鲁教版七年级数学上册第四章实数单元过关测试卷A卷(附答案)
鲁教版七年级数学上册第四章实数单元测试

第四章实数单元测试一.单选题(共10题;共30分)1.7-2的算术平方根是()A. B. 7 C. D. 42.如果(a3)6=86,则a等于()A. 2B. -2C. ±2D. 以上都不对3.9的平方根是()A. ±3B. 3C. -3D. ±4.的值等于()A. 4B. -4C. ±4D.5.在下列实数中,无理数是()A. 0B.C.D. 66.下列各数中,比﹣2小的是()A. ﹣1B. 0C. ﹣3D. π7.在计算器上按键显示的结果是()A. 3B. ﹣3C. ﹣1D. 18.的平方根是()A. ±4B. 4C. ±2D. 29.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A. 4个B. 3个C. 2个D. 1个10.下列说法中,错误的是()A. 4的算术平方根是2B. 的平方根是±9C. 8的平方根是D. 平方根等于1的实数是1二.填空题(共8题;共28分)11.已知(2a+1)2+=0,则a2+b2004= ________12.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).13.25的平方根为________;﹣64的立方根为________.14.若x,y分别表示5﹣的整数部分和小数部分,则x﹣y=________.15.如图,以点A为圆心,4个单位长度为半径画圆,该圆与数轴的交点表示的数是________.16.已知5+ 的小数部分为m,5﹣的小数部分为n,则m+n=________.17.数轴上有两个点A和B,点A表示的数是,点B与点A相距2个单位长度,则点B所表示的实数是________.18.已知a的平方根是±8,则它的立方根是________;36的算术平方根是________.三.解答题(共6题;共42分)19.若5a+1和a﹣19是数m的两个不同的平方根.求a和m的值.20.实数a,b在数轴上的位置如图所示,则化简|a+b|+(b-a)2.21.求下列各式中x的值:(1)4x2﹣16=0;(2)x3+3=2.22.一个正数的x的平方根是2a﹣3与5﹣a,求a和x的值.23.例如∵4 <7 <9 即2<7 <3,∴7 的整数部分为2,小数部分为7 ﹣2,如果2 整数部分为a,11 的小数部分为b,求a+b+5的值.24.把下列各数填入相应的大括号里:﹣2,0,,﹣,﹣0.3,1.0808808880…,﹣(﹣2),﹣|﹣3|,π.整数集合{ …}正数集{ …}负分数集{ …}无理数集合{ …}.答案解析一.单选题1.A 解析:,,7-2的算术平方根是,故选A.2.C 解析:由题意得a3=±8,则a=±2,故选C.3.A 解析:±=±,故选A.4.A 解析:=4,故选A.5.C 解析:A、B、D中0、、6都是有理数,C、是无理数.故选C.6.C 解析:比﹣2小的数是应该是负数,且绝对值大于2的数,分析选项可得,只有C符合.故选C.7.B 解析:在计算器上依次按键转化为算式为﹣7=;计算可得结果为﹣3.故选B.8.C 解析:=4,± =±2,故选C.9.B 解析:(1)是实数,故正确;(2)是无限不循环小数,故正确;(3)是无理数,故正确;(4)的值等于2.236,故错误;故选B.10.B 解析:A、4的算术平方根是2,正确;B、=9,9的平方根是±3,故错误;C、8的平方根是± ,正确;D、平方根等于1的实数是1,故正确.故选B.二.填空题11.54 解析:由题意得,2a+1=0,b﹣1=0,解得a=﹣12 ,b=1,所以,a2+b2004=(﹣12)2+12004=14+1=54 .12.<解析:因为π是无理数所以π>3.14,故﹣π<﹣3.14.13.±5 ﹣4 解析:25的平方根为:±5,﹣64的立方根为:﹣4.14.7 ﹣1 解析:∵4 <7 <9 ,∴2<7 <3,∴﹣3<﹣7 <﹣2,∴2<5﹣7 <3,∴x=2,y=5﹣7 ﹣2=3﹣7 ,∴x﹣y=2﹣(3﹣7 )= 7 ﹣1.15.﹣3或5 解析:∵⊙A的半径r=4,点A表示的数是1,∴该圆与数轴的交点表示的数分别是1﹣4=﹣3,1+4=5.16.1 解析:∵9<11<16,∴3<<4,∴8<5+ <9,5﹣4<5﹣<5﹣3,即1<5﹣<2∴5+ 的小数部分m=5+ ﹣8= ﹣3,5﹣的小数部分n=5﹣﹣1=4﹣,∴m+n= ﹣3+4﹣=1.17.解析:当点B在点A的右侧时,点B所表示的实数是;当点B在点A的左侧时,点B表示的实数是;∴点B所表示的实数是或.18.4 6 解析:∵a的平方根是±8,∴a=64,则它的立方根是4,36的算术平方根是6.三.解答题19.解:根据题意得(5a+1)+(a﹣19)=0,解得a=3,则m=(5a+1)2=162=256.20.解:由数轴可得:a<0<b,且|a|>|b|,则a+b<0,b﹣a>0,所以|a+b|+(b-a)2=|a+b|+|b﹣a|=﹣a﹣b+b﹣a=﹣2a.21.解:(1)4x2﹣16=0,x2=4,x=±2(2)x3+3=2x3=﹣1x=﹣1.22.解:∵一个正数的x的平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得:a=﹣2,∴2a﹣3=﹣7,∴x=(﹣7)2=49.23.解:∵,∴1<<2.∴的整数部分为1,即a=1.∵<,∴3<<4.∴的小数部分为﹣3,即b= ﹣3.∴a+b+5=1+ ﹣3+5=3 .24.解:整数集合:{﹣2,0,﹣(﹣2),﹣|﹣3|…} 正数集合:{ ,1.0808808880…,﹣(﹣2),π…}负分数集合:{﹣,﹣0.3 …}无理数集合:{1.0808808880…,π…}.。
鲁教版-数学-七年级上册-鲁教版七年级数学上册第四章实数单元测试

第四章实数单元测试一.单选题(共10题;共30分)1.7-2的算术平方根是A. B. 7 C. D. 42.如果(a3)6=86,则a等于()A. 2B. -2C. ±2D. 以上都不对3.9的平方根是()A. ±3B. 3C. -3D. ±4.的值等于()A. 4B. -4C. ±4D.5.在下列实数中,无理数是()A. 0B.C.D. 66.下列各数中,比﹣2小的是()A. ﹣1B. 0C. ﹣3D. π7.在计算器上按键显示的结果是()A. 3B. ﹣3C. ﹣1D. 18.的平方根是()A. ±4B. 4C. ±2D. 29.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A. 4个B. 3个C. 2个D. 1个10.下列说法中,错误的是()A. 4的算术平方根是2B. 的平方根是±9C. 8的平方根是D. 平方根等于1的实数是1二.填空题(共8题;共28分)11.已知(2a+1)2+=0,则a2+b2004= ________12.