案】 (1)√ (2)√ (3)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_________________________________________________ 解惑:_________________________________________________ 疑问2:_________________________________________________ 解惑:_________________________________________________ 疑问3:_________________________________________________ 解惑:_________________________________________________ 疑问4:_________________________________________________ 解惑:_________________________________________________[小组合作型]在△c ,且B =30°,c =23,b =2,求△ABC 的面积S .【精彩点拨】 先求C ,再求A ,最后利用S △ABC =12bc sin A 求解. 【自主解答】 由正弦定理得sin C =c sin B b =23sin 30°2=32.又∵c >b ,∴C=60°或C=120°.当C=60°时,A=90°,∴S=12bc sin A=23;当C=120°时,A=30°,∴S=12bc sin A=3,∴△ABC的面积S为23或3.求三角形的面积,要充分挖掘题目中的条件,转化为求两边或两边之积及其夹角正弦的问题,要注意方程思想在解题中的应用.另外也要注意三个内角的取值范围,以避免由三角函数值求角时出现增根错误.[再练一题]1.在△ABC中,cos A=-513,cos B=35.(1)求sin C的值;(2)设BC=5,求△ABC的面积.【导学号:91730004】【解】(1)在△ABC中,0<A<π,0<B<π,A+B+C=π,由cos A=-513,得sin A=1213,由cos B=35,得sin B=45,∴sin C=sin(A+B)=sin A cos B+cos A sin B=1213×35+⎝⎛⎭⎪⎫-513×45=1665.(2)在△ABC中,由正弦定理得,AC=BC×sin Bsin A=5×451213=133,∴S△ABC=12×BC×AC×sin C=12×5×133×1665=83.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状. 【精彩点拨】 根据正弦定理可以把问题转化为角的问题,借助三角恒等变换知识化简得到角与角的等量关系,再进一步判断.【自主解答】 由已知得a 2sin B cos B =b 2sin Acos A . 由正弦定理得sin 2 A sin B cos B =sin 2 B sin Acos A , 即sin A cos A =sin B cos B ,亦即sin 2A =sin 2B . ∴2A =2B 或2A =π-2B , ∴A =B 或A =π2-B ,∴△ABC 为等腰三角形或直角三角形或等腰直角三角形.根据边角关系判断三角形形状的途径根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦定理实施边、角转换.[再练一题]2.在△ABC 中,若sin A =2sin B cos C ,且sin 2A =sin 2B +sin 2C ,试判断△ABC 的形状.【解】 法一:在△ABC 中,根据正弦定理:a sin A =b sin B =csin C =2R . ∵sin 2A =sin 2B +sin 2C ,∴⎝ ⎛⎭⎪⎫a 2R 2=⎝ ⎛⎭⎪⎫b 2R 2+⎝ ⎛⎭⎪⎫c 2R 2,即a 2=b 2+c 2. ∴A =90°,∴B +C =90°.由sin A =2sin B cos C ,得sin 90°=2sin B cos(90°-B ),∴sin 2B =12,∵B 是锐角,∴sin B =22,∴B =45°,C =45°. ∴△ABC 是等腰直角三角形. 法二:在△ABC 中,根据正弦定理: sin A =a 2R ,sin B =b 2R ,sin C =c 2R . ∵sin 2A =sin 2B +sin 2C ,∴a 2=b 2+c 2,∴△ABC 是直角三角形且A =90°. ∵A =180°-(B +C ),sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C , ∴sin B cos C -cos B sin C =0,即sin(B -C )=0,∴B -C =0,即B =C , ∴△ABC 是等腰直角三角形.[探究共研型]图1-1-1【提示】 如图,在B 侧选一条基线BC ,测得BC =a ,∠ABC =α,∠ACB =β,则由正弦定理可知 AB sin β=BCsin (α+β),即AB=BC sin βsin(α+β).探究2你能画出下列各角吗?(1)南偏西30°;(2)仰角30°,俯角45°.【提示】如图1-1-2,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C和D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.