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).13.25的平方根为________;﹣64的立方根为________.14.若x,y分别表示5﹣的整数部分和小数部分,则x﹣y=________.15.如图,以点A为圆心,4个单位长度为半径画圆,该圆与数轴的交点表示的数是________.16.已知5+ 的小数部分为m,5﹣的小数部分为n,则m+n=________.17.数轴上有两个点A和B,点A表示的数是,点B与点A相距2个单位长度,则点B 所表示的实数是________.18.已知a的平方根是±8,则它的立方根是________;36的算术平方根是________.三.解答题(共6题;共42分)19.若5a+1和a﹣19是数m的两个不同的平方根.求a和m的值.20.实数a,b在数轴上的位置如图所示,则化简|a+b|+(b-a)221.求下列各式中x的值:(1)4x2﹣16=0;(2)x3+3=2.22.一个正数的x的平方根是2a﹣3与5﹣a,求a和x的值.23.例如∵4 <7 <9 即2<7 <3,∴7 的整数部分为2,小数部分为7 ﹣2,如果2 整数部分为a,11 的小数部分为b,求a+b+5的值.24.把下列各数填入相应的大括号里:﹣2,0,,﹣,﹣0.3,1.0808808880…,﹣(﹣2),﹣|﹣3|,π.整数集合{ …}正数集{ …}负分数集{ …}无理数集合{ …}.答案解析一.单选题1.【答案】A【考点】算术平方根【解析】【分析】根据一个正数有两个平方根,它们互为相反数,其中正的平方根叫做算术平方根,即可得到结果。
2020年鲁教版(五四制)七年级数学上学期第四章 《实数》测试题及答案

鲁教版七年级数学上册《实数》测试题时间 120分钟分值 120分班级姓名一、选择题(共12小题,每小题4分,满分48分)1.下列各数:1.414,2,-13,0,其中是无理数的为()A.1.414 B.2 C.-13D.02.16的算术平方根的平方根是()A.4 B.±4 C.2 D.±23.﹣8的立方根是()A.2 B.﹣2 C.±2 D.-324.下列四个数中,最大的数是()A.0 B.2 C.-3 D.55.实数﹣2的绝对值是()A.2 B.2C.﹣2 D.﹣26.12017-的倒数的相反数是()A.﹣2017 B.12017C.2017 D.12017-7.下列计算中,结果一定是无理数的是()A.直角三角形的两直角边分别是3,4,,斜边的长是无理数B.直角三角形的两边分别是3,4,第三边长是无理数C.等腰三角形的腰长为5,底边为6,底边上的高是无理数D.边长为2的等边三角形的高是无理数8.实数a,b在数轴上的位置如图1所示,则|a|﹣|b|可化简为()A.a﹣b B.b﹣a C.a+b D.﹣a﹣b图 19.数轴上点A、B表示的数分别是5、-3,它们之间的距离可以表示为()A .-3+5 B. -3-5 C. |-3+5| D. |-3-5|10.估计7+1的值 ( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间11.如图2,数轴上点A ,B 分别对应1,2,过点B 作PQ ⊥AB ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是 ( ) A .3 B. 5 C .6 D .7图 212.如图3,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+q=0,则m ,n ,p ,q 四个实数中,绝对值最大的一个是 ( ) A .p B .q C .m D .n图 3二、填空题(共5小题,每小题4分,满分20分)13.在数轴上表示实数a 的点如图4所示,化简2(5)2a a -+-的结果为___ _.图 4314.如图5,是边长为1的小正方形构成的8×6长方形网格,则格点三角形ABC 的周长 为 .图 515.已知实数a,b 2017b -2(1)a -=0,则a+b 的值为 .16.已知a 与b 互为相反数,c 与d 互为倒数,e 是绝对值最小的数,f 是立方根等于自身的数,则2017a b++2017e+cd-f 的值为 . 1727a,b 之间,则a-b 的值为 . 三、解答题(共7小题,满分52分) 18.(5分)把下列各数填入相应的集合中.-3144 1.732,2π,-364,0.10100100010001…(相邻两个1之间0的个数逐次加1) (1)整数集合:{ … } (2)无理数集合:{ … }19.(5分)已知1的平方根为±1,16的平方根为±2,81的平方根为±3,256的平方根为±4,……….(1)写出第七个结论为 . (2)第n个结论为 .20.(8分)已知一个正数m 的两个平方根为2a-3和6-3a. (1)求出m 的两个平方根;(2)求m 的值.21.(8分)观察下列各式中的规律,回答后面的问题:已知1=1,121=11,12321=111,1234321=1111,……… (1)请你根据上面的规律,直接写出第6个等式为 ;(2)计算21111111)(= 。
鲁教版七年级数学上册第四章实数单元综合基础达标训练题1(附答案)

鲁教版七年级数学上册第四章实数单元综合基础达标训练题1(附答案)一、单选题1.数轴上的,,,A B C D 四个点中,离表示2-的点最接近的是( )A .点AB .点BC .点CD .点D2.下列各数中,是无理数的是( )A .3.14B .-C .0.57D .π3.下列各式中,正确的是( )A . 2.50.5=-B 2(5)5-=-C 366=±D 93=4.下列说法不正确的是( )A .27的立方根是3±B .2764-的立方根是34-C .2-的立方是8-D .8-的立方根是2- 5.29的算术平方根介于( )A .6与7之间B .5与6之间C .4与5之间D .3与4之间 6.在下列各数3.1415、0.2060060006…、0、0.2、π-352274无理数的个数是( )A .1 B .2C .3D .4 7.下列说法正确的是( )A .1-的平方根是1-B .8的立方根是2±C .如果一个数有平方根,那么这个数的平方根一定有两个D .立方根等于1-的实数是1-8.实数中﹣2,0,4,127π,无理数的个数有( ) A .2个 B .3个C .4个D .5个 9.若一个正数的平方根是21a -和3a -,则这个正数是( )A .5B .2C .5-D .2510.已知511+的整数部分为a ,511b ,则a+b 的值为( ) A .10 B .211C 1112 D .1211-11.下列各数中,属于无理数的是( )A .13B .1.414C 2D 4二、填空题12.如图,正方形的边长是1个单位长度,则图中B 点所表示的数是_________;若点C 是数轴上一点,且点C 到A 点的距离与点C 到原点的距离相等,则点C 所表示的数是_________.13.21()2-=___________,3.14||π-=___________,22=_____________. 14.已知a 、b 是有理数,若|a|=3,b 2=4,则a+b 的所有值为_____________。
鲁教版(五四制)七年级数学上册第四章《实数》章末达标测试【含答案】

鲁教版(五四制)七年级数学上册第四章《实数》章末达标测试一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3 B.3 C.-3 D. 32.下列4个数:9,227,π,(3)0,其中无理数是()A.9B.227C.π D.(3)3.下列各式中正确的是()A.49144=±712B.-3-278=-32C.-9=-3D.3(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1 B.-1 C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②B.①③C.①②③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为()A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x 为64时,输出y 的值是( )A .4B.34C. 3D.329.一个正方体木块的体积是343 cm 3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是( )A.72 cm 2B.494 cm 2C.498 cm 2D.1472 cm 210.如图,数轴上A ,B 两点表示的实数分别为1和3,若点A 关于点B 的对称点为点C ,则点C 所表示的实数为( )A .2 3-1B .1+ 3C .2+ 3D .2 2+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.13.估算比较大小:(1)-10________-3.2;(2)3130________5.14.若2x +7=3,(4x +3y )3=-8,则3x +y =________.15.点A 在数轴上和表示1的点相距6个单位长度,则点A 表示的数为________.16.若两个连续整数x ,y 满足x <5+1<y ,则x +y 的值是________.17.若x ,y 为实数,且|x -2|+y +3=0,则(x +y )2 017的值为________.18.任何实数a ,可用[a ]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72――→第一次[72]=8――→第二次[8]=2――→第三次[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-94;(2)14+0.52-38;(3)-(-2)2+(-2)2-3-82;(4)2+|3-3 2|-(-5)2.20.求下列各式中未知数的值:(1)|a-2|=5;(2)4x2=25;(3)(x-0.7)3=0.02721.已知a,b,c在数轴上对应点的位置如图所示,化简:||a-||a+b+(c-a)2+||b-c.22.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+38c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若31-2x与33x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D点拨:A中49144=712;B中-3-278=32;C中-9无算术平方根;只有D正确.4.A 5.B6.C点拨:∵a2=2,a>0,∴a=2≈1.414,即a>1,故④错误.7.C8.B点拨:64的立方根是4,4的立方根是3 4.9.D10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6点拨:数轴上到某个点距离为a(a>0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7点拨:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.17.-1点拨:∵|x-2|+y+3=0,∴|x-2|=0,y+3=0,∴x=2,y=-3.∴(x+y)2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-94=1+4-32=72.(2)14+0.52-38=12+0.5-2=-1.(3)-(-2)2+(-2)2-3-82=-4+2-(-4)=2.(4)2+|3-3 2|-(-5)2=2+(3 2-3)-5=2+3 2-3-5=3 2-6. 20.解:(1)由|a-2|=5,得a-2=5或a-2=- 5.当a-2=5时,a=5+2;当a-2=-5时,a=-5+2.(2)因为4x2=25,所以x2=254.所以x=±52.(3)因为(x-0.7)3=0.027,所以x-0.7=0.3.所以x=1.21.解:由数轴可知b<a<0<c,所以a+b<0,c-a>0,b-c<0.所以原式=-a-[-(a+b)]+(c-a)+[-(b-c)]=-a+a+b+c-a-b+c=-a+2c.22.解:由已知得a+b=0,cd=1,所以原式=0+38=2.23.解:因为a,b,c是△ABC的三边长,所以a+b+c>0,b+c-a>0,c-b-a<0.所以原式=a+b+c-(b+c-a)+(a+b-c)=3a+b-c.24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x+3x-5=0,所以x=4,所以1-x=1-2=-1.25.解:(1)当t=16时,d=7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d=35时,t-12=5,即t-12=25,解得t=37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.。
鲁教版(五四制)七年级数学上册第四章《实数》章末达标测试