图1-1-2【精彩点拨】先求出∠CBD,利用正弦定理求BC,再在△ABC中,求AB.【自主解答】在△BCD中,∠BCD=α,∠BDC=β,∴∠CBD=180°-(α+β),∴BCsin β=ssin[180°-(α+β)],即BCsin β=ssin(α+β),∴BC=sin βsin(α+β)·s.在△ABC中,由于∠ABC=90°,∴ABBC=tan θ,∴AB=BC·tan θ=sin β·tan θsin(α+β)·s.解决实际测量问题的过程一般要充分理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.[再练一题]3.一货轮在海上由西向东航行,在A处望见灯塔C在货轮的东北方向,0.5 h后在B处望见灯塔C在货轮的北偏东30°方向.若货轮的速度为30 n mile/h,当货轮航行到D处望见灯塔C在货轮的西北方向时,求A,D两处的距离.【解】如图所示,在△ABC中,∠A=45°,∠ABC=90°+30°=120°,∴∠ACB=180°-45°-120°=15°,AB=30×0.5=15(n mile).由正弦定理,得AC sin∠ABC =ABsin∠ACB,∴AC=AB sin∠ABCsin∠ACB=15×sin 120°sin 15°=32+62×15(n mile).在△ACD中,∵∠A=∠D=45°,∴△ACD是等腰直角三角形,∴AD=2AC=15(3+3)(n mile).∴A,D两处之间的距离是15(3+3)n mile. 答:A,D两处的距离为15(3+3)n mile.[构建·体系]1.在△ABC中,AB=3,BC=1,B=30°,则△ABC的面积S△ABC=________.【解析】S△ABC =12×AB×BC×sin B=12×3×1×12=34.【答案】3 42.在△ABC中,若acos A=bcos B=ccos C,则△ABC是________三角形.【解析】由正弦定理asin A=bsin B=csin C=2R可知a=2R sin A,b=2R sin B,c=2R sin C.由acos A=bcos B=ccos C可知tan A=tan B=tan C,即A=B=C,∴△ABC为等边三角形.【答案】等边3.如图1-1-3所示,设A,B两点在河的两岸,一测量者在A的同侧,在A 所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为________ m.【导学号:91730005】图1-1-3【解析】 由题意可知∠ABC =180°-105°-45°=30°,由正弦定理,得AB =AC ·sin ∠ACB sin ∠ABC=50×2212=502(m).【答案】 50 24.在△ABC 中,2a sin A -b sin B -csin C =________. 【解析】 由正弦定理可知a sin A =b sin B =csin C , 故2a sin A -b sin B -csin C =0. 【答案】 05.如图1-1-4,A ,B 是海平面上的两个点,相距800 m .在A 点测得山顶C 的仰角为30°,∠BAD =105°,又在B 点测得∠ABD =45°,其中D 是点C到水平面的垂足.求山高CD .图1-1-4【解】 在△ABD 中,由正弦定理,得 AD =AB sin ∠ABD sin ∠ADB =800sin 45°sin (180°-105°-45°)=8002,在Rt △ACD 中,CD =AD ·tan 30°=8002×33=80063(m). 答:山高CD 为80063 m.我还有这些不足:(1)_________________________________________________(2)_________________________________________________ 我的课下提升方案:(1)_________________________________________________(2)_________________________________________________学业分层测评(二)(建议用时:45分钟)[学业达标]一、填空题1.已知△ABC的面积为3且b=2,c=2,则A=______.【解析】∵S△ABC =12bc sin A,b=2,c=2,∴12×2×2sin A=3,∴sin A=3 2.又A∈(0,π),∴A=π3或2π3.【答案】π3或2π32.海上有A,B两个小岛相距10 n mile,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是________ n mile.【解析】如图所示,易知C =45°,由正弦定理得AB sin C =BC sin A , ∴BC =AB sin Asin C =5 6. 【答案】 5 63.(2016·苏州高二检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为________.【导学号:91730006】【解析】 由正弦定理知,b sin B =c sin C ,结合条件得c =b sin Csin B =2 2. 又sin A =sin(π-B -C )=sin(B +C )=sin B cos C +cos B sin C =6+24, 所以△ABC 的面积S =12bc sin A =3+1. 【答案】3+14.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =________.