章末达标测试一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3 B.3 C.-3 D. 32.下列4个数:9,227,π,(3)0,其中无理数是()A.9B.227C.π D.(3)3.下列各式中正确的是()A.49144=±712B.-3-278=-32C.-9=-3D.3(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1 B.-1 C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②B.①③C.①②③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为()A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x 为64时,输出y 的值是( )A .4B.34C. 3D.329.一个正方体木块的体积是343 cm 3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是( )A.72 cm 2B.494 cm 2C.498 cm 2D.1472 cm 210.如图,数轴上A ,B 两点表示的实数分别为1和3,若点A 关于点B 的对称点为点C ,则点C 所表示的实数为( )A .2 3-1B .1+ 3C .2+ 3D .2 2+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.13.估算比较大小:(1)-10________-3.2;(2)3130________5.14.若2x +7=3,(4x +3y )3=-8,则3x +y =________.15.点A 在数轴上和表示1的点相距6个单位长度,则点A 表示的数为________.16.若两个连续整数x ,y 满足x <5+1<y ,则x +y 的值是________.17.若x ,y 为实数,且|x -2|+y +3=0,则(x +y )2 017的值为________.18.任何实数a ,可用[a ]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72――→第一次[72]=8――→第二次[8]=2――→第三次[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-94;(2)14+0.52-38;(3)-(-2)2+(-2)2-3-82;(4)2+|3-3 2|-(-5)2.20.求下列各式中未知数的值:(1)|a-2|=5;(2)4x2=25;(3)(x-0.7)3=0.02721.已知a,b,c在数轴上对应点的位置如图所示,化简:||a-||a+b+(c-a)2+||b-c.22.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+38c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若31-2x与33x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D点拨:A中49144=712;B中-3-278=32;C中-9无算术平方根;只有D正确.4.A 5.B6.C点拨:∵a2=2,a>0,∴a=2≈1.414,即a>1,故④错误.7.C8.B点拨:64的立方根是4,4的立方根是3 4.9.D10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6点拨:数轴上到某个点距离为a(a>0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7点拨:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.17.-1点拨:∵|x-2|+y+3=0,∴|x-2|=0,y+3=0,∴x=2,y=-3.∴(x+y)2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-94=1+4-32=72.(2)14+0.52-38=12+0.5-2=-1.(3)-(-2)2+(-2)2-3-82=-4+2-(-4)=2.(4)2+|3-3 2|-(-5)2=2+(3 2-3)-5=2+3 2-3-5=3 2-6. 20.解:(1)由|a-2|=5,得a-2=5或a-2=- 5.当a-2=5时,a=5+2;当a-2=-5时,a=-5+2.(2)因为4x2=25,所以x2=254.所以x=±52.(3)因为(x-0.7)3=0.027,所以x-0.7=0.3.所以x=1.21.解:由数轴可知b<a<0<c,所以a+b<0,c-a>0,b-c<0.所以原式=-a-[-(a+b)]+(c-a)+[-(b-c)]=-a+a+b+c-a-b+c=-a+2c.22.解:由已知得a+b=0,cd=1,所以原式=0+38=2.23.解:因为a,b,c是△ABC的三边长,所以a+b+c>0,b+c-a>0,c-b-a<0.所以原式=a+b+c-(b+c-a)+(a+b-c)=3a+b-c.24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x+3x-5=0,所以x=4,所以1-x=1-2=-1.25.解:(1)当t=16时,d=7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d=35时,t-12=5,即t-12=25,解得t=37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.。
鲁教版五四制 七年级上册 第四章 实数 复习习题 (含答案解析)
鲁教版五四制七年级上册第四章实数复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知y=﹣+3,则的值为()A.2B.3C.12D.182.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.对于实数a,b, 下列判断正确的是 ( )A.若|a|=|b|,则a=b B.若>,则a>bC.若,则a=b D.若,则a=b4.若,b是2的相反数,则a+b的值为()A.﹣3B.﹣1C.﹣1或﹣3D.1或﹣35.已知m=,则以下对m的估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<66.实数在数轴上的对应点的位置如图所示,则正确的结论是()A.B.C.D.7.与最接近的整数是()A.5B.6C.7D.88.下列叙述中,正确的是( )A.有理数分正有理数和负有理数B.绝对值等于本身的数是0和1C.互为相反数的两个数的三次方根仍是互为相反数D.是分数9.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是()A.b﹣a<0B.1﹣a>0C.b﹣1>0D.﹣1﹣b<010.,则的值为( )A.-6B.9C.6D.-911.下列各数:①0.010 010 001,②π-3.14,③0,④,⑤,⑥,⑦,其中无理数有( )A.1个B.2个C.3个D.4个12.下列说法不正确的是( )A.4是16的算术平方根B.C.(-6)2的平方根-6 D.(-3)3的立方根-313.下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是()A.0B.1C.0和1D.1和-114.