【解析】 由正弦定理得a sin A =bsin B ,∵B =2A ,a =1,b =3, ∴1sin A =32sin A cos A .∵A 为三角形的内角,∴sin A ≠0,∴cos A =32. 又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,即△ABC 为直角三角形, 由勾股定理得c =12+(3)2=2. 【答案】 25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2 B -sin 2 Asin 2A的值为________.【解析】 由正弦定理得,原式=2b 2-a 2a 2=2⎝ ⎛⎭⎪⎫b a 2-1=2×⎝ ⎛⎭⎪⎫322-1=72.【答案】 726.(2016·泰州高二检测)在△ABC 中,a =2b cos C ,则这个三角形一定是________三角形.【解析】 由a =2b cos C 可知 sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0, ∴B =C ,∴b =c , ∴△ABC 为等腰三角形. 【答案】 等腰7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B ·cos C +c sin B cos A =12b ,且a >b ,则B =________.【解析】 根据正弦定理将边化角后约去sin B ,得sin(A +C )=12,所以sin B =12,又a >b ,所以A >B ,所以B =π6.【答案】 π68.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为________.【解析】 设最小角为α,则最大角为120°-α, ∴sin (120°-α)sin α=3+12,∴2sin(120°-α)=(3+1)sin α, ∴sin α=cos α,∴α=45°,∴最大角为120°-45°=75°. 【答案】 75° 二、解答题9.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,求这时船与灯塔的距离.【解】 如图所示,在△ABC 中,∠BAC =30°,∠ACB =105°,∴∠ABC =45°,AC =60.根据正弦定理, 得BC =AC sin ∠BAC sin ∠ABC=60sin 30°sin 45°=302(km).10.在△ABC 中,∠A 的平分线交BC 于D ,用正弦定理证明:AB AC =BDDC . 【证明】 如图,由题意可知,∠1=∠2,∠3+∠4=180°,在△ABD 中,由正弦定理得 AB sin ∠3=BDsin ∠1,① 在△ADC 中,由正弦定理得 AC sin ∠4=DCsin ∠2,②又sin ∠1=sin ∠2,sin ∠3=sin ∠4, 故①②得AB AC =BD DC. [能力提升]1.在△ABC 中,a cos B =bcos A ,则△ABC 的形状一定是________. 【解析】 在△ABC 中,∵a cos B =bcos A ,∴a cos A =b cos B ,由正弦定理, 得2R sin A cos A =2R sin B cos B , ∴sin 2A =sin 2B ,∴2A =2B 或2A +2B =180°, ∴A =B 或A +B =90°.故△ABC 为等腰三角形或直角三角形或等腰直角三角形. 【答案】 等腰或直角三角形或等腰直角三角形2.(2016·南京高二检测)在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,则ab 的取值范围为________.【解析】 在锐角三角形ABC 中,A ,B ,C 均小于90°, 即⎩⎨⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2Bsin B =2cos B ∈(2,3), 故ab 的取值范围是(2,3). 【答案】 (2,3)3.△ABC 中,A =π3,BC =3,则△ABC 的周长为________(用B 表示).【导学号:91730007】【解析】 在△ABC 中,A +B +C =π可知C =2π3-B . 由正弦定理得3sin π3=AB sin ⎝ ⎛⎭⎪⎫2π3-B =ACsin B ,∴AB =23sin ⎝ ⎛⎭⎪⎫2π3-B ,AC =23sin B ,∴△ABC 的周长为AB +AC +BC =23·⎣⎢⎡⎦⎥⎤sin B +sin ⎝ ⎛⎭⎪⎫2π3-B +3=3+6sin ⎝ ⎛⎭⎪⎫B +π6.【答案】 3+6sin ⎝ ⎛⎭⎪⎫B +π64.(2016·如东高二检测)在△ABC 中,a =3,b =26,B =2A . (1)求cos A 的值; (2)求c 的值.【解】 (1)因为a =3,b =26,B =2A , 所以在△ABC 中,由正弦定理得3sin A =26sin 2A, 所以2sin A cos A sin A =263,故cos A =63.(2)由(1)知cos A =63,所以sin A =1-cos 2 A =33. 又B =2A ,所以cos B =2cos 2 A -1=13, 所以sin B =1-cos 2 B =223. 在△ABC 中,sin C =sin(A +B ) =sin A cos B +cos A sin B =539, 所以c =a sin Csin A =5.。