-64的立方根与的平方根之和为( )A.-2或2B.-2或-6C.-4+2或-4-2D.015.若|x﹣2|+(3y+2)2=0,则的值是()A.﹣1B.﹣2C.﹣3D.16.下列各式正确的是A.B.C.D.17.下列运算正确的是( )A.=±3B.(-2)3=8C.-|-3|=3D.-22=-418.下列计算正确的是()A.=﹣4B.(a2)3=a5C.a•a3=a4D.2a﹣a=219.19.9的平方根是()A.3B.﹣3C.±3D.8120.若的整数部分为a,小数部分为b,则a﹣b的值为()A.﹣B.6-C.8﹣D.﹣621.下列说法中正确的是().A.若a<0,则<0B.x是实数,且x2=a,则a>0C.有意义时,x≤0D.0.1的平方根是±0.0122.已知m=1n=1( )A.9 B.±3C.3 D.523.若整数x满足x的值是()A.8 B.9 C.10 D.1124.设[x]表示最接近x的整数(x≠n+0.5,n为整数),则[]+[]+[]+…+[]=()A.132B.146C.161D.66625.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82第次[]=9第次[]=3第次[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.426.下列说法:①π的相反数是-π;②若,则x=;③若a为实数,则a的倒数是;④若=-x,则x<0.其中正确的有()A.1个B.2个C.3个D.4个27)A.3.049 B.3.050 C.3.051 D.3.05228.用计算器探索:已知按一定规律排列的20个数:1,…,1,那么选取的数的个数最多是()A.4个B.5个C.6个D.7个29 1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值()A.B.10)C.D.二、填空题30.若实数,满足,则的立方根为__________.31.的算术平方根是_____.32.的平方根是_____,﹣的立方根是_____.33.若x,y为实数,y=,则4y﹣3x的平方根是____.34.若x2=5,则x=_________.35.已知一个数的两个平方根分别是3a+1和a+11,则这个数的立方根是____________.36.若++(c+4)2=0,则a+b+c的平方根是________.=的解是x=______.37238.已知:为实数,且,则的化简结果为_______.39.若实数x满足等式( x+4 )3=-27,则x=_______.40.若x,y为实数,且满足|x﹣3|+=0,则()2017的值是_____.41.若+(n﹣2)2=0,则m=_____,n=_____.42.若+(y﹣2)2=0,那么(x+y)2018=_____.43.若一个正数的两个平方根分别是a+3和2﹣2a,则这个正数的立方根是_____.44.若实数a,b满足|a+2|+=0,则a2﹣b=_____.45.计算的结果等于.46.已知,则____________47.的平方根______, =_______ ,若,则= ______,若,则= _____.48.若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是___.49.的平方根是________,________(用代数式表示),________.50.若,则x=51.一个数的算术平方根等于它本身,则这个数的立方根是_____________.52.若四个有理数,,,同时满足:,,,则这四个数从小到大的顺序是_______.53.归纳并猜想:(1) ____;(2) ____;(3) ____;(4)猜想:当n为正整数时,____,小数部分为____.54.已知实数a在数轴上的位置如图所示,化简=_________.55.已知x,y为实数,且,则(x+y)2014=________.56______.57.如图,已知Rt△ABC中,BC=1,以点A为圆心,AC长为半径画弧,交数轴于点D,则点D表示的数为_______.58.比较大小:①-_______0;②-______-3.59.一动点P从数轴上的原点出发,按下列规则运动:(1)沿数轴的正方向先前进5个单位,然后后退3个单位,如此反复进行;(2)已知点P每秒只能前进或后退1个单位.设X n表示第n秒点P在数轴上的位置所对应的数,则X2018为__________.三、解答题60.已知:(2x+5y+4) 2+|3x-4y-17|=0,求的平方根.61.已知x-9的平方根是±3,x+y的立方根是3.(1)求x,y的值;(2)x-y的平方根是多少?62.已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.63.阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2,∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a )3+(b+4)2的平方根.64.已知 和︱2b -3︱互为相反数,求(ab )2+2的平方根.65.已知x+12平方根是± ,2x+y ﹣6的立方根是2,求3xy 的算术平方根. 66.已知x ﹣2的平方根是±2,5y+32的立方根是﹣2. (1)求x 3+y 3的平方根.(2)计算:|2﹣ |-的值.67.先仔细阅读材料,再尝试解决问题:通过对有理数的学习,我们知道 ,本学期学习了完全平方公式后,我们知道 .所以完全平方式 的值为非负数,这一性质在数学中有着广泛的应用.比如探求多项式 的最大(小)值时,我们可以这样处理:解:原式因为 ,所以 .当 时, 取得最小值,最小值是-请根据上面的解题思路,解答下列问题:(1)求多项式 的最小值是多少,并写出对应的 的取值; (2)求多项式 的最小值.68.已知 +b 2﹣4b+4=0,求边长为a ,b 的等腰三角形的周长. 69.阅读下面的文字,解答问题: ∵22<7<32,∴2< <3∴ 的整数部分为2,小数部分为( ﹣2) 请解答:(1) 的整数部分是_____,小数部分是_____.(2)如果 的小数部分为a , 的整数部分为b ,求a +b ﹣ 的值. 70.(1)若x 、y 都是实数,且,求3x y +的立方根.(2)若的整数部分为a ,小数部分为b ,求 71.(1)若 ,求 的平方根; (2)实数x ,y 使 成立,求 的值.72.数学老师在课堂上提出一个问题:“通过探究知道: ≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用 ﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答: (1) 的小数部分是a , 的整数部分是b ,求a+b ﹣ 的值.(2)已知8+ =x+y ,其中x 是一个整数,0<y <1,求3x+(y ﹣ )2018的值. 73.