高二数学必修5第1章第 2课时学案

高二数学必修5第1章第 2课时学案

高二数学必修5第1章第 2课时学案
1.1正弦定理(二)
[学习目标]
初步运用正弦定理解决一些与测量和几何计算有关的实际问题.
[自学质疑]范围:课本P 9~11。

1.什么是正弦定理?它可以解决什么类型的斜三角形?
2.练习:(1)在ΔABC 中,已知A=300,b=26,a=x,若三角形有两解,求x 的范围.
(2)在ΔABC 中,已知,45,30,26600==+=+B A b a 求S c ,.
3.什么叫仰角?什么叫俯角?尝试解决例3并思考此种类型的测量问题如何解决?
4.尝试解决例4并思考正弦定理在判断三角形形状中的作用,解决下列问题: 在ΔABC 中,C B bc B c C b cos cos 2sin sin 2
222=+,试判断ΔABC 形状.
的外角平分线交BC的延长线于D,此等式是5.尝试解决例5并思考:在ΔABC中,A
否成立?如成立,请你给出证明.
P练习题吗?动动手有问题与同学或老师交流.
6.你能解决教材
10
[矫正反馈]
P3,4,5,6,7.
1.教材习题
11
2.同步导学第2课时.。

正弦定理和余弦定理》(第2课时)

正弦定理和余弦定理》(第2课时)

1.1.2 正弦定理利用正弦定理解三角形时,解的问题的探讨:已知a, b 和A, 用正弦定理求B 时的各种情况: ⑴若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinAasin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA⑵若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a【变式练习】1根据下列已知条件,判定有没有解,若有解,判断解的个数:⑴5=a ,4=b ,120=A ,求B⑵5=a ,4=b ,90=A ,求B⑶5=a ,3310=b ,60=A ,求B ⑷20=a ,28=b ,40=A ,求B⑸60=a ,50=b ,38=A ,求B⑹4=a ,3310=b ,60=A ,求B(⑴120=A ,B 只能为锐角,因此仅有一解.图示 ⑵ 90=A ,B 只能为锐角,因此仅有一解.图示⑶∵1sin =B ,即90=B ,∴仅有一解. 图示⑷即例2,先让学生判断,然后回忆对照。

再次理解本题有两解。

⑸即例3,先让学生判断,然后回忆对照。

再次理解本题仅有一解。

⑹由⑶改编,∵60sin 4b a <=,由图知,本题无解)2.已知A,B,C 是ABC ∆的三个内角,求证:cos cos a b C c B =+3.在△ABC 中,A =60°,b =1,其面积为3,求sin sin sin a b cA B C++++的值(*)4. 在ABC ∆中,求证tan2tan 2A Ba b A Ba b --=++作业:1. 在ABC ∆中,已知210=c ,︒=∠45A ,在a 分别为20, ,3320,和5的情况下,求相应的角C.2.在ABC ∆中,b=2a, B=A 60+︒,求A3.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、.若()C a c b +︒=-60cos 2,求角A .(*)4..课本11页B 组 1。

正弦定理和余弦定理

正弦定理和余弦定理

2 2 ∵ sinC= 1- cos C= , a= 3 2,∴ b= 2 3. 3
必修⑤
第1章
1.1
第2课时
第1章
解三角形
4.△ ABC 中,已知 b= 2 2,c= 2 6,C= 60° ,则 A= ________.
人 教 B 版 数 学
[答案]
90°
必修⑤
第1章
1.1
第2课时
第1章
解三角形
人 教 B 版 数 学
又由 b>a,知 B>A, ∴ 30° <B<180° ,∴ B= 90° . ∴ C= 180° -(A+ B)= 180° - (30° +90° )=60° . ∴ c= b2- a2= 162- 82= 8 3.
必修⑤
第1章
1.1
第2课时
第1章
解三角形
在△ ABC 中,a= λ,b= 3λ,∠ A= 45° ,则满足此 条件的三角形个数是( A. 0 C. 2 ) B. 1 D.无数个
解三角形
正弦定理的综合应用
[例 2] 在△ABC 中,已知∠ B= 60° , tanAtanC= 2 + 3,又知顶点 C 的对边 c 上的高为 4 3,求三角形三边 的长. [分析 ] 由已知件不难求出 tanA 和 tanC,从而求出 4 3 4 3 ∠ A 和∠ C,然后根据边 c= + 进而问题得解. tanA tanB
人 教 B 版 数 学
必修⑤
第1章
1.1
第2课时
第1章
解三角形
人 教 B 版 数 学
必修⑤
第1章
1.1
第2课时
第1章
解三角形
一、选择题 1.在△ABC 中,a= 80,b= 100,A= 45° ,则此三 角形解的情况是( A.一解 C.一解或两解 ) B.两解 D.无解

1.1正弦定理(两课时)

1.1正弦定理(两课时)

3.思维误区警示:
(1)正弦定理可以解任意三角形; (2)运用该定理解决“已知两边和其中一边 的对角,求另一边的对角,进而求其它 元素”这类问题时,注意对解的判断.
a sin C c 49.57 sin A
已知两边和其中一边的对角,求其他边和角 练习
1.根据下列条件解三角形 (1)b=13,a=26,B=30°.
[B=90°,C=60°, c= ]
(2) b=40,c=20,C=45°.
13 3
注意:
无解
三角形中角的正弦值小于1时,角可能有两解;
然后用大角对大边或三角形三边三角关系进行检验。
例 2 已知a=16, b= 16 3, A=30° . 已知两边和其中一边 求角B,C和边c 的对角,求其他边和角 a b 解:由正弦定理 C
sin A sin B b sin A 16 3 sin 30 3 得 sin B a 16 2
16 3
300
16
16
所以B=60°,或B=120° 当 B=60°时
C=90°
A
B
B
c 32 .
a sin C c 16 . sin A
当B=120°时 C=30°
变式: a=30, b=26, A=30°求角B,C和边c
a b 解:由正弦定理 sin A sin B b sin A 26 sin 30 13 A 得 sin B a 30 30
4.一般地,把三角形的三个角A,B,C和它 们的对边a,b,c叫做三角形的元素。已知 三角形的几个元素求其他元素的过程叫解三
角形
定理的应用
已知两角和任意边, 求其他两边和一角
。 。
例 1 在△ABC 中,已知c = 10,A = 45 , C = 30 求 C a,b. 解: a c ∵
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1正弦定理(第2课时)正弦定理的应用学
案(含答案)
第2课时正弦定理的应用学习目标
1.了解正弦定理及其变式的结构特征和功能.
2.理解三角形面积公式及解斜三角形.
3.能用正弦定理解决简单的实际问题知识点一正弦定理的变形公式若ABC的外接圆的半径为R,有
2R.1abcsin_Asin_Bsin_C;2,,;3;4a2RsinA,b2RsinB,
c2Rsin
C.知识点二边角互化1正弦定理的本质是三角形的边与对角的正弦之间的联系2正弦定理的主要功能是把边化为对角的正弦或者反过来,简称边角互化3使用正弦定理进行边角互化的前提是已知外接圆半径R或能消掉R.知识点三三角形面积公式在ABC 中,内角A,B,C的对边为a,b,c,则ABC的面积SABCabsinCbcsinAcasin
B.思考在SABCabsinC中,bsinC的几何意义是什么答案BC边上的高知识点四仰角与俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示1仰角和俯角都是视线与铅垂线所成的角2在ABC中,若b22acosB,则
sin2B2sinAcosB3平行四边形ABCD的面积等于ABADsinA4SABCR为
ABC外接圆半径题型一边角互化例1在ABC中,若
sinA2sinBcosC,且sin2Asin2Bsin2C,试判断ABC的形状解方法一由正弦定理,得2RR为ABC外接圆半径,sinA,sinB,sinC,sin2Asin2Bsin2C,a2b2c2,A是直角,BC90,
2sinBcosC2sinBcos90B2sin2BsinA1,sin
B.0B90,B45,C45,ABC是等腰直角三角形方法二由正弦定理,得2RR为ABC外接圆半径,sinA,sinB,sinC,
sin2Asin2Bsin2C,a2b2c2,A是直角A180BC,sinA2sinBcosC,sinBCsinBcosCcosBsinC2sinBcosC,sinBC0.又90BC90,BC,ABC 是等腰直角三角形反思感悟1
化边为角转化公式为a2RsinA,b2RsinB,c2RsinCR为ABC外接圆半径2化角为边转化公式为sinA,sinB,sinCR为ABC外接圆半径3当等号两端为边的齐次式或角的正弦齐次式时,2R可以消掉跟踪训练1若将题设中的“sinA2sinBcosC”改为“bsinBcsinC”,其余不变,试解答本题解由正弦定理,设2RR 为ABC外接圆半径,从而得sinA,sinB,sin
C.bsinBcsinC,sin2Asin2Bsin2C,bc,222,b2c2,
a2b2c2,bc,A
90.ABC为等腰直角三角形题型二三角形面积公式及其应用命题角度1已知边角求面积例2在ABC中,已知B30,AB2,AC