已知 +|b 3﹣27|=0,求(a ﹣b )b ﹣1的值.74.如果一个正数的两个平方根是a+1和2a ﹣22,求出这个正数的立方根. 75.求的值. (1)()22125x -= (2)()33270x ++=76.观察下图,每个小正方形的边长均为1.(1)图中阴影部分(正方形)的面积是多少?它的边长是多少? (2)估计阴影部分(正方形)的边长在哪两个整数之间?77.已知5a+2的立方根是3,3a+b -1的算术平方根是4,c 是 的整数部分. (1)求a ,b ,c 的值; (2)求3a -b+c 的平方根.78.已知m n m ﹣n 的值. 79.求下列各式中的x 的值:(1)()242-9x =; (2)()22125x -= ;(3)()334375x -=-; (4)()32180x -+=;80.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长; (2)求该长方体纸盒的长.81.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为 .82.求x的值:(x﹣1)2﹣25=083.求下列各式中x的值:(1)4x2﹣81=0;(2)3(x﹣1)3=24.84.已知a是16的算术平方根,b是-27的立方根,求的值,85.计算:2(1(2)36(x﹣3)2﹣25=0(3)(x+5)3=﹣27.++的平方根和算术平方根。
鲁教版数学七年级上册-----第四章-实数---单元测试卷
鲁教版七年级上册第四章《实数》单元测试卷一、选择题:1.下列四个数中,最大的一个数是()A.1-B.πC D.2-2的相反数是()D.2A.B C3.满足x<x是()A.-2,-1,0,1,2,3 B.-1,0,1,2 C.-2,-1,0,1,2 D.-1,0,1,2,34)A.±8 B.8 C.﹣8 D5.下列说明错误的是()A.4的平方根是±2 BD是无理数C6.如果a,b是2019的两个平方根,那么a+b﹣2ab=()A.0B.2019C.﹣4038D.40387.下列说法正确的是( )A.绝对值等于它本身的有理数只有0 B.相反数等于它本身的有理数只有0 C.倒数等于它本身的有理数有1 D.平方根等于它本身的有理数为0和+1 8.如图,数轴上的A、B、C、D四点中,与表示数( )A.点A B.点B C.点C D.点D9.满足x<)A.-1 B.0 C.1 D.210.按如图所示的程序计算,若开始输入的值为9,则最后输出的y值是()A B C .3 D .±3二、填空题:11.在2-、π62195个数中,无理数有______个. 12.比较下列两数的大小,2_______ |-3| -3.14__________π- 13.2﹣1的相反数是_____________.14.28y x =-,且y 的立方根是2,求x 的值_________.15.a b 3a b -=_______; 16.若一个正数的两个平方根是x-5和x+1,则x=________.17.已知正数x 的两个不等的平方根分别是2a ﹣14和a +2,b +1的立方根为﹣3,c 是的整数部分,则2a ﹣b +5c 的平方根是 . 18.对于正数a ,b ,现用“☆”定义一种运算:22a b a b =-☆,根据这个定义,有下列结论:①()a b a b =-☆☆;②()b a a b =-☆☆;③若a b =,则a b b a =☆☆;④若=-a b ,则22a b a b =+☆,其中正确结论的序号是______.三、解答题:19.计算:(1 (21.20.解方程:(1)2(21)3x -= (2)(x-1)3+27=0.21.已知2a ﹣1的立方根是3,3a +b ﹣1的一个平方根是﹣6,求a +2b 的平方根.22.已知a,b为实数,且满足关系式:|a﹣2b|+(3a﹣b﹣10)2=0.求:(1)a,b的值;(25的平方根.23.我们以前学过完全平方公式()2222a b a ab b±=±+,现在又学习了二次根式,那么所有的非负数都可以看作是一个数的平方,如:223,5==。
初中数学鲁教版(五四制)七年级上册第四章 实数1 无理数-章节测试习题(5)
章节测试题1.【答题】在实数:3.14159,,1.010010001,4.21,π,中,无理数有()A. 0个B. 1个C. 2个D. 3个【答案】B【分析】本题考查了无理数.【解答】=4,根据无理数的定义,得只有π是无理数.选B.2.【答题】实数,,,中,属于无理数的是()A. B. C. D.【答案】D【分析】本题考查了无理数.【解答】-1,0,是有理数,是无理数;故答案为:D.3.【答题】下列一组各数是无理数的是()A. B. C. D. 2.626626662【答案】C【分析】本题考查了无理数.【解答】是无理数.选C.4.【答题】下列各数中,,(每两个之间依次增加一个),,,是无理数的有()A. 个B. 个C. 个D. 个【答案】B【分析】本题考查了无理数.【解答】由无理数的定义:“无限不循环小数叫无理数”可知,上述各数中是无理数的是:,(每两个6之间依次增加一个0)共2个.选B.5.【答题】在0,,π,3.14,,3.212212221…(两个1之间依次增加1个2),3.14这些数中,无理数的个数为()A. 2B. 3C. 4D. 5【答案】C【分析】本题考查了无理数.【解答】无理数是无限不循环小数,题目中的,π,,3.212212221…(两个1之间依次增加1个2)这4个数为无理数,选C.6.【答题】在下列各数0,0.2,3π,,6.1010010001…(1之间逐次增加一个0),,中,无理数的个数是()A. 1B. 2C. 3D. 4【答案】C【分析】本题考查了无理数.【解答】无理数有3π,6.1010010001…,共三个.选C.7.【答题】下列各数中3.14,π,1.090090009…,,0,3.1415是无理数的有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了无理数.【解答】根据无理数是无限不循环小数,可知无理数有π,1.090090009…,选:B.8.【答题】在实数:3.14159,,1.010010001.(每两个1中多一个0),,π,中,则无理数有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了无理数.【解答】无理数有1.010010001…,π,共2个,选B.9.【答题】一组数这几个数中,无理数的个数是()A. 2B. 3C. 4D. 5 【答案】A【分析】本题考查了无理数.【解答】∵∴在这一组数中无理数有:π,共2个.选B.10.【答题】下列实数中是无理数的是()A. 0.38B. πC.D.【答案】B【分析】根据无理数的三种形式,结合选项找出无理数的选项.【解答】A、0.38是有理数,故本选项错误;B、π是无理数,故本选项正确;C、=2,是有理数,故本选项错误;D、是有理数,故本选项错误.