2.求ABC的面积解由正弦定理,得sinC,又ABsinBACAB,故该三角形有两解,所以C60或120,当C60时,A90,SABCABAC2;当C120时,A30,SABCABACsin
A.所以ABC的面积为2或.反思感悟对于面积公式SabsinCacsinBbcsinA,总的概括为两边与夹角正弦乘积的一半一般是已知角A就选SbcsinA,但也要结合具体条件,如已知a,c,就以选SacsinB为宜跟踪训练2在ABC中,a,b,c分别是角A,B,C的对边,若tanA3,cosC,1求角B的大小;2若c4,求ABC的面积解1cosC,C,sinC,tanC
2.又tanBtanAC1,且0B,
B.2由正弦定理,得b,由sinAsinBCsin,得sinA,ABC的面积SABCbcsinA
6.命题角度2已知面积求边角例3在ABC中,角A60,b1,SABC,则sinBsinC________.答案14解析因为SABCbcsinA,所以c4,由正弦定理,得sinBsinCbc
14.反思感悟条件中涉及面积,要根据解题目标和其他条件选取对解题有利的面积公式跟踪训练3在ABC中,B60,a1,b,SABC,则C________.答案90解析SABCacsinB1c,c2,B60,b,
2.sinC1,C
90.题型三用正弦定理解决简单实际问题例4如图所示,D,C,B在地平面同一直线上,DC10m,从D,C两地测得A点的仰角
分别为30和45,则A点离地面的高AB为____m.答案51解析方法一设ABxm,则BCxm.BD10xmtanAD
B.解得x51mA点离地面的高AB等于51m.方法二ACB45,ACD135,CAD18013530
15.由正弦定理,得ACsinADCsin30.ABACsin4551m.反思感悟在运用正弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解和高度有关的问题往往涉及直角三角形的求解跟踪训练4如图,某河段的两岸可视为平行的,为了测量该河段的宽度,在河岸的一边选取两点A,B,观察对岸的点C,测得CAB75,
CBA45,且AB100m求该河段的宽度解CAB75,CBA45,
ACB180CABCBA
60.由正弦定理得,B
C.如图,过点B作BD垂直于河岸,垂足为D,则BD的长就是该河段的宽度在RtBDC中,BCDCBA45,sinBC
D.BDBCsin45sin45m,即该河段的宽度为m.学会有逻辑地思考问题典例在ABC中,内角A,B,C所对的边分别为a,b,c.已知tan
2.若B,a3,求ABC的面积解由tan2,得tanA,又因为
A0,,所以sinA,cos
A.又由a3,B及正弦定理,得b
3.由sinCsinABsin得sinC,设ABC的面积为S,则SabsinC
9.素养评析逻辑推理核心素养要求“学会有逻辑地思考问题”本例的思考逻辑是已知a,A,B易求b;在已知a,b的情况下,要求SABC,可选公式SABCabsinC,为此需求出sinC而sinCsinABsinAcosBcosAsinB,故需求sinA,cosA有逻辑地思考可以少做无用功,提高思维效率1在ABC中,若0,则ABC的形状一定是A直角三角形B等腰三角形C等边三角形D无法判断答案B 解析由正弦定理,,得0,a2b2,ab,ABC为等腰三角形2已知三角形的面积为,其外接圆的面积为,则这个三角形的三边之积为A1B2
C.D4答案A解析设三角形外接圆的半径为R,则由R2,得
R1,SabsinC,abc
1.3在ABC中,B,BC边上的高等于BC,则sinA等于
A.
B.
C.
D.考点用正弦定理解三角形题点正弦定理解三角形综合答案D 解析如图,设BC边上的高为AD,不妨令AD
1.由B,知BD
1.又ADBCBD,DC2,A
C.由正弦定理知,sinBAC
3.4在ABC中,若C3B,则的取值范围为__________答案1,3解析由正弦定理,得cos2B2cos2B4cos2B1,又ABC180,C3B,
0B45,cosB1,14cos2B13,即的取值范围为1,35在ABC中,已知BC6,A30,B120,则ABC的面积为________答案9解析由正弦定理得,AC
6.又C1801203030,SABCACBCsinC6
69.1用正弦定理解决实际问题时,首先根据条件画出示意图,并特别注意诸如“仰角”.“俯角”之类术语的准确理解然后分析解三角形已有哪些条件,要求什么,还缺什么,如何利用正弦定理及三角知识达到目标2当条件等式中边的次数.角的正弦次数相同时,或已知三角形外接圆半径时,可以用正弦定理进行边角互化3三角形面积公式要根据条件灵活选择。

相关文档
最新文档