选B.11.【答题】在3.14,π,3.212212221,2+,,—5.121121112……中,无理数的个数为().A. 5B. 2C. 3D. 4【答案】C【分析】利用无理数概念即可解答.【解答】π,,-5.121121112……是无理数,选C.12.【答题】下列各数是无理数的是()A. B. C. D. -1【答案】C【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可判定选择项.【解答】A、有理数,选项错误;B、是有理数,选项错误;C、π是无理数,选项正确;D、-1是有理数,选项错误.选C.13.【答题】在实数:,,,,0.1414,,0.020020002…(每两个2之间零的个数依次增加1)中,无理数有()A. 2个B. 3个C. 4个D. 5个【答案】C【分析】本题考查了无理数.【解答】无理数是无限不循环小数可得:在实数:,,,,0.1414,,0.020020002…(每两个2之间零的个数依次增加1)中,无理数有,,,0.020020002…(每两个2之间零的个数依次增加1),共4个,选C.14.【答题】在实数中,无理数的个数是()A. 1B. 2C. 3D. 4【答案】C【分析】本题考查了无理数.【解答】无理数有π,,,共3个.选C.15.【答题】在、2π、、、0、中无理数个数为()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了无理数.【解答】无理数是指无限不循环小数,根据定义可得:2π、和为无理数.16.【答题】下列四个数中,是无理数的是()A. B. C. D. ()2【答案】A【分析】本题考查了无理数.【解答】根据无理数是无限不循环小数,可得A.是无理数,B.,C.,D.是有理数,选:A.17.【答题】下列说法中,正确的是()A. 无理数包括正无理数、0和负无理数B. 无理数是用根号形式表示的数C. 无理数是开方开不尽的数D. 无理数是无限不循环小数【答案】D【分析】本题考查了无理数.【解答】A、0不是无理数,故无理数不包括0,故本选项错误;B、无理数不是用根号表示的数,例如=2,是有理数,故本选项错误;C、开方开不尽的数是无理数,但无理数不一定是开方开不尽的数,故本选项错误;D、无理数是无限不循环小数,故本选项错误.选D.18.【答题】在下列各数:0.51525354…,,0.2,,,中,无理数的个数是()A. 2个B. 3个C. 4个D. 5个【答案】B【分析】本题考查了无理数.【解答】无理数是指无限不循环小数,本题中只有和是无理数,=0.9,=3.19.【答题】下列六种说法正确的个数是()①无限小数都是无理数;②正数、负数统称实数数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3D. 4【答案】B【分析】本题考查了无理数.【解答】根据无理数是无限不循环小数,可得答案.解:①无限不循环小数都是无理数,故①错误;②正实数、零、负实数统称实数数,故②错误;③无理数的相反数还是无理数,故③正确;④无理数与无理数的和可能是无理数、有理数,如-π+(π+2)=2,故④错误;⑤无理数与有理数的和是无理数,如-π+2=2-π,故⑤正确;⑥无理数与有理数的积可能是有理数无理数,如0×=0,故⑥错误;选:B.20.【答题】在实数、、0.1010010001、、3.14、中,无理数有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了无理数.【解答】在实数、、0.1010010001、、3.14、中,根据无理数的意义可知:无理数有、、0.1010010001三个.选C.。
鲁教版七年级数学上册第四章实数单元综合基础达标训练题2(附答案)
鲁教版七年级数学上册第四章实数单元综合基础达标训练题2(附答案) 一、单选题1.下列各数,其中是无理数的为( ) A .3.1415B .2C .﹣13D .02.下列说法正确的个数是( )(1)有理数与数轴上的点一一对应(2)()11n-=-(3)无理数加上无理数一定是无理数(4)平方根等于本身的数是1,0 (5)8.57万精确到百分位(6)a 为有理数,则a a ≥- (7)a ,b 互为相反数,则3a 和3b 互为相反数 A .2个B .3个C .4个D .5个3.的相反数是( ) A .﹣ B . C .﹣D .4.如图,在数轴上点A 表示的实数是( ).A 5B 5C 5 2D .25.若正数x 的平方等于7,则下列对x 的估算正确的是( ) A .1x 2<<B .2x 3<<C .3x 4<<D .4x 5<<6.在下列各式中正确的是( ) A ()222-=- B .93= C 168=D 222=7.在下列各数14,5,,2,3.14,2.010********π(相邻两个1之间多1个0)中是无理数的有( ) A .2个B .3个C .4个D .6个8.日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为21101,21101通过式子321212021⨯+⨯+⨯+可以转换为十进制数13,仿照上面的转换方法,将二进制数211101转换为十进制数是( )9.下列说法:①3±都是27的立方根;②33a a =;③64的立方根是2;④23(8)4±=±,其中正确的有( ) A .1个B .2个C .3个D .4个10.如图,以数轴的单位长度线段为边作一个正方形,以表示数-2的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .2-B .22-+C .22D .12-11.大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计了一种新的加减记数法.比如:9写成,;198写成,;7683写成;;总之,数字上画一杠表示减去它,按这个方法请计算( ). A .1990 B .2068C .2134D .302412.设a 1=61,b 1=221,下列关系中正确的是( ) A .a>bB .a ≥bC .a<bD .a ≤b二、填空题 13.916的平方根是______; 64的立方根是______,2-的倒数是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】
试题解析: 是无理数.
故选D.
点睛:无理数就是无限不循环小数.
4.A
【解析】
【分析】
①根据新定义代入计算;
②分别计算a※b和b※a,进行判断;
③计算(a※b)+(b※a)的值即可;
④代入计算a※b=0,得a=0或b=1.
【详解】
①2※(−2)=2(1+2)=6,所以此选项正确;
②a※b=a(1−b)=a−ab,b※a=b(1−a)=b−ab,所以a※b≠b※a,所以此选项不正确;
27.张师傅准备用铁皮焊制一个密封的正方体水箱,使其能够容纳1.331 m3的水,试问至少需要多大面积的铁皮?
28.计算: .
29.已知:a,b互为相反数,c,d互为倒数,x2=9,求:x-(a+b-cd)3的值.
参考答案
1.D
【解析】
选项A.(﹣1)3+(﹣3.14)0+2﹣1=-1+1+ = .错误.
鲁教版七年级数学上册第四章实数单元过关测试卷A卷(附答案)
一、单选题
1.下列各式中,运算结果正确的是()
A.(﹣1)3+(﹣3.14)0+2﹣1=﹣ B.2x﹣2=
C. =﹣4 D.a2•a3=a5
2.在0, ,-1, 这四个数中,最大的数是( )
A.-1B.0C. D.
3.下列各数中是无理数的是()
二、填空题
10.计算 =__________
11.0.25的平方根是_______,-64的立方根是__________
12.若 _______
13.比较大小: _____ (填“>”、“<”或“=”)
14.定义新运算“ ”,规定 ,则 __________.
15.如果( -a)2+ =0,那么a=_________,b=_________.
A. B. C. =3D.
6.若|3﹣a|+ =0,则a+b的值是( )
A.﹣9B.﹣3C.3D.9
7.已知a的平方根是±8,则a的立方根是( )
A.2B.4C.±2D.±4
8.下列各数: 无理数有( )个
A.1B.2C.3D.4
9.下列各数﹣ ,0,π, , , 中是无理数的有( )个.
A.1B.2C.3D.4
16.实数x、y满足y= - +2,则x-y=__________.
17.已知2x+1的平方根是±5,则5x+4的立方根是__________.
18.若2a-1和5-a是一个正数m的两个平方根,则m=_______
19.若 的整数部分是a,小数部分是b,则 b a=_________.
三、解答题
20.已知3a﹣2的平方根是±5,4a﹣2b﹣8的算术平方根是4,求a+3b的立方根.
7.B
【解析】
【分析】
根据乘方运算,可得 的值,根据开方运算,可得立方根.
【详解】
的平方根是 ,
,
.
故选: .
【点睛】
本题考查了立方根,先算乘方,再算开方.
8.A
【解析】
【分析】
根据无理数的概念判断即可.
【详解】
开方开不尽,是无理数,
3.1415926、 、0.1010010001是分数,
=3,是整数,
③(a※b)+(b※a),
=a(1−b)+b(1−a),
=a−ab+b−ab,
=a+b−2ab,
∵a+b=0,
∴a=−b,
∴(a※b)+(b※a)=−2ab;所以此选项不正确;
④a※b=a(1−b)=0,则a=0或b=1,所以此选项不正确;
其中正确结论的个数为1个,
故选:A.
【点睛】
考查有理数的混合运算,读懂题目,掌握运算法则是解题的关键.
【点睛】
本题考查了对无理数的定义的应用,注意:无理数包括:①开方开不尽的根式,②含π的,③无理数是指无限不循环小数.熟练掌握无理数的定义是解题关键.
10.
【解析】
分析:第一项先判断 的正负性,然后根据绝对值的意义化简,第二项根据非零数的零次幂等于1计算.
详解:
= +1
= .
故答案为: .
点睛:本题考查了实数的运算,熟练掌握实数的大小比较、绝对值的意义、零指数幂的意义是解答本题的关键.一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数.
A.3.14B. C. D.
4.定义运算:a※b=a(1−b),下面给出了关于这种运算的四个结论:①2※(−2)=6;②a※b=b※a;③若a+b=0,则(a※b)+(b※a)=2a b;④若a※b=0,则a=0,其中正确结论的个数有()
A.1个B.2个C.3个D.4个
5.下列各式中,正确的是( )
故无理数有: ,共1个,
故选A.
【点睛】
本题考查无理数的概念,无限不循环小数、开方开不尽的数是无理数,熟练掌握无理数的定义是解题关键.
9.B
【解析】
【分析】
根据无理数的定义(无理数是指无限不循环小数)判断即可.
【详解】
因为 是开方开不尽的根式, 是无限不循环小数,
所以 和 是无理数,共两个,
故选B.
5.C
【解析】
选项A, ;选项B, ;选项C, =3;选项D, .正确的只有选项C,故选C.
6.B
【解析】
分析:根据非负数的性质可知, 时,则有 ,且 ,从而可求出a和b的值,代入 计算即可.
详解: ∵ ,
∴ ,且 ,
∴a=3,b=-6,
∴a+b=3-6=-3.
故选B.
点睛:本题考查了非负数的性质,①非负数有最小值是零;②有限个非负数之和仍然是非负数;③有限个非负数的和为零,那么每一个加数也必为零.,初中范围内的非负数有:绝对值,算术平方根和偶次方.
21.已知5x-1的算术平方根是3,4x+2y+1的立方根是1,求 的值.
22.若(x-y+2)2与 互为相反数,求(x+y)x的值.
23.求下列各式中的 .
( ) ( ) .
24.计算:(﹣ )0+( )﹣1 ﹣|tan45°﹣ |
25.比较下列各数的大小:
(1) 与 ;(2)- 与-3.4.
26.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16 ,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦因数.在某次交通事故中,测得d=6m,f=1.5,求肇事汽车的车速.
选项B.2x﹣2= . 错误.
选项C. =4 .错误.
选项D.a2•a3=a5.正确.
故选D.
2.D
【解析】
分析:根据正数大于0、0大于负数解答可得.
详解:∵正数大于0、0大于负数,∴这4个数中较大为是 和 ,而 > 是4个数中最大的.
故选D.
点睛:本题主要考查实数的大小比较,解题的关键是熟练掌握正数大于0、